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Delay-Dependent Robust Observer-based Control for Discrete-Time Uncertain 

Singular Systems with Interval Time-Varying State Delay 
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Abstract: The problem of observer-based robust control design is studied for discrete-time singular 

systems with norm-bounded uncertainties and a time-varying delay. More precisely, a delay-dependent 

criterion is established that guarantees the admissibility of the considered systems, without resorting to 

its decomposition. Based on the proposed criterion and without the assumption that the considered sys-

tems are admissible, robust observer-based controllers are designed for discrete-time singular time-

delay systems such that the closed-loop systems have the characteristics of regularity, causality and 

asymptotic stability. Seeking computational convenience, all the developed results are cast in the for-

mat of strict linear matrix inequalities (LMIs). Finally, some numerical examples are presented to show 

the feasibility of the proposed approach. 

 

Keywords: Admissibility, discrete-time singular systems, interval time-varying delay, robust control, 

state observer. 

 

1. INTRODUCTION 

 

Time delays constitute an inherent feature of several 

dynamic systems; they are regarded as an important 

source of instability and performance degradation in a 

great number of important engineering problems 

involving material, information or energy transportation 

[1,2]. During the past three decades, considerable 

attention has been devoted to the analysis and synthesis 

of these time delay systems, and many research results 

have been reported in the literature (See, for example, 

[3,4] and references therein). When dealing with time-

varying delays, a fundamental problem arises when 

estimating the upper bound of cross product terms, which 

tends to introduce a source of conservatism [5,6]. 

On the other hand, the descriptor formalism is very 

attractive for system modelling, since it can characterize 

a wide class of systems, including physical models with 

non-dynamic constraints (e.g., algebraic relations 

induced in interconnected systems such as power transfer 

networks or water distribution networks), or with jump 

behavior. 

In recent years, the problems of stability analysis and 

controller design for descriptor systems have been 

extensively studied. This can be understood through the 

fact that the singular model preserves the structure of 

practical systems and describes a larger class of physical 

systems than the state-space ones. Compared with state-

space systems, it is well known that the descriptor 

systems problems are more complicated to solve due to 

the regularity and absence of impulse (in continuous-

time) or causality (in discrete-time) must be considered 

simultaneously [7-10].  

Thus, as a special class of time delay systems, singular 

time delay systems have attracted attention from the 

mathematics and control community [11-13]. Due to its 

general description, the class of discrete-time singular 

systems with state-delay has been examined in [14-18] 

for stability and stabilization. From the literature, it 

seems that the stabilization problem for discrete-time 

singular and state-delay is often based on state feedback 

with the assumption that the state of the system is 

available for measurement. However, in practice this 

assumption is not realistic for many reasons, such as the 

non-existence of appropriate sensors to measure some of 

the states, or the limitation in the control strategies. In 

this regard, the observer-based output feedback control is 

probably well suited for feedback control, while the 

problem of designing observers for descriptor systems 

has also been investigated by a number of scholars: see, 

e.g., [19-22]. To the best of our knowledge, the observer 

design for uncertain discrete singular time-varying delay 

systems has received little attention [23,24].  

Then, we focus in this paper on the observer-based 

control design problem for discrete-time singular 

systems with time-varying delays in the presence of 

model uncertainties. First, in the LMI framework, a 

delay-dependent admissibility criterion is established for 

the considered systems. Next, based on this criterion, the 

robust output feedback control problem is also solved 
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and an explicit expression of the desired observer-based 

control law is given, which can be obtained by solving 

the feasibility problem of a strict LMI. Finally, the 

effectiveness and the reduced conservatism of the 

derived results are shown by several examples.  

Notation: Throughout this paper, X
n

∈�  denotes the 

n–dimensional Euclidean space, while n m

X
×

∈�  refers 

to the set of all n m×  real matrices. The notation 

0X >  (respectively, 0)X ≥  means that the matrix X 

is real symmetric positive definite (respectively, positive 

semi-definite). If not explicitly stated, all matrices are 

assumed to have compatible dimensions for algebraic 

operations. The symbol (*) stands for matrix block 

induced by symmetry and sym(X) stands for .

T
X X+  

 

2. SYSTEM DESCRIPTION AND 

PRELIMINARIES 

 

Consider the class of singular discrete-time systems 

with state delay described by 

( 1) ( ) ( ) ( ) ( ( ))

( ) ( ),

( ) ( ), [ ,0],

d d

M

Ex k A A x k A A x k d k

B B u k

x k k k dφ

+ = + Δ + + Δ −

+ + Δ

= ∈ −

 (1) 

where n

xk ∈�  is the state vector, ( ) m

u k ∈�  is the 

control input vector, d(k) is a positive integer represent-

ing the time-varying delay that satisfies ( )
m

d d k≤ ≤  

dM, where the bounds 0
m

d ≥  and 0
M

d >  are known 

to be positive finite integers. ( )kφ  is a compatible initial 

condition. The matrix n n

E
×

∈�  may be singular, and 

we shall assume that ( ) .rank E r n= ≤  A, Ad and B are 

known real constant matrices with appropriate dimensions. 

,AΔ
d

AΔ  and BΔ  are unknown matrices representing 

the parametric uncertainties, assumed to be of the form 

[ ] ( )[ ]
d d u

A A B MF k N N NΔ Δ Δ = , (2) 

where M, N, Nd and Nu are known real constant matrices 

with appropriate dimensions, and F(k) is an unknown 

matrix function satisfying 

( ) ( )T
F k F k I≤ . (3) 

The nominal unforced discrete singular time-delay 

system of (1) is as follows: 

( 1) ( ) ( ( )),

( ) ( ), [ ,0],

d

M

Ex k Ax k A x k d k

x k k k dφ

+ = + −

= ∈ −

 (4) 

 

Definition 1 [7,9,25]: 

1) The pair (E, A) is said to be regular if det( )zE A−  

0.≠  

2) The pair (E, A) is said to be causal, if it is regular and 

( ( )) ( ).deg det zE A rank E− =  

3) For given positive scalars dm and dM, the discrete 

singular time-delay system (4) is said to be regular 

and causal for any time delay d(k) satisfying 
m

d ≤  

( ) ,
M

d k d≤  if the pair (E, A) is regular and causal. 

4) The time-varying delay discrete singular system (4) 

is said to be admissible if it is regular, causal and 

stable. 

5) The discrete singular time delay system (4) is said to 

be stable if, for any scalar ε > 0, there exists a scalar 

δ(ε) > 0 such that, for any compatible initial condition 

( )kφ  satisfying 
0

sup ( )
Md k

kφ
− ≤ ≤

|| ||≤ δ(ε), the solu-

tion x(k) to system (4) des satisfies ( )x k ε|| ||≤  for 

any 0;k ≥  moreover lim ( ) 0.
k

x k

→∞

=  
 

Without loss of generality, we introduce the following 

assumption for technical convenience. 
 

Assumption 1: For a given 
2

q n
C

×

∈�  with rank(C2) 

= q, there always exist two orthogonal matrices U ∈  
q q×

�  and ,

n n

V
×

∈�  such that 

2
[ 0]

T
U C V S= , (5) 

1 2
{ , , , },

q
S diag s s s= �  where ( 1 )

i
s i q= , ,�  are nonze-

ro singular values of C2. 

We end this section by recalling the following lemmas: 
 

Lemma 1 [26]: Given matrices M, N and P of 

appropriate dimensions, with P symmetrical, then 

( ) ( ) 0T T T
P MF k N N F k M+ + <  

for any F(k) satisfying ( ) ( ) ,T
F k F k I≤  if and only if 

there exists a scalar ε > 0 such that 

1
0

T T
P MM N Nε ε

−

+ + < . (6) 
 

Lemma 2 [27]: For any matrix M > 0, integers p and q 

satisfying q > p, and vector function : [ , ]
n

x p q →� �  

such that the sums concerned are well defined, then: 

( 1) ( ) ( )

( ) ( ) .

q
T

s p

T
q q

s p s p

q p x s Mx s

x s x sM

=

= =

− − +

⎛ ⎞ ⎛ ⎞
≤ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑ ∑

 

 

3. STABILITY ANALYSIS 

 

In this section we provide a sufficient condition, 

written as LMIs in terms of a free-weighting-matrix, 

under which the nominal system (4) is regular, causal 

and stable. This condition will play a key role in solving 

the problems mentioned below.  
 

Theorem 1: Given integers dm > 0 and dM > 0, for any 

delay d(k) satisfying ( ) ,
m M

d d k d≤ ≤  system (4) is 

admissible if there exist matrices 0,P > 0,Q >
1

0,Q >  

2
0,Q >

1
0,Z >

2
0,Z > ,X ,Y ,S ,

i
G 1 2 3,i = , ,  such that 

1

2

( )
0

*

sym X

Z

τ⎡ ⎤Φ + Φ
<⎢ ⎥

−⎣ ⎦
, (7) 

1

2

( )
0

*

sym Y

Z

τ⎡ ⎤Φ + Φ
<⎢ ⎥

−⎣ ⎦
, (8) 
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where n n r

R
× −

∈�  is any matrix with full column rank 

satisfying 0
T

E R =  and 

11 13 1 15

1

33 35

2 1

55

1
0

0 0 0

0

1
0

T

M

T

M

E Z E
d

Q

Q E Z E
d

⎡ ⎤
Φ Φ Φ⎢ ⎥
⎢ ⎥
⎢ ⎥∗ −
⎢ ⎥

Φ = ∗ ∗ Φ Φ⎢ ⎥
⎢ ⎥
∗ ∗ ∗ − −⎢ ⎥

⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ Φ⎣ ⎦

, 

11 1 2

1 1

( 1)

1
( ( )) ,T T

M

Q Q Q

sym G A E E Z E
d

τΦ = + + +

+ − −
 (9) 

13 1 2

33 2

15 1 3

35 2 3

55 1 2 3

1

( ) ,

( ),

( ) ,

,

( ),

[0 0],

.

T T

d

T

d

T T T T

T T

d

M

M m

G A A E G

Q sym G A

E P SR G A E G

G A G

P d Z Z sym G

YE XE YE XE

d d

τ

τ

Φ = + −

Φ = − +

Φ = + − + −

Φ = − +

Φ = + + −

Φ = − −

= −

 

Proof: The proof of this theorem is divided into two 

parts. The first part is concerned with regularity and 

causality, while the second part treats the stability of 

system (4): Since rank ( ) ,E r n= ≤  there always exist 

two nonsingular matrices M  and n n

N
×

∈�  such that 

0

0 0

r
I

E MEN
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

. (10) 

Then, R can be characterized as 
0

,
T

R M
⎡ ⎤

= ⎢ ⎥Φ⎣ ⎦
 where 

( ) ( )n r n r− × −

Φ∈�  is any nonsingular matrix. 

We also define 

11 12 11

21 22 21

11 12

21 22

, ,

.

T

d d

d d

d d

A A S
A MAN S SN

A A S

A A
A MA N

A A

⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

 (11) 

It follows from (31) and (32) that 

11 12

22

0
*

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ Ψ
<

Ψ
, (12) 

where 

11 1 1

12 1 3

22 3

1
( ( )) ,

( ) ,

( ).

T T

M

T T T T

sym G A E E Z E
d

E P SR G A E G

sym G

Ψ = − −

Ψ = + − + −

Ψ = −

 

Pre- and post-multiplying (12) by [ ]
T

I A,  and its 

transpose, respectively, we obtain 

3 1 1 1

1
( )T T T

M

E P G G A G E E Z E SR Asym
d

⎛ ⎞
− − − − +⎜ ⎟

⎝ ⎠
 

 < 0. (13) 

Pre- and post-multiplying (13) by T
N  and ,N  re-

spectively, and then using the expression (10) and (11), 

we have that 

21 22
( ) 0T

sym S AΦ <  (14) 

and thus 
22

A  is nonsingular. Otherwise, suppose that 

the matrix 
22

A  is singular, then there must exist a non-

zero vector n r

ψ
−

∈�  which ensures 
22

0.A ψ =  As a 

consequence, we conclude that 
21 22

( )T T
sym S Aψ ψΦ  

= 0 which contradicts (14), so 
22

A  is nonsingular. Then, 

the pair (E, A) is regular and causal. 

Next, under the conditions of the theorem, we will 

show that system (4) is stable. To this end, we select the 

Lyapunov-Krasovskii functional candidate 

1 3 3 4

1

1 1

2 1 2

1

3

1 1

4 1

1 1

2

( ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( )

( )

m M

m

M

M

m

M

T T

k k
T T

s k d s k d

d k
T

d s k

k
T T

d s k

d k
T T

d s k

V V k V k V k V k

V k x k E PEx k

V k x s Q x s x s Q x s

V k x s Qx s

V k s E Z E s

s E Z E

θ θ

θ θ

θ θ

η η

η η

− −

= − = −

− −

=− = +

− −

=− = +

− − −

=− = +

= + + +

=

= +

=

=

+

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ( ),s

 (15) 

where ( ) ( 1) ( ).k x k x kη = + −  In terms of the Lyapunov 

difference ( ) ( 1) ( ),V k V k V kΔ = + −  one can obtain 

1
( ) ( ) ( ) 2 ( ) ( )T T T T

V k k E PE k x k E PE kη η ηΔ = + , (16) 

2 1 2

1

2

( ) ( )( ) ( )

( ) ( )

( ) ( ),

T

T

m m

T

M M

V k x k Q Q x k

x k d Q x k d

x k d Q x k d

Δ = +

− − −

− − −

 (17) 

3
( ) ( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( )

( ( )) ( ( )),

m

M

k d

T T

s k d

T

T

V k x k Qx k x s Qx s

x k Qx k

x k d k Qx k d k

τ

τ

−

= −

Δ = + −

≤ +

− − −

∑

 (18) 

( )4 1 2

1

1

1

2

( ) ( )

( ) ( )

( ) ( ).

M

m

M

T T

M

k
T T

s k d

k d

T T

s k d

V k k E E kd Z Z

s E Z E s

s E Z E s

η ητ

η η

η η

−

= −

− −

= −

Δ = +

−

−

∑

∑

 (19) 

According to Lemma 2, we have that 

( )4 1 2
( ) ( )T T

M
V k k E E kd Z Zη ητΔ ≤ +  (20) 
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1

( ) 1

2

1

2

( )

1
( ) ( )

( ) ( )

( ) ( ),

M

m

T T

M

k d k

T T

s k d

k d

T T

s k d k

k E Z E k
d

s E Z E s

s E Z E s

γ γ

η η

η η

− −

= −

− −

= −

−

−

−

∑

∑

 

where ( ) ( ) ( ).
M

k x k x k dγ = − −  

Defining 

( )

[ ( ) ( ) ( ( )) ( ) ( ) ] ,T T T T T T

m M

k

x k x k d x k d k x k d k E

ξ

η

=

− − −

 

for any appropriately dimensioned matrix X, the follow-

ing inequality holds 

1( ) 1
2( ) ( )

0
( ) ( )

2M

T Tk d k

T

s k d

XZ X Xk k

E s E sX Z

ξ ξ

η η

−
− −

= −

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ≥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∑ . (21) 

Then, it is easy to verify that 

( )

( ) 1

2

1
2

( ) ( )

( ( )) ( ) ( )

2 ( ) .( ( )) ( )

M

k d k

T T

s k d

T T

M

T

M

s E Z E s

d d k k XZ X k

k XE x k d k x k d

η η

ξ ξ

ξ

− −

= −

−

−

≤ −

+ − − −

∑

 (22) 

Similarly, for any matrix Y we get 

( )

1

2

( )

1
2

( ) ( )

( ( ) ) ( ) ( )

2 ( ) ( ) ( ( )) .

m
k d

T T

s k d k

T T

m

T

m

s E Z E s

d k d k YZ Y k

k YE x k d x k d k

η η

ξ ξ

ξ

− −

= −

−

−

≤ −

+ − − −

∑

 (23) 

Setting 
( )

( ) .Md d k
k

τ
ρ

−

=  From (22) and (23), it can be 

seen that 

{
}

1

2

1 1

2 2

( ) ( )

( ) ( ) (1 ( ))

( ).2[0 0]

m

M

k d

T T

s k d

T T T

s E Z E s

k k XZ X k YZ Y

kYE XE YE XE

η η

ξ τρ τ ρ

ξ

− −

= −

− −

−

≤ + −

+ − −

∑

 (24) 

From (4), the following equation holds for any matrix G 

with appropriate dimensions 

1 2 3
2[ ( ) ( ( )) ( ) ]

[( ) ( ) ( ( )) ( )] 0.

T T T T T T T

d

x k G x k d k G k E G

A E x k A x k d k E k

η

η

+ − +

× − + − − =

 (25) 

On the other hand, it is clear that 

2 ( ) ( ) 0
T T
x k SR E kη = . (26) 

From (16)-(26), we have 

( )1 2
( ) ( ) ( )( ) (1 ( ))

T
V k k kk kξ ρ ξρΔ ≤ Φ + − Φ , (27) 

where 

1

2

1

1 1 2

2 1

( ) ,

( ) ,

T

T

sym XZ X

sym YZ Y

τ

τ
−

−

Φ = Φ+ Φ +

Φ = Φ+ Φ +

 

since 0 ( ) 1,kρ≤ ≤
1 2

( ) (1 ( ))k kρ ρΦ + − Φ  is a convex 

combination of 
1

Φ  and 
2
.Φ  If (31)-(32) are satisfied, 

then by applying the Schur complement, it is possible to 

obtain that 
1 2

( ) (1 ( )) 0k kρ ρΦ + − Φ <  and thus ( )V kΔ  

0.<  According to Lyapunov stability theory, then there 

exists a scalar 0α >  such that 

2( ) ( )V k x kαΔ ≤ − � � . (28) 

Therefore, we have 

2

0

1
( ) (0)

k

i

x i V

α
=

≤ < ∞∑� � , (29) 

that is, the series 2

0

( )
k

i

x i

=

∑� �  converges, which implies 

that lim ( ) 0.
k

x k

→∞

=  Thus, according to Definition 2 sys-

tem Q2 des is stable.           � 
 

Remark 1: A key feature of the proposed approach is 

that neither model transformation nor the bounding 

techniques are used, when estimating the upper bound of 

the cross product terms. In particular, none of the useful 

items are ignored when deriving our stability criterion. In 

fact, in some literature results, such as [28], the time 

delay term d(k) is usually assumed to be dM when 

estimating the upper bound of some cross terms and 

some useful terms such as 
( ) 1

2( ) ( )
M

k d k T T

s k d
s E Z E sη η

− −

= −

−∑  

were ignored. This inevitably leads to increasing 

conservatism. Therefore, the results derived in this paper 

should be less conservative than some existing results.  
 

Remark 2: Theorem 1 applied for dm = 0 may give a 

conservative result, this is due to the two redundant 

terms that appear in V4(k). Considering one only term in 

V4(k) with Q1 = 0 in (15), the result can be improved. 

(See the Corollary that follows). 
 

We now provide a Corollary that presents a delay-

dependent admissibility criterion for the system (4) when 

dm = 0. This criterion can be established by the same 

procedure used for the proof of Theorem 1, with the 

following candidate Lyapunov functional 

1

1

0 1

1 1

1

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ).

M

M

M

k
T T T

s k d

k
T

d s k

k
T T

d s k

V k x k E PEx k x s Q x s

x s Qx s

s E Z E s

θ θ

θ θ

η η

−

= −

−

=− = +

− −

=− = +

= +

+

+

∑

∑ ∑

∑ ∑

 (30) 

Corollary 1: Given a integer 0,
M

d >  for any delay 

d(k) satisfying 0 ( ) ,
M

d k d≤ ≤  system (4) is admissible 

if there exist matrices 0,P > 0,Q >
1

0,Q >
1

0,Z > ,X  
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,Y ,S ,
i

G 1 2 3,i = , ,  such that 

1

1

( )
0

*

M
sym d X

Z

⎡ ⎤Φ + Φ
<⎢ ⎥

−⎣ ⎦
, (31) 

1

1

( )
0

*

M
sym d Y

Z

⎡ ⎤Φ + Φ
<⎢ ⎥

−⎣ ⎦
, (32) 

where n n r

R
× −

∈�  is any matrix with full column rank 

satisfying 0,
T

E R =  and 

11 12 14

22 24

1

44

11 1 1

12 1 2

22 2

14 1 3

24 2 3

44 1 3

1

0

0
,

0

( 1) ( ( )),

( ) ,

( ),

( ) ,

,

( ),

[ 0].

T

M

T T

d

T

d

T T T T

T T

d

M

Q

Q d Q sym G A E

G A A E G

Q sym G A

E P SR G A E G

G A G

P d Z sym G

YE XE YE XE

⎡ ⎤Φ Φ Φ
⎢ ⎥

Φ Φ⎢ ⎥Φ =
⎢ ⎥∗ −
⎢ ⎥

∗ ∗ Φ⎢ ⎥⎣ ⎦

Φ = + + + −

Φ = + −

Φ = − +

Φ = + − + −

Φ = − +

Φ = + −

Φ = − −

 (33) 

 

4. OBSERVER-BASED CONTROL DESIGN 

 

A state observer is usually used to reconstruct the 

states of a dynamic system and has very important 

applications in many aspects such as the realization of 

feedback control, system supervision and fault diagnosis. 

In many practical systems, the states of a system are not 

always measurable or have practical sense. Hence, 

observer-based control is well suited for feedback control. 

In this section, we aim to develop results to solve the 

output feedback control problem for the singular system 

(1).  

To achieve this objective, we use the following obser-

ver-based controller:  

2

ˆ ˆ ˆ ˆ( 1) ( ) ( ( )) ( ( ) ( ))

ˆ ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( ), [ ,0],

d

M

Ex k Ax k A x k d k L y k y k

y k C x k

u k Kx k

x k k k dψ

+ = + − + −⎧
⎪

=⎪
⎨

=⎪
⎪ = ∀ ∈ −⎩

 

 (34) 

where ˆ( )x k  is the state estimation of ( ),x k ˆ( )y k  is the 

observer output, and n q
L

×

∈�  and p n
K

×

∈�  are, re-

spectively, the observer and the controller constant gain 

matrices, to be determined.  
 

Let us denote the estimation error as ˆ( ) ( ) ( )e k x k x k= −  

and ˆ( ) [ ( ) ( )].T T T
x k x k e k=�  Combining (1) with (34), 

the augmented closed-loop system is written as 

( 1) ( ) ( ( ))

( ) [ ( ), ( ( ) ( )) ] , [ ,0]

d

T T T

M

Ex k x k x k d k

x k k k k k dψ φ ψ

⎧ + = + −⎪
⎨

= − ∀ ∈ −⎪⎩

� ��

� � �

�

A A
 (35) 

with ( ) ,A MF k N= +

� � � � �A ( ) ,
d d d d

A M F k N= +

� � � �A ( )F k =
�  

( ( ), ( ), ( )),diag F k F k F k ( ) ( ( ), ( )),F k diag F k F k=  

2 2

2

1

1

0
, ,

00

0 0
, ,

0 0 0

0
00

0 , , .
00

0

d

d

d

d

d d

d

u

A B K LCE
E A

A LCE

A M M
A M

A M

N
NM

N N M N
NM

N K

+⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

⎡ ⎤
⎡ ⎤⎡ ⎤⎢ ⎥= = = ⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

��

� �

� � �

 

Theorem 2: For given integers dm, dM with M m
d d≥  

> 0, system (35) is admissible if there exist matrices 

0,P >
� 0,Q >

�

1
0,Q >

�

2
0,Q >

�

1
0,Z >

�

2
0,Z >

�

,X� ,Y� ,S�

,
i

G� 1,2,3,i =  such that 

1 1

2

( )

0 0

sym X

Z

I

τ

ε

⎡ ⎤Φ + Φ ϒ
⎢ ⎥

∗ − <⎢ ⎥
⎢ ⎥∗ ∗ −⎣ ⎦

� �� �

� , (36) 

1 1

2

( )

0 0

sym Y

Z

I

τ

ε

⎡ ⎤Φ + Φ ϒ
⎢ ⎥

∗ − <⎢ ⎥
⎢ ⎥∗ ∗ −⎣ ⎦

� �� �

� , (37) 

where n n r

R
× −

∈
� �  is any matrix with full column rank 

satisfying 0
T

E R =
� �  and 

11 13 1 15

1

33 35

2 1

55

1 1 1

2 2

1
0

0 0 0

0 ,

1
0

0 0

,

0 0

T

M

T

M

T T T T

d

T T T T

d

T T T T

d

EZ E
d

Q

Q EZ E
d

G N G N

G N G N

G N G N

μ μ

μ μ

⎡ ⎤
Φ Φ Φ⎢ ⎥
⎢ ⎥
⎢ ⎥∗ −
⎢ ⎥

Φ = ∗ ∗ Φ Φ⎢ ⎥
⎢ ⎥
∗ ∗ ∗ − −⎢ ⎥

⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ Φ⎣ ⎦

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥ϒ = − −⎢ ⎥
⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

� � �� � �

�

� � �

� � � �

�

� �� �

�
� �� �

� �� �

 

11 1 2

1

13 2

33 1

15 2

35 1 2

55 1 2 2

1

( 1) (( ) )

1
,

( ) ,

( ) ,

( ) ,

,

( ),

0

T

T T

M

T T T

d

T

d d d

T T T

T

d

M

Q Q Q sym A E G

EZ E HH
d

G A A E G

Q sym A G H H

EP SR G A E G

G A G

P d Z Z sym G

YE

τ

μ

μ ε

μ

μ μ

τ μ

Φ = + + + + −

− +

Φ = + −

Φ = − + +

Φ = + − + −

Φ = − +

Φ = + + −

Φ =

� � � ���

� � � � �

� � � ���

� � � � ��

� � � �� ��

� � ��

�� � ��

� �� 0 .T T T TXE YE XE⎡ ⎤− −⎣ ⎦
� � � � � �

 (38) 
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Proof: Now consider the following singular delay 

system 

( )( 1) ( ) ( ( ))
T T T

d
E k k k d kζ ζ ζ+ = + −
�

� �A A . (39) 

Note that det( ) det( ),
T T

zE zE− = −

� �� �A A  then the pair 

( )E, �� A  is regular, impulse-free and stable if and only if 

the pair ,

T
E�

T
�A  is regular, impulse-free and stable. 

Moreover, det ( ) 0Md

d
z zE z

−

− − =

� �� A A  and det(
T

zE
�  

) 0MdT T

d
z
−

− − =

� �A A  have the same solution. 

 

As long as the regularity, being impulse-free and stability 

are concerned, we can consider system (39) instead of 

(35). Then, applying Theorem 3 to system (39) and 

setting 
1

,G G=
�

2 1
G Gµ=

�  and 
3 2

,G Gµ=
�  the following 

inequalities hold for all F(k) satisfying ( ) ( ) .T
F k F k I≤  

1

2

( ) ( )
0

*

k sym X

Z

τ⎡ ⎤Φ + Φ
<⎢ ⎥

−⎣ ⎦

�� �

�

, (40) 

1

2

( ) ( )
0

*

k sym Y

Z

τ⎡ ⎤Φ + Φ
<⎢ ⎥

−⎣ ⎦

��

�

 (41) 

with 

( )kΦ =�  

11 13 1 15

1

33 35

2 1

55

1
( ) 0 ( ) ( )

0 0 0

( ) 0 ( )

1
0

T

M

T

M

k k EZ E k
d

Q

k k

Q EZ E
d

⎡ ⎤
Φ Φ Φ⎢ ⎥
⎢ ⎥
⎢ ⎥∗ −
⎢ ⎥

∗ ∗ Φ Φ⎢ ⎥
⎢ ⎥

∗ ∗ ∗ − −⎢ ⎥
⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ Φ⎣ ⎦

� � �� � �

�

� �

� � � �

�

, 

11 1 2

1

( ) ( 1) (( ) )

1
,T

M

k Q Q Q sym E G

EZ E
d

τΦ = + + + + −

−

�� � ���

� � �

A

 

13 2

33 1

15 2

35 1 2

( ) ( ) ,

( ) ( ),

( ) ( ) ,

( ) ,

T T

d

T T

d

T T

T

d

k G E G

k Q sym G

k EP SR G E G

k G G

µ

µ

µ

µ µ

Φ = + −

Φ = − +

Φ = + − + −

Φ = − +

� �� ���

�� ��

�� �� ��

�� ��

A A

A

A

A

 

which can be written as 

( )
1 1

0,( ) Tsym kΦ+ <Ψ ϒ
� �

� �F  (42) 

where 

11 13 1 15

1

33 35

2 1

55

1
0

0 0 0

0 ,

1
0

T

M

T

M

EZ E
d

Q

Q EZ E
d

⎡ ⎤
Φ Φ Φ⎢ ⎥
⎢ ⎥
⎢ ⎥∗ −
⎢ ⎥

Φ = ∗ ∗ Φ Φ⎢ ⎥
⎢ ⎥
∗ ∗ ∗ − −⎢ ⎥

⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ Φ⎣ ⎦

� � �� � �

�

� � �

� � � �

�

 

1

0

0 0

.0

0 0

0 0

d

M

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Ψ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

�

�
�  

By Lemma 1, and applying the Schur complement, the 

conditions (36)-(37) hold for ε > 0.        � 

 

Theorem 3: Consider the system (39) with the 

observer-based control (34). For given integers dm, dM 

with 0,
M m

d d≥ >  a positive scalar ε, and scalar tuning 

parameters 0,
i

µ ≠ 1,2,i =  if there exist matrices 0,P >
�  

0,Q >
�

1
0,Q >

�

2
0,Q >

�

1
0,Z >

�

2
0,Z >

�

,X� ,Y� ,S�
11
ˆ

∈G  

,

q q×
�

( ) ( )
22
ˆ ,

n q n q− × −

∈�G
( )

21
ˆ ,

n q n− ×

∈�G ,

n n×

∈�G ∈K  

,

m n×

� ,

n q×

∈L �  such that the following LMIs hold: 

1 1

2

( )

0 0

sym X

Z

I

τ

ε

⎡ ⎤Ψ + Ψ Γ
⎢ ⎥

∗ − <⎢ ⎥
⎢ ⎥∗ ∗ −⎣ ⎦

� � � �

� , (43) 

1 1

2

( )

0 0

sym Y

Z

I

τ

ε

⎡ ⎤Ψ + Ψ Γ
⎢ ⎥

∗ − <⎢ ⎥
⎢ ⎥∗ ∗ −⎣ ⎦

� � � �

� , (44) 

where 

11 13 1 15

1

33 35

2 1

55

1
0

0 0 0

0

1
0

T

M

T

M

EZ E
d

Q

Q EZ E
d

⎡ ⎤
Ψ Ψ Ψ⎢ ⎥
⎢ ⎥
⎢ ⎥∗ −
⎢ ⎥

Ψ = ∗ ∗ Ψ Ψ⎢ ⎥
⎢ ⎥
∗ ∗ ∗ − −⎢ ⎥

⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ Ψ⎣ ⎦

� � � � � �

�

� � �

� � � �

�

, 

1 1 1

2 2

0 0

,

0 0

T T
d

T T
d

T T
d

µ µ

µ µ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥Γ = − −⎢ ⎥
⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

N N

N N

N N

�  

11 1 2 1

1
( 1) ( )

,

T

M

Q Q Q sym EG EZ E
d

M

τ

ε

Ψ = + + + + − −

+

A� � �� � � � �

 

13 2
( ),T

d
EGµΨ = + −A A �� �  

33 1

15 2

35 1 2

55 1 2 2

1

( ) ,

( ),

,

( ),

0 0 ,

d d

T T T

T

d

M

T T T T

Q sym

E P SR G EG

G

P d Z Z sym G

YE XE YE XE

μ ε

μ

μ μ

τ μ

Ψ = − + +

Ψ = + − + −

Ψ = − +

Ψ = + + −

⎡ ⎤Ψ = − −⎣ ⎦

A M

A

A

��

� �� � �

��

�� � � �

� � � � � � � � �
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2 2

2

,
0

A B Y FC

A FC

+⎡ ⎤
= ⎢ ⎥−⎣ ⎦

A
G

G
 

0
,

0

d

d

d

A

A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A
G

G
 

11

21 22

ˆ 0
ˆ ,

ˆ ˆ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

G
G

G G

 ˆ ,
T

V V=G G  
0

,
0

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦G

�

G
 

2 0
,

0

T

T

MM

MM

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  
0

,
0

T

d
T

MM

MM

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  

0

0 ,

0
u

N

N

N Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

N G

G

 
0

0

d

d

d

N

N

⎡ ⎤
= .⎢ ⎥
⎣ ⎦

N
G

G
 

Then the closed-loop singular system (35) is regular, 

impulse-free and asymptotically stable; the gain matrices 

that provide these properties are 1
K Y

−

= G  and L =  
1 1

11
ˆ ,

T
FUS S U

− −

G  where U, V and S come from (5). 

 

Proof: Under the conditions of the theorem, it follows 

from 
55

0Ψ <�  that G�  is nonsingular. Thus, G is also 

nonsingular. Setting 1

11
ˆ T

F LUS S U
−

= G = ˆLG  and Y =  
1
.K

−

G  Under the condition of Assumption 1, we have 

that 

11

1

2 11

11

21 22

2

ˆ ˆ [ 0]

ˆ[ 0]

ˆ 0
[ 0]

ˆ ˆ

.

T T

T

T T

C US S U U S V

U S V

U S V V V

C

−=

=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

=

G G

G

G

G G

G

 

Then, the augmented matrices can be written as 

2 2

2

,
0

0
,

0

0

0 ,

0

0
.

0

d

d d

d

u

d

d d

d

A B K LC
AG

A LC

A
A G

A

N

N NG

N K

N
N G

N

+⎡ ⎤
= =⎢ ⎥−⎣ ⎦

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

G
A

G G

A
G

N G

N
G

� �

� �

��

��

G G

G

G

G

G

 

Then, from Theorem 2, the closed-loop singular system 

(35) is regular, impulse-free and asymptotically stable. � 

 

5. NUMERICAL EXAMPLES 

 

In this section we provide some examples to show the 

effectiveness of our proposed method.  

 

Example 1: Consider an unforced singular time-delay 

system with parameters as follows: 

1 0
,

0 0
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0.8 0
,

0.05 0.9
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0.1 0
.

0.2 0.1
d

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

Our purpose is to determine the allowable time delay 

upper bounds dM for various dm such that the system (4) 

des will be admissible. Table 1 gives a more detailed 

comparison of results on the maximum allowed bounds 

for dM via the methods in [25,29,30] and Theorem 1 (or 

Corollary 1 for dm = 0) in this paper. 

In terms of conservatism, the results in Table 1 clearly 

show that the result in this paper outperforms those in 

[25,29,30]. 

 

Example 2: Consider the singular time-delay system 

in desc-sys with the following parameters 

2

1 0 1 1 0 0.02
, , ,

0 0 1 2 0.1 0.15

2 1
, [5 1], ,

1 1

[ 0.25 0], [0.2 0.2], 0.25.

d

d u

E A A

B C M

N N N

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= − = =

 

In this example we choose 1,
m

d = 4,
M

d =
1

0 001,μ = .  

2
0 8µ = .  and 

0
( ) .F k r=  r0 is a random number taken 

from a uniform distribution over [ 1,1].−  

 

We record that the open-loop system is unstable, since its 

eigenvalues are outside the unit disc. Implementation of 

the LMIs (43), (44) yields the following feasible solution: 

37.5841 15.8172
,

12.4015 55.9098

35.9478 0
ˆ ,

41.2878 31.8568

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

G

G

 (45) 

0.0330
0.5831 0.8594 , .

0.1768
K L

⎡ ⎤
⎡ ⎤= − − = ⎢ ⎥⎣ ⎦

⎣ ⎦
 

Given the initial conditions 

( ) 0.1sin( ) 0.75 M

T
k d

k k eφ
−⎡ ⎤= − −⎣ ⎦  and 

( ) 0.2 0.1 ,
T

kψ ⎡ ⎤= −⎣ ⎦  

the simulation results are presented in Fig. 1. From the 

plotted graphs, it is quite clear that the generated control 

law guarantees regulation to the zero level.  

 

Example 3: Consider the system (1) with the follow-

ing parameters 

1 2 1

0 2 1 ,

1 0 0

E

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

0.1530 0.0450 0.0690

0.1560 0.2520 0.1560 ,

0.1350 0.1710 0.6360

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

Table 1. Maximum allowed delays dM for various dm. 

d
m
 0 3 6 9 12 15 

[25] 7 8 10 13 15 18 

[29] 17 18 19 21 23 25 

[30] 15 16 19 22 25 28 

Theorem 1 18 18 21 24 27 30 
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Fig. 1. State and control input trajectories for Example 2. 

 

0.15 0 0

0.1 0.1 0 ,

0 0 0.1

d
A

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

0.1

0.1 ,

0.2

B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2

1 0 0
,

0 1 1
C

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

0.1

0.1 ,

0.15

M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

0.1 0 0.1 ,N ⎡ ⎤= ⎣ ⎦  0.2 0.15 0.1 ,
d

N ⎡ ⎤= −⎣ ⎦  

0.
u

N =  

Assume that 2,
m

d = 5,
M

d =
1

0 01µ = .  and 
2

1 3.μ = .  

Theorem 3 gives a feasible solution to the corresponding 

LMIs with the following parameters: 

 

Fig. 2. Time-varying delay. 

 

6.8127 1.5564 3.2015

4.6247 6.1177 0.4742 ,

4.0353 7.7814 10.7793

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

G  

2.9653 2.7765 0

ˆ 1.1280 4.0407 0 ,

0.4658 1.6755 4.5012

18.6321 13.8631 6.1571 ,K

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎡ ⎤= −⎣ ⎦

G

 (46) 

0.2636 0.4099

0.5833 0.1515 .

0.8431 0.4853

L

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (47) 

For simulation we select ( ) 0.8 0.2 ( / 2).F k sin kπ= +  

The simulation results depicted in Fig. 3 show that the 

closed-loop behavior of the system with the above 

controller for the following initial conditions: 

( ) [0 35 ( ) 0 15 ( ) 0 2]Tk sin k sin kφ = . − . − .  and 

( ) [0 05 0 0]Tkψ = . , 

tends to zero, which is in accordance with the analysis in 

this paper. 

 

Example 4: Consider the linear uncertain discrete 

singular delay system in (1) with parameters as follows: 

1 0
,

0 0
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
0 1

,
1.2 0

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
0.1 0.4

,
0.1 0

d
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1
,

1.5
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2

1 0
,

2 1
C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 ,M
α

α

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

0.1 0 ,N ⎡ ⎤= ⎣ ⎦  0.1 0.1 ,
d

N ⎡ ⎤= −⎣ ⎦  0.
u

N =  

Because the (2,2) -th entry of A is 0, it follows that the 

matrix pair (E, A) must not be causal, and hence the 

unforced part of the considered system is not admissible 

for all the delay d(k). 

Assume that 3,
m

d = 5
M

d =  and d(k) is a repeating of 

sequence [5,3,4,4]. Table 2 presents the allowable 

controller gains calculated by Theorem 3 for 
1

0.002,µ =  

2
0 9µ = .  and different values of α. 
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Fig. 3. State and control input trajectories for Example 3. 

 

With the initial functions 

( ) [ 0 15 ( ) 0 45 ]Mk d T
k sin k eφ

/
= − . .  and 

( ) [0 1 0 2]Tkψ = . − . , 

the control results are depicted in Fig. 4 for various 

values of α. It is clear that the observer-based controller 

(34) stabilizes the system which validates the theoretical 

finding, even some remarkable oscillation occurs when α 

becomes important. 

 

6. CONCLUSION 

 

The design of robust output feedback controllers has 

been studied for the class of discrete-time singular 

systems with time-varying delays and uncertainties. First, 

the problem of admissibility has been considered, and a 

delay-dependent criterion is derived ensuring the 

considered system to be regular, causal, and stable has 

been developed in terms of LMIs, without using 

decomposition or equivalent transformations. Using this 

condition, the problem of robust output feedback 

stabilization is then solved. The proposed results have 

been applied to three examples, showing the efficacy of 

the method. 

It must be pointed out that in the present study the 

proposed control design is based on the assumption of 

system linearity. Further work is being pursued to solve 

the equivalent problem for nonlinear systems, also with 

time-varying delays. 

Table 2. Allowable controller gains for various α. 

α 0.1 0.3 0.5 

K [1.078 2.976]− [1.168 3.283]−  [ ]1.349 3.684−

L
3 410 1 591

7 706 4 156

− . .⎡ ⎤
⎢ ⎥− . .⎣ ⎦

3 902 1 857

8 798 4 762

− . .⎡ ⎤
⎢ ⎥− . .⎣ ⎦

 
4 612 2 245

10 611 5 730

− . .⎡ ⎤
⎢ ⎥− . .⎣ ⎦

 

Fig. 4. Closed-loop responses for various α. 
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