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Abstract: This paper presents a simple method to control the motion of a quadruped robot in unknown 

rough terrain using a full dynamic model. First, using the stiffness control method, the behavior of the 

four legs is approximated using four 3D spring damper systems. In this way, the dynamic model can be 

derived in Cartesian space. Based on this model, a control strategy is proposed to preserve the asymp-

totical stability of the system. In addition, a reflex motion control is introduced to cope with the rota-

tional disturbance of the robot body. Finally, dynamic simulations and experiments of a quadruped 

walking robot were performed on unknown rough terrain to verify the proposed method. 
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1. INTRODUCTION 

 

Recently, quadruped robots have gained attention 

among robotics researchers [1-4]. A number of control 

strategies have been proposed to control quadruped 

robots [1-3]. Some of these are based on biological 

insight [1] while others are based on heuristic reflexive 

motion control [2,3]. 

For fast running or dynamic walking, the idea of 

approximating the motion of the robots as a spring 

damper inverted pendulum has been proposed by several 

researchers [4-6]. Previous works related to this model 

began with an inverted point mass-spring pendulum in a 

plane [4] and then extended to more complicated cases 

by adding more degrees of freedom such as pitch angle 

[4,5], 3D translational motion [6], etc. However, a real 

robot is not a simple inverted pendulum or a system of 

springs attached to a rigid body but a system of four legs 

attached to a rigid body. Previous approaches addressed 

how to model the motion of the robot body, yet how to 

control the four legs of the robot to realize the analyzed 

motion was not discussed. 

In contrast to typical manipulators for which the 

stability is observed simply by the error dynamics of the 

system, the stability of quadruped robots relies on the 

proposed stability criteria because the full dynamics of 

the quadruped robots is difficult to handle using closed 

formed equations, especially on unknown rough terrain. 

A summary of these criteria can be found in [7]. 

Altendorfer et al. performed an analysis on the stability 

of the motion of the quadruped robot based on return 

factor maps [8]. Similar work studying the limit cycle 

stability was also carried out by Ahmadi et al. [9]. 

However, these works only used a simplified spring-

damper inverted pendulum model or a single leg model 

but not all leg dynamics were used. Meek analyzed the 

behaviors of passive legged robots using a simple under-

actuation system [10] and a similar adaptive control 

using compliant legs was proposed by Buchli et al. [11]. 

On the other hand, Berkemeier et al. and Zou et al. 

analyzed the stability of the robot by deriving a full 

dynamic model under a number of constraints [12,13]. 

However, they only considered several special simplified 

cases in which the robot motion was only considered in a 

plane. Gait planning using landing accordance ratio was 

introduced in [17]. This approach was done in 

subcontroller level only without discussing whole 

dynamics of the system. 

In this work, we aim to control the motion of a robot 

using an approximated dynamic model. The core idea is 

to approximate the four legs with virtual spring damper 

systems such that the full dynamic equations of the 

translational motion of the robot are easily derived in 

Cartesian space. The difference between this and 

previous works is that we introduce these virtual spring-

damper systems in a 3D space that includes three 

independent dimensions, not in a single dimension as 

typical models in previous works. Furthermore, we show 

how to perform the approximation in detail by using the 

stiffness control method for the sub-controller of the 

robot legs, which was briefly discussed in previous 

works. In addition, using the obtained dynamic equations, 

a control strategy is proposed such that the robot can 
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follow the predesigned control motion. The error 

dynamics of the system are also verified to be 

asymptotically stable by using the proposed control 

method. Finally, dynamic simulations and outdoor 

experiments of a quadruped robot performing dynamic 

walking on several unknown rough terrains are presented 

to validate the proposed control method. 

This paper is organized as follows. Section 2 discusses 

the 3D spring damper leg model and the basic 

assumptions used in this paper. Sections 3 and 4 present 

the core focuses including the equation of motion and 

control strategy. Section 5 shows the simulation results 

and experiments are introduced in section 6. Finally, 

conclusions are given in section 7. 

2. 3D SPRING DAMPER LEG MODEL 

2.1. Coordinate definitions and basic assumptions 

In this research, we define two reference coordinate 

frames for observing the motion of the robot. The global 

coordinate frame Σ
G
 is attached to the ground and the 

local coordinate frame Σ
L
 is attached to the center point 

of the robot body and rotates with it as shown in Fig. 1(a). 

For simplicity and consistency, the variable definition is 

introduced in Fig. 1(a).  

In this paper, the normal letter (e.g., ‘r’) is used for 

vectors calculated in the global frame Σ
G
 and super-

scripted letters (e.g., ‘r
 L

’) are used for vectors calculated 

in the local frame Σ
L
. In our work, two basic assumptions 

are made: (1) slippage does not occur at the feet and (2) 

the mass of the legs is small in comparison with the total 

mass of the robot and the moments of inertia of the legs 

are negligible. These assumptions are typically used in 

previous works and are used here to considerably reduce 

the complexity of our problem [1,4-6,10-12]. 

2.2. Spring damper approximation 

In this section, we introduce the analysis in which the 

leg behaviors are approximated as a 3D spring-damper 

system. 

If we consider leg i as an independent manipulator, the 

force applied at the hip and the supporting force at the 

foot can be treated as the base applied force and end-

effector acting force, as in the case of regular 

manipulators (Fig. 1(b)). Based on the static analysis of a 

regular industrial manipulator as in the textbook [15], it 

is well-known that the relation of the applied torque τ
i
 on 

the joints and the supporting force at the foot is given by  

,

T L

i i i
= −τ J f  (1) 

where J
i
 is the Jacobian matrix of the i th leg. The minus 

sign is omitted in (1) because the supporting force 
L

i
f  is 

equal to but has an opposite direction with the end-

effector acting force at the foot. 

Inspired by the stiffness control method, we design the 

applied torque for the joints of the i th leg as  

0
( ) ,( )

T L L L

i i i i i i i i i

⎡ ⎤= − − +
⎣ ⎦

τ J K r r C r G θ�  (2) 

where K
i
 and C

i
 are the stiffness matrix and damping 

matrix; and 
0

L

i
r  is the desired trajectory of the i th foot 

with respect to the hip joint in the local frame Σ
L
. 

L

i
r  

and 
L

i
r�  are the real position vectors of the i th foot with 

respect to the hip joint i in the local frame Σ
L
 and its time 

derivative. 

The last term in (2) is the gravity compensation which 

is calculated as  

( ) ,

i

i i

i

V∂

=

∂

G θ

θ

 

where V
i
 is the potential energy and θ

i
 is the joint angle 

vector of leg i. 

In this work, we assume the Jacobian matrix is fully 

ranked in 
3 3

,

x

�  which means each leg has 3 degrees of 

freedom (DOF). For cases in which the legs have more 

than 3 DOF, a higher dimensional spring-damper system 

model should be used. Equating (1) and (2) and then 

rearranging them, we have the final form of the 

supporting force in the local frame such as  

0
( ) .

L L L L

i i i i i i
= − +f K r r C r�  (3) 

This equation has the form of a spring damper system 

with the stiffness matrix K
i
 and damping matrix C

i
. It is 

not a single dimensional system but a 3D system in 

which the independency of the motion along the three 

local axes relies on the form of matrices, K
i
 and C

i
. From 

this result, we approximate the behavior of the four legs 

as four virtual 3D spring damper systems (Fig. 1(b)) 

which have the force-displacement relation of (3). As 

 

(a) 

 

(b) 

Fig. 1. Reference coordinate frames and defined pos-

ition vectors. 
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usual, to modulate the behavior of these virtual 3D 

spring damper legs, we control the desired trajectory 
0

L

i
r  

which is similar to the “natural length” of a normal 

spring. The generated force is then changed according to 

the change of 
0
.

L

i
r  Considering the symmetry of the robot 

structure, we choose the stiffness matrix and damping 

matrix to be the same for all four legs and named them as 

K and C. This maintains the freedom to choose different 

stiffness and damping values along the three axes. 

In our work, we tried to simplify the problem by 

ignoring the friction in the system. In fact, modeling the 

friction is a difficult practical issue in the robot control 

field. Concerning quadruped robots, there are two 

majored forms of friction: joint friction and foot-ground 

contact friction. In common manipulators which are 

similar to quadruped legs, the joint friction is usually 

modeled to be inverse-signed and proportional to joint 

velocities. This term, however, provides similar effects 

as those of the virtual damping in our model. Therefore, 

we believe that modulating the virtual damping term in 

our 3D spring damper model can somehow simulate the 

effect of joint friction simultaneously. On the other hand, 

our controller is designed to deal with unknown environ-

ments in which information concerning the friction, 

height map, and profile of the terrains is assumed to be 

unknown. Hence, it is not possible to model the friction 

at each foot contact. Furthermore, this type of friction 

affects only the slippage at the feet. With our assumption 

that slippage does not occur at any of the feet, this 

friction does not affect the energy consumption of the 

robot and thus is not considered in the dynamic equation. 

 

3. EQUATIONS OF MOTION 

 

To control the robot, we first need to derive the full 

dynamic equations of translational motion. Using the 

proposed 3D spring damper leg model, the Newton 2nd 

equation for the robot body is written as  

0
( ) ,

L

i

i
SP

L L L

i i i

i
SP

m m

m

∈

∈

= +

⎡ ⎤= − + +
⎣ ⎦

∑

∑

I

I

o R f g

R K r r Cr g

��

�

 (4) 

where o denotes the position vector of COM with respect 

to the global frame and m is the total mass of the robot. 

R is the rotational matrix of the robot body and I
SP

 

represents the index set of all supporting legs. The first 

term of the right hand side (RHS) is all the elastic forces 

from the spring damper supporting the legs and the last 

term is gravitational force. 

For consistency, we changed all the vectors in the 

RHS of (4) into the global frame by using the following 

relations  

,

L T

i i
=r R r  

( ),
L T

i i i
= − ×r R r ω r� �  

where ω is the rotational velocity of the robot body. 

Substituting those relations into (4), we have 

( ) ( ){ }
0

,

SP

R i i R i i

i

m m

∈

= − + − × +∑

I

o K r r C r ω r g�� �  (5) 

where K
R

=RKR
T

 and C
R

=RCR
T

. 

For testing the stability and robustness of the proposed 

model, we use an additional frame Σ
C
 which is parallel to 

the global frame and located at a specific point C defined 

by the following position vector  

1

,
C i

SP i
SP

n
∈

= ∑

I

o o  (6) 

where n
SP

 is the number of supporting legs. 

The point C is actually the centroid of the supporting 

geometry. It is a fixed point with respect to the global 

frame due to the assumption that no slippage occurs at 

the supporting feet. Consequently, the time derivative 

C
o�  is zero. Thus, without lost of generality, the observed 

dynamics of the robot motion with respect to the global 

frame and this frame Σ
C
 is the same. In fact, we assume 

that the robot is not equipped with any sensor that 

measures its location with respect to the global frame. 

Therefore, the defined frame Σ
C
 is required to locally 

observe the global dynamics of the robot motion. 

The translational motion of the COM with respect to 

the frame Σ
C
 is monitored by the vector  

1 1

.
C i i

SP SPi i
SP SP

n n
∈ ∈

= − =∑ ∑

I I

p o o p  (7) 

Then, by changing all the variables in (5) into p
C
, we 

have  

( )

( )

0

0
,

C SP R C C SP R C

R i i SP R C

i
SP

m n n m

n

∈

= − − +

+ − + ×∑

I

p K p p C p g

K d d C ω p

�� �

 (8) 

where p
C0

 is the control variable of the robot COM with 

respect to the frame Σ
C
. 

This is the final form of the dynamics equation of 

motion of the robot COM. The first two terms on the 

RHS of (8) are the total spring-damping forces from all 

supporting legs. The third term is the gravity force and 

the last two terms are the spring-damping forces due to 

the rotational motion of the robot body. 

 

4. CONTROL STRATEGY 

 

4.1. Global control strategy 

Inspired from the computed torque method in the 

manipulator control field, we aim to generate stable error 

dynamics for the system by designing the control law as 

follows.  

( )

( )

1

0

1

0

1

,

C Cd R R Cd C

i i R Cd

SP SPi
SP

m

n n

−

−

∈

= + − ×

− − +∑

I

p p K C p ω p

d d K p

�

 (9) 

where p
Cd

 is the desired trajectory of the COM with 

respect to frame Σ
C
. This is usually a predesigned 
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function of time based on the motion that needs to be 

performed by the robot. 

Substituting (9) into (8), we obtain  

( ) ,
SP R SP R

C C C C Cd C

n n

m m

+ + = = −

C K

e e e g e p p�� �  (10) 

where e
C
 is the error vector of the COM trajectory with 

respect to frame Σ
C
. 

The error dynamics in (10) is obviously a second order 

linear system which has the homogenous eigenvalues as  

( )
2 2

2 1,2

1

4 ,

2

i i SP i SP i SP i
n c n c mn k

m

λ
−

= − ± −  (11) 

where i =1..3; and k
i
 and c

i
 are the stiffness and damping 

coefficients along the three axes which are defined on the 

diagonal lines of matrices K and C, respectively. 

Since all the parameters n
SP

, c
i
, and m are strictly 

positive real numbers, the eigenvalues in (11) always 

have a negative real part, which confirms the exponential 

stable behavior of the system at the equilibrium point  

1

0
.

R

SP

m

n

−

=

K g

e  (12) 

Instead of obtaining zero error dynamics, the proposed 

control system exhibits a stable equilibrium point at 

some steady error which represents the level of elastic 

energy stored in all the standing legs to support the body 

weight. This means that, except for the height, the COM 

can follow the desired trajectory appropriately and stably.  

 

4.2. Supporting leg control 

In the previous subsection, (9) only shows the suitable 

control function to obtain the stable equilibrium for the 

COM. The two remaining issues are how to control the 

four legs to create this stabilizing function and how to 

maintain the robustness of the control signals of all 

individual legs. 

First, it is necessary to determine how to calculate the 

desired motion represented by the vector p
Cd

 and its 

derivatives. In this work, we assume the system does not 

have sensors that can measure the global position and 

motion of the robot. Therefore, the idea for tracking the 

exact motion and location of the robot in the global 

frame is inappropriate. In addition, our work deals with 

unknown rough terrains. Thus, an exact pre-designed 

supporting geometry (or the desired location of point C), 

and the desired motion of the robot related to this point C 

are impossible tasks. 

In this approach, the desired motion of the robot on a 

simple flat terrain in the ideal case is first pre-analyzed to 

design the desired positions p
id

 of all four legs of the 

robot along with this motion as functions of time. In this 

way, the desired trajectory of the COM is calculated by  

( )
1 1

,
Cd id id id

SP SPi i
SP SP

n n
∈ ∈

= = − +∑ ∑

I I

p p r d  (13) 

where r
id

 is the desired foot position vector with respect 

to the hip of the leg i and d
id

 is the desired motion of the 

hip i with respect to the global frame. In a real system, 

tracking in acceleration is very difficult and inappropri-

ate. Therefore, we assume that the desired acceleration 

id
p��  is zero. 

The control function p
C0

 in (9) includes n
SP

 individual 

control signal p
i0

 for all supporting legs. The only 

constraint for calculating this function is the RHS of (9). 

Therefore, if n
SP

 > 1, it becomes a redundant constraint 

for choosing n
SP

 vector functions p
i0

. In this case, the 

form of the constraint would become  

{ }
0

,

i iT iR

i
SP

∈

− − =∑

I

r r r 0  (14) 

where  

( )
1

,

iT id R R id i

−

= + − ×r r K C r ω r�  

1

[ ],
iR id i R R d id i

−

= − + × − ×r d d K C ω d ω d  

and ω
d
 denotes the desired rotational velocity of the 

robot body. 

While many solutions for solving these constraints 

may be possible in order to choose the control functions 

r
i0

, we choose the solutions for r
i0

 that maximize the 

independency between the four leg control signals. This 

helps to not only simplify the problem but also to prevent 

the complicated disturbance that might occur due to the 

unexpected landing or swinging of the legs due to 

unknown terrain geometry. 

The analytic forms of the chosen solutions are  

0
,

i iT iR
= +r r r  (15) 

or  

0 0
( ).

L T T

i i iT iR
= = +r R r R r r  (16) 

The first term in the RHS of (15) is used to control the 

translational motion of the body, and the second term is 

used to balance the rotation motion. Instead of deriving 

complicated rotational equations of motion, we choose to 

balance the rotation using an undirected method of con-

trolling the vector d
id

 [1,10]. Even though rotational dy-

namics are not computed in detail, this method proved to 

be useful as shown in the results of Sections 5 and 6. 

 

4.3. Swinging leg relocating control 

The robot body motion can only be controlled by the 

supporting legs. The swinging legs, on the other hand, 

are used to compensate and modify the motion in the 

next phase of the motion cycle. The control function 

given in (15) is only counted for the supporting state of 

all the legs. Therefore, modifications are needed for 

controlling the swinging legs, as is discussed in this 

subsection. 

As mentioned in the previous sections, explicit 

optimal relocating control for swinging legs is 

impossible for walking on rough terrains. Instead, in our 

work, the controller simply tries to relocate the swinging 

legs to the desired swinging motion. 

The motion of the swinging legs is governed by the 

following equation: 



    Duc Trong Tran, Ig Mo Koo, Yoon Haeng Lee, Hyungpil Moon, Jachoon Koo, Sangdeok Park, and Hyouk Ryeol Choi 

 

376 

( ) ( ) ( )
0

,

R j j R j j SW
j− + − × = ∈K r r C r ω r 0 I�  (17) 

where I
SW

 is the index set of all swinging legs. 

Similarly, the control function generating the zero 

error dynamics for the swinging legs is calculated as  

( ) ( )
1

0
.

L T

j jd R R jd j SW
j

−

⎡ ⎤= + − × ∈
⎣ ⎦

r R r K C r ω r I�  (18) 

The swinging control function in (18) is exactly the 

same as the first component r
iT

 in (15). Therefore, the 

second component r
iR

 will cause discontinuity in the 

control signal when the support-swing changing phase 

occurs, which is a considerable burden for the system. 

To overcome this, we modify the control strategy for 

the swinging phase as follows: 

( )
0 _

,

L T

j jT j ori SW
j= + ∈r R r r I  (19) 

where r
iT

 is defined as given in (15) and  

0

_

0

if leg i is supporting

( ) if leg i is swinging.

T

L iR

i ori

b

v

⎧−⎪
= ⎨

⎪⎩

R r

r

f

 (20) 

The scalar b
0
 is a scaling gain, r

iR
 is computed as given 

in (15), and f(v
0
) is a robust decaying function. We have 

y(t)= f(v
0
) if and only if  

0
[ ( )] ( ) 0

( )

0 ( ) 0.

sign t v t

t

t

⎧− >⎪
= ⎨

=⎪⎩

y y

y

y

�  (21) 

Using this definition, in the swinging state, the 

discontinuous term will decrease smoothly with a 

constant velocity v
0
 until it vanishes. 

 

It is noted that the behavior of the robot with respect to 

frame C and the global frame is the same only outside of 

the swing-supporting instances. At those instances, there 

is a switching peak in the position of point C. The error 

dynamics of the system can be considered as a piecewise 

continuous equation. However, point C was only used to 

observe the stability of the trajectory tracking in our 

system, not for planning or control. As described in (15) 

and (19), the control signal does not rely on the location 

of point C. In addition, the discontinuity only occurred 

due to the difference between the control signal of the 

supporting leg (in (15)) and the control signal of the 

swinging leg (in (19)), which has already been discussed 

and processed using (20). In addition, for the hybrid 

nature of error dynamics, the equilibrium point (12) is 

the same for all symmetric switching in the supporting-

swinging phase (FL-HR and FR-HL switching). In 

addition, the error dynamics exhibit exponential stability; 

therefore, even for switching that occurs near the 

equilibrium or elsewhere, the error also keeps reaching 

equilibrium. A severe case might occur in which the four 

legs might not be able to always perform symmetric 

switching in the supporting-swinging phase on unknown 

extreme rough terrain. For example, in the trot gait, a 

situation might occur in which three legs are supporting 

and one leg is swinging due to the unexpected change in 

the terrain height map. For these cases, the equilibrium 

point of the error dynamics changes according to the 

switching among the 2 nearby points. In this way, the 

tracking error would tend to go back and forth among 

these points in a single step. Up to the point at which this 

non-symmetric switching stops, the error will return to 

the original equilibrium point. Fortunately, even though 

this case might occur and an additional equilibrium 

might appear in the error dynamics, this would not have 

an adverse effect on the system because the additional 

equilibrium point is located at the lower level of errors 

(due to the fact that n
SP

 is larger at this equilibrium point). 

 

4.4. Controller diagram 

As a brief summary, the control diagram of the entire 

system is depicted in Fig. 2. Three levels are shown in 

this control diagram. The highest level is the central level 

where we directly give the required tasks usually related 

to robot motion control such as operating velocity, 

heading direction, etc. The second level is the middle 

level where the controller itself calculates the necessary 

control signals to fulfill the commanding tasks using the 

designed functions as given in (15) and (19). The final 

level is the lowest level where the necessary torque is 

calculated. 

 

In each level, sensory information is required for the 

calculating processes. In our work, we use basic sensors 

such as joint sensors to obtain the joint angle and angular 

velocity, and an IMU sensor to obtain the roll pitch yaw 

angles of the robot and its time derivatives. 

Our control diagram can easily be extended to have 

performances that are more complex by simply adding 

new reflex modules in the middle level. The reflex 

modules are used to deal with the situation or the tasks 

that are designed using other additional possible sensors. 

For example, using an Inertia Measurement Unit (IMU) 

sensor, we can obtain the robot translational acceleration. 

From this feedback, external impacts applied to the robot 

body can be sensed and the counterbalancing signal in 

the additional reflex module is then calculated. Other 

similar problems can be addressed using the same 

method. 

Fig. 2. Control diagram. 
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Fig. 3. Example of robot behavior on rough terrain. 

 

4.5. Robot behavior analysis 

In this work, we assume that the robot does not have 

any information about the environment and simply 

understands the environment as a simple flat terrain. 

For example, we assume that the robot initially walks 

on a flat terrain and suddenly steps on an unknown rock 

as depicted in Fig. 3. Before stepping on the rock, the 

robot understands the ground as its walking plane and the 

desired motion is tracked with respect to this plane so 

that it simply moves forward in a motion parallel to the 

ground as shown in Fig. 3(a). However, when the robot 

steps on the rock, it will understand the inclined plane 

formed by all the supporting legs as its working plane. 

Therefore, the robot body will no longer move parallel to 

the ground. Instead, it will move along the plane which is 

parallel to the inclined plane and which follows the 

desired direction (Fig. 3(b)). This phenomenon occurs 

because the desired motion of the robot COM is designed 

to be parallel to the working plane.  

 

In addition, the orientation of the robot body is 

controlled by the signal r
iR

 presented in section 3. By 

manipulating this signal, we can control the robot 

orientation by keeping it parallel to the ground as shown 

in Fig. 3(b) or tracking the orientation of the terrain 

which is actually unknown to the robot itself as depicted 

in Fig. 3(c). This is an interesting result of our control 

method since it is difficult to obtain the terrain 

orientation or roughness using current non-visual sensors. 

Therefore, it is difficult to adapt to the terrain roughness. 

It is helpful to recall that quadrupedal animals change 

their pitch and roll angles to adapt to the ground when 

they walk on rough terrain. In this work, we decided to 

only control the yaw angle of robot body, which means 

controlling the heading direction of the robot. The other 

roll and pitch angles are set to move freely, allowing the 

motion of the robot on rough terrain to be more flexible 

and more stable since it can adapt to the change of the 

environment roughness. 

 

5. SIMULATIONS 

 

5.1. Simulation model 

To verify the proposed controller, we performed 

dynamic simulations with the model shown in Fig. 4 by 

using an Open Dynamic Engine [16]. 

The robot has a total of 12 joints, comprising 3 joints 

for each leg. The total weight of the robot is about 22 kg 

and each leg weighs 0.442 kg (about 2% of the total 

weight). The size of the robot body is 30 x 14 x 4 cm and 

the full stretched leg length is 26 cm. The structures of 

all four legs are the same and the details of the robot 

specification are given in Table 1. In all the simulations, 

we control the robot to perform the typical trot gait. The 

hard contact model with Coulomb friction is used in the 

simulation. The friction coefficient is set to 0.7. 

 

5.2. Selection of simulation parameters 

The first important parameter to choose is the stiffness. 

According to the report of the previous biological study, 

the reference leg compression is around 10% of the 

maximum leg length in dynamic locomotion [14]. In this 

work, we choose the steady state error in (12) to be 

similar to the reference leg compression. Hence, the 

desired displacement of the spring to support the robot 

body in the trot gait is about 3cm (about 11% of leg 

length). Therefore, the required stiffness which is chosen 

to be the same for all three axes should be  

1

0

22 9.81

3597 Nm .

2 0.026
C

mg

k

ne

−

×

= = =

×

 (22) 

Based on our experiences, the damping coefficient is 

not as important as the spring stiffness since it is the 

energy dissipating term. However, there exists a limit, 

whereby the robot becomes very sensitive to velocity 

changes and becomes unstable if the damping coefficient 

is larger than this limit. This is due to the level of 

accuracy of the numerical integration of the simulation. 

As the given timestep decreases, the accuracy of the 

numerical computation increases. In this work, we 

choose the damping coefficient c to be about 3% of the 

spring stiffness value which is 105Nsm
-1

.  

In all the simulations, the desired walking height h of 

the robot is chosen to be 80% of the leg length. In 

addition, we use the Froude number, which represents 

Fig. 4. The robot model in ODE simulation. 

 

Table 1. Properties of simulation model. 

 Body Thigh Tibia 

Mass [kg] 20.014 0.221 0.221 

Moment of Inertia

× 10
-3

 [kg m
2

]

I
x
 = 33.36 

I
y
= 150.1 

I
z
= 183.0 

I
x
 = 0.32 

I
y
= 0.32 

I
z
= 0.01 

I
x
 = 0.32

I
y
= 0.32 

I
z
= 0.01 

Length [cm] 30 13 13 

Width [cm] 14 2 2 

COM c.o.l* c.o.l* c.o.l* 

c.o.l* = center of link 



    Duc Trong Tran, Ig Mo Koo, Yoon Haeng Lee, Hyungpil Moon, Jachoon Koo, Sangdeok Park, and Hyouk Ryeol Choi 

 

378 

the relation between the moving speed and the height of 

the robot at a certain gait, to determine the suitable 

required velocity for the robot [10]. The Froude number 

Fr is chosen to be 0.4 for which the robot performs the 

trot walking gait. In this case, the velocity is  

1

0.903 ms .v ghFr
−

= =  (23) 

The decaying velocity v
0
 in (21) is set to 0.2 ms

-1

. 

 

5.3. Simulation scenarios 

Two environments were prepared for the robot. The 

first terrain is extremely rough, similar to a complex 

rocky field (Fig. 5) and the second terrain is slightly 

rough, similar to a hill (Fig. 8). The sizes of these two 

terrains are 3 x 1 m and 10 x 5 m, respectively. The robot 

performed two tasks on these terrains. The detailed 

motions are shown in Figs. 5 and 8.  

For the first terrain, the robot task was simply to move 

forward and successfully overcome the terrain without 

falling over. As shown in Fig. 5, the robot successfully 

overcame the first extremely rough terrain in a 

straightforward manner. On some positions of the terrain, 

the robot legs actually slipped due to the unknown 

roughness of the terrain. Fortunately, even though the 

controller did not count these effects, the robot could still 

successfully finish the task. The error dynamics are 

shown in Fig. 6. Starting to move at t = 0 s, the robot 

stepped on the rough terrain after 2.5 s. While moving on 

the first terrain, the unexpected swing-support phase 

change usually occurred such that the total stiffness and 

damping of the robot changed accordingly. Besides, 

these sudden changes or disturbances generated impact 

forces on the robot due to the fact that the robot legs are 

not perfectly without mass in the simulation model. 

However, due to the confirmed asymptotical stability, 

regardless of the number of supporting legs, the error of 

the robot motion merely oscillated around the expected 

equilibrium point as shown in Fig. 6. The adaptation of 

the robot body to the environment as discussed in section 

4.5 can be seen in Fig. 5 and is also confirmed by the 

data of the roll and pitch angle in Fig. 7. During the time 

on the terrain, the orientation of the robot changed 

accordingly to adapt to the terrain roughness and then it 

returned to the initial normal pose.  

For the second terrain, the robot was required to not 

only overcome the terrain successfully but also track the 

given moving direction. The height map of this second 

terrain is similar to a hill; therefore, if the robot 

automatically moves forward, it might fail due to the 

extremely high inclined surfaces. For this reason, we 

manually controlled the direction of the robot to help it 

find a possible path to move. However, the turning and 

direction tracking task is performed automatically by the 

robot once the command is given. This may appear to be 

simple for the robot but it is actually still a difficult task 

because the robot did not have any information of the 

terrain and merely followed the desired direction. This 

simulation proved the capability of the proposed 

controller to manually control the robot in real time. For 

technical details, Fig. 8 shows an outline of the motion of 

the robot on the hill along with its COM trajectory. In 

addition, the associate yaw angle of the robot body 

during this task is depicted in Fig. 9. In this case, the 

robot started to move at t = 2 s and it stepped on the hill 

terrain at t = 3 s. As shown in Fig. 9, the robot followed 

the turning-left command at t = 6.4 s and then turned 

right at t = 9 s and so on. This given data clearly shows 

that the robot could track the commanded moving 

direction quite well while trotting stably.  

 

Fig. 5. The robot trotting motion on a rough terrain. 

    time [s] 

Fig. 6. Error vector of the COM trajectory on the first 

rough terrain. 

     time [s] 

Fig. 7. Roll and pitch angles of robot body during the 

motion on the rough terrain. 
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Fig. 8. The robot turning motion on a hill-like terrain. 

   time [s]

Fig. 9. Yaw angle of the robot body while turning on 

hill-like terrain. 

5.4. Instability from the accuracy of the approximation 

In our approach, the assumption of a “light mass” leg 

is a disadvantage since it is usually violated in case of 

real robots. All real robots have considerable leg mass of 

which the inertia effect can become a control difficulty. 

To test the effects of the leg mass on our proposed 

controller, we performed several simulations with 

different leg mass values. 

In these simulations, the robot was commanded to trot 

forward on a flat terrain at the velocity of 0.903 ms
-1

 for 

10 s. The stiffness and damping coefficient were chosen 

as for the previous simulations. The only different 

parameter among these simulations is the leg mass. We 

serially performed three tests with the leg mass of 0.4, 2, 

and 6 kg for the body mass of 2 %, 10 %, and 30 %, 

respectively. With a leg mass of 0.4 kg, the robot walked 

quite stably and the leg motion closely tracked the 

desired patterns. However, when the leg mass increased, 

the motion became more unstable. Due to the heaviness 

of the leg, the tracking was not sufficiently fast and 

accurate, resulting in disturbance within the motion. The 

rolling motion became greater in the case of 4 kg leg 

mass and almost became uncontrollable in the case of 

6 kg. In addition, the tracking on the x axis was weaker 

in the heavy leg so that the motion of the robot could not 

reach the desired velocity and some juggling motion 

occurred. The results of roll-pitch-yaw angles in these 

tests are plotted in Fig. 10. 

6. EXPERIMENTS 

6.1. Outlines of the robot 

For testing the proposed controller, we designed a 

robot named AiDIN III as depicted in Fig. 11. The robot 

has a total of 16 joints, and each leg has 3 actuated rotary 

joints and 1 passive linear spring-damper prismatic joint 

as shown in Fig. 11. Each rotary joint is controlled by a 

DC motor with an encoder to measure the joint angle. In 

addition, an IMU sensor is attached to the robot body to 

measure the orientation (roll-pitch-yaw angles), body 

linear acceleration, and rotational velocity. Each leg is 

also equipped with a loadcell to measure the linear force 

acting on the linear passive joint and the contact ON-

OFF state of the leg. The details of the robot’s 

dimensions and mass properties are summarized in Fig. 

   time [s]

Fig. 10. RPY angles of the robot body in three tests of

the effect of different leg mass. 

Fig. 11. The quadruped robot AiDIN III. 
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at the velocity of 0.12ms
-1

. The outlines of the motion 

are shown in Fig. 15. In these experiments, the robot 

adaptation occurred not only in the z axis to balance the 

disturbance in the rolling plane but also in the x axis to 

help the robot adapt to the terrain’s inclined surface. The 

details of these actions are shown in Fig. 15. 

7. CONCLUSIONS 

In this paper, we introduced a method to approximate 

the legs of a quadruped robot with 3D spring damper 

systems. In this way, the detailed dynamic equations of 

motion of the entire robot were easily derived in 

Cartesian space. In addition, a control strategy for the 

robot was proposed in which the error dynamics of the 

system exhibited asymptotic stability. For this control, 

minimum sensors were required. Finally, the efficiency 

of the proposed control model was validated by the 

dynamic simulations of a quadruped walking robot 

performing trotting and turning motions on several 

unknown rough terrains. In addition, real experiments 

with AiDIN III were performed on several rough terrains. 
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