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Partial Feedback Linearization Control of a Three-Dimensional 

Overhead Crane 

 

Le Anh Tuan, Soon-Geul Lee*, Viet-Hung Dang, Sangchan Moon, and ByungSoo Kim 

 

Abstract: Based on partial feedback linearization, an improved nonlinear controller is analyzed and 

designed for the three-dimensional motion of an overhead crane. Three control inputs composed of 

bridge moving, trolley travelling, and cargo hoisting forces are used to drive five state variables con-

sisting of bridge motion, trolley movement, cargo hoisting displacement, and two cargo swing angles. 

The control scheme is constituted by linearly combining two components that are separately obtained 

from the nonlinear feedback of actuated and un-actuated states. To verify the quality of the control 

process, both numerical simulation and experimental study are carried out. The proposed controller 

asymptotically stabilizes all system states. 
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1. INTRODUCTION 

 

Cargo transportation plays an important role in many 

industrial fields today. For the transport of cargo over 

short distances or to small areas, such as automotive 

factories and shipyards, overhead cranes are naturally 

applied. In high-speed operations, overhead cranes are 

required to increase productivity. However, the fast 

motion of overhead cranes usually causes large swinging 

movements of cargo and non-precise movements of the 

trolley and bridge. This characteristic makes the 

operating process dangerous and unsafe. Therefore, a 

modern overhead crane system is normally equipped 

with a good control strategy to reduce the swinging of 

cargo and to increase the precision of crane motions. 

Thus far, the control problems of overhead and container 

cranes [1-3] in both theory and practice have attracted 

the attention of many researchers, prompting their use of 

various control techniques that range from the classical 

methods [4-8] to the modern techniques [9-12]. 

Several approaches, such as sliding mode control 

(SMC) [13-17], feedback linearization control (FLC), 

Lyapunov design [18-20], optimal nonlinear control [21], 

adaptive control [22-25], energy-based design [26], and 

geometric analysis [27], have been proposed for the 

nonlinear control of crane systems. The present study 

pursues the control of crane systems using FLC. Park et 

al. [28] provided a nonlinear controller for a 2D 

container crane to suppress the cargo swing, track the 

trolley, and to lift the cargo. The FLC technique was 

partially applied to actuated dynamics (characterized for 

trolley moving and cargo hoisting forces) to obtain one 

component of the controller. Meanwhile, the anti-swing 

component was obtained from an energy-based nonlinear 

control design. Borges et al. [29] used a state observer-

controller for the anti-swing component of a payload 

using input-output feedback linearization. Bobasu et al. 

[30] designed an exact linearization feedback control law 

for a nonlinear crane by combining input-output 

linearization and a few nonlinear adaptive control 

techniques. Two papers of Chen et al. on 2D overhead 

cranes [31] and 3D crane systems [32] dealt with 

nonlinear control using an input-state linearization 

technique. In [31], the control law was obtained from the 

nonlinear feedback of actuated states (trolley moving and 

cargo lifting forces) without considering the un-actuated 

state (cargo swing angle). Therefore, this control scheme 

could not suppress the cargo vibration. The control 

scheme in [32], as an improvement of that in [31], was 

designed based on the partial feedback linearization 

(PFL) of actuated states. Furthermore, the damped 

component for reducing the cargo swings was added to 

the control law. Cho and Lee [33] recently proposed a 

control scheme linearly composed of a nominal and 

corrective PD control, with the nominal PD control law 

designed through feedback linearization. Cho el al. [34] 

also extended the PFL-based controller in [33], wherein 

the adaptive component was integrated.  
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Based on [28,31,32], we design an upgraded nonlinear 

controller in which the PFL technique is applied for both 

actuated dynamics (characterized for trolley and bridge 

as well as cargo lifting motions) and un-actuated one 

(characterized for cargo swings). Unlike the controllers 

of Park et al. [28] and Chen et al. [31,32], the proposed 

control scheme is linearly composed of two components 

that are separately obtained from the states’ nonlinear 

feedback of actuated dynamics and from the PFL of un-

actuated dynamics. First, a system dynamics of overhead 

cranes composed of five highly nonlinear second order 

differential equations is created. The system involves 

two un-actuated states and three actuated states driven by 

three control inputs. A 3D overhead crane is an under-

actuated system. Therefore, its system dynamics should 

be separated into actuated and un-actuated models. Next, 

the actuated dynamics is “linearized” using a nonlinear 

feedback technique; thus, the un-actuated model is 

considered as internal dynamics. Considering actuated 

states as system outputs, a nonlinear controller is then 

proposed to track the output trajectories to the desired 

values. However, this nonlinear control scheme does not 

guarantee the convergence of un-actuated states. 

Therefore, its structure should be modified to satisfy the 

stability condition of both the actuated and un-actuated 

states based on the feedback linearization of all system 

states. The controller structure is now the linear 

combination of two components that are separately 

obtained from the feedback linearization of the actuated 

dynamics and of the un-actuated model. 

Compared with traditional controllers such as the PID 

controller, the PFL controller has several advantages. In 

the design of the PID controller, almost all nonlinear 

factors of a system are not considered. Meanwhile, in the 

design of the PFL controller, all nonlinearities of a 

system mentioned on the mathematical model are 

completely suppressed by the PFL control law. However, 

the PFL approach requires a precise model to achieve 

good control action. Furthermore, it is not useful in 

systems with uncertain parameters. The study aims to 

design a controller that asymptotically pulls all system 

responses to the desired values. 

It is structured as follows. In Section 2, a highly 

nonlinear mathematical model is generated based on the 

Lagrange equation for overhead cranes that involve 

complicated operations. Section 3 describes the design of 

the nonlinear controller, which involves the decoupling 

of the system dynamics, design of the control law based 

on PFL, and the analysis of system stability. The 

simulation of system responses, real-time experiment, 

and the result analysis are given in Section 4. Finally, 

conclusions and remarks are discussed in Section 5. 

 

2. SYSTEM DYNAMICS 

 

The crane system comprising four masses is physically 

modeled in Fig. 1. The distributed masses of the bridge 

are converted into a concentrated mass mb placed in the 

bridge center. ml denotes the equivalent masses of the 

hoist mechanism, while mt and mc are masses of the 

trolley and cargo, respectively. The overhead crane has 

five degrees of freedom corresponding to five 

generalized coordinates: x(t) is the trolley displacement, 

z(t) indicates the bridge motion along the Oz axis, and 

the cargo position is determined by three generalized 

coordinates (l, θ, ϕ), where θ and ϕ are projections of the 

swing angle on the ABC and ABD planes, respectively. 

Hence, the generalized coordinates of the system are 

characterized by vector [ ] .
Tz x l φ θ=q  In 

addition, the frictions of cargo hoisting as well as the 

trolley and bridge motions are linearly characterized by 

damping coefficients br, bt, and bb, respectively. The 

control signals ub, ut, and ul correspondingly demonstrate 

the driving forces of the trolley motion, bridge 

movement, and cargo lifting translation. 

Using Lagrange’s equation, Lee [35] proposed the 

dynamics of the overhead crane composed of five 

nonlinear ordinary differential equations as follows: 
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The aforementioned system dynamics can be 

represented in matrix form as 

( ) ( , ) ( )+ + + =M q q Bq C q q q G q F�� � � � . (6) 

where M(q)=MT(q) is the symmetric mass matrix, B is 

the damping coefficient matrix, ( , )C q q�  is the Coriolis 

Fig. 1. Physical modeling of a 3D overhead crane. 

A 
O

xy

z
mt 

mb

mc

l 
ϕθ

D

E C
B



Le Anh Tuan, Soon-Geul Lee, Viet-Hung Dang, Sangchan Moon, and ByungSoo Kim 

 

720 

and centrifugal matrix, G(q) indicates a gravity matrix, 

and F denotes the matrix of the control forces of the 

driving motors. These matrixes are determined by the 

following formulas: 
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3. CONTROL SCHEME DESIGN 

 

3.1. Decoupling 

The overhead crane is an under-actuated system in 

which five output signals are driven by three actuators. 

Its mathematical model should be separated into two 

auxiliary system dynamics, namely, actuated and un-

actuated systems. Correspondingly, 
1

[ ]
T

z x l=q  for 

actuated states and 
2

[ ]
T

ϕ θ=q  for un-actuated states 

are defined. The matrix differential equation (6) can then 

be divided into two equations as follows: 
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The actuated equation (7) shows the direct constraint 

between the actuated states q1 and the actuators U. 

However, the un-actuated equation (8) does not display 

the relationship between the un-actuated states q2 and the 

inputs U. Physically, the input signals U directly control 

the actuated states q1 and indirectly drive the un-actuated 

states q2. 

 

3.2. Partial feedback Linearization 

The dynamics of the closed-loop system comprising 

(7) and (8) is transferred into an equivalent linear form 

based on the nonlinear feedback technique. Note that 

M22(q) is a positive definite matrix for every 0l >  and 

/ 2.θ π<  The un-actuated states q2 can be determined 

from (8) as 
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Observe that the cargo swing q2 = [φ  θ]T is directly 



Partial Feedback Linearization Control of a Three-Dimensional Overhead Crane 

 

721

related to the properties of the trolley motion x, bridge 

motion z, and the length of the wire rope l. Substituting 

(9) into (7) and simplifying the equation lead to the 

following: 
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Therefore, the physical behavior of the crane system can 

be characterized by actuated (11) and un-actuated 

dynamics (12) in which the mathematical relationships 

between q1, q2, and U can be observed clearly.  

Considering the actuated states q1 as the system 

outputs, the actuated dynamics can be “linearized” (11) 

by defining 

1 a
=q V��  (13) 

with Va∈R
3 as the equivalent control inputs. Then, the 

control signals U become 

1 1 2 2
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The controller U is designed to drive the actuated states 
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to q1d) as t becomes infinite. More precisely, the 

equivalent control Va forces the actuated states q1 to 

reach the references q1d asymptotically. 

The control scheme (14) corresponding to the 

equivalent input Va is only used for asymptotically 

stabilizing the actuated states q1. To stabilize un-actuated 

states q2, the nonlinear feedback method can be applied 

to the sub-dynamics (12) as follows: 
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Hence, considering q1 as the primary output, the total 

control scheme is determined by replacing Va with V in 

(14). Substituting (20) into (14), the PFL control 

structure is obtained as 
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As seen in the simulation and experiment section, the 

nonlinear controller (21) asymptotically stabilizes all 

system state trajectories. 

 

3.3. System stability 

The control law U is referred from the actuated 

dynamics (11). The stability of the remaining part (un-

actuated part) of the closed-loop system called internal 
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dynamics is analyzed. If the internal dynamics is stable, 

then the tracking control problem is solved. Substituting 

the control scheme (21) into the un-actuated subsystem 

(12) yields the internal dynamics. 

1 2

211

1 1 22 22

21 1 22 2 2

( )
( )( ) .

( , ) ( , ) ( )

ad ud

ap d up

−

⎛ + ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟+ − += − ⎜ ⎟⎝ ⎠

⎜ ⎟+ + +⎝ ⎠

K q K q
M q

K q q K qq M q

C q q q C q q q G q

� �

��

� � � �

α

α

 (22) 

The local stability of the internal dynamics is 

guaranteed if the zero dynamics is exponentially stable. 

Setting q1 = q1d in the internal dynamics (22), the zero 

dynamics of the system is obtained as 

( )22 21 21

2 22

21 2 2

( , ) ( )
( ) ,

( ) ( )

ud

up

−

⎛ ⎞−
+ =⎜ ⎟

⎜ ⎟− +⎝ ⎠

C q q M q K q
q M q 0

M q K q G q

� �

��

α

α

 (23) 

which is expanded into two expressions as 

1 1

1 1

cos
2 tan

cos
0

cos sin

cos cos

d d ud

up

l l K

K g

ϕ
ϕ θθϕ α ϕ
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ϕ ϕ
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θ θ
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, (24) 

2

1 1

2 2 1 1

2 2

cos sin sin sin

cos sin sin 0

cos cos sin

d d ud

ud up

up

l l K

K K

K g

θ θ θϕ α ϕ θϕ

α θθ α ϕ θϕ
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⎜ ⎟
− + =⎜ ⎟

⎜ ⎟
⎜ ⎟− +⎝ ⎠

��

� �

� . (25) 

The stability of the zero dynamics comprising (24) and 

(25) is analyzed using the Lyapunov’s linearization 

theorem. First, we represent the zero dynamics in the 

first-order form by setting four state variables as 

1 2 3 4
, , , .z z z zϕ ϕ θ θ= = = =

�

�  

Then, the zero-dynamics is of the following state-

space forms: 

1 2
z z=� , (26) 

1 1 1
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3 3
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3 4
z z=� , (28) 
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with 
1 2 3 4

[ ]
T

z z z z=z  as a state vector. The 

nonlinear zero dynamics (26)-(29) is asymptotically 

stable around the equilibrium point z = 0
2 2

( )= =q q 0�  

if the corresponding linearized system is strictly stable. 

Linearizing the zero dynamics around z = 0 yields a 

linearized system in the following form:  

=z Az� , (30) 

where 
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is a Jacobian matrix whose characteristic polynomial has 

the following form: 
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 (32) 

The linearized system (30) is stable around the 

equilibrium point z = 0 if A is a Hurwitz matrix. Based 

on Hurwitz’s criterion and the results of the calculations, 

the constraint condition of the controller parameters is 

determined as 

1 1 2 2
( ) 0

ud ud
K Kα α+ < , (33a) 

1 1 1 2 1 2
( 2 )

d up ud ud
l K g K Kα α α− < , (33b) 

1 1 2 2 1 1
( )

ud ud up
K g K K gα α α< − , (33c) 

1 1up
K gα < . (33d) 

Therefore, if the relationships (33) among control 

parameters are held, the zero dynamics is stable around 

equilibrium point z = 0, which leads to the local stability 

of the internal dynamics (22). 

 

4. SIMULATION AND REAL-TIME EXPERIMENT 

 

The overhead crane dynamics (6) driven by control 

inputs (21) is numerically simulated in the case of a 

crane system involving complicated operations. Accord-
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ingly, the trolley is forced to move from its initial 

position to the desired displacement at 0.4 m, the bridge 

is driven from its starting point to the desired location at 

0.3 m, and the cargo is lifted with a cable length of 1 m 

to 0.7 m of cable reference. These processes (lifting the 

cargo, moving the trolley, travelling the bridge) must be 

initiated at the same time, with the cargo suspension 

cable initially perpendicular to the ground. The 

parameters used for the simulation are given on Table 1. 

Furthermore, an experimental study is employed to 

clarify the simulation results. The overhead crane system 

used for the experiment is shown in Fig. 2. This system 

uses three DC motors for the bridge travelling, trolley 

moving, and cargo hoisting functions. Five incremental 

encoders are used to measure the bridge and trolley 

displacements, the transportation of cargo along the 

cable, and the swing angles of the two payloads. 

The real-time system is controlled by a target PC in 

which a controller is designed based on MATLAB/ 

SIMULINK environment with an xPC target solution. 

Accordingly, a host PC is connected to the target PC, and 

the crane system is linked to the target PC by two 

interface cards. The real-time system is controlled by a 

target PC in which a controller is designed based on 

MATLAB/SIMULINK environment with an xPC target 

solution. Accordingly, a host PC is connected to the 

target PC, and the crane system is linked to the target PC 

by two interface cards. The NI PCI 6602 card sends 

PWM signals to the motor amplifiers and acquires 

feedback pulses from the encoders. The NI PCI 6025E 

multifunction card is used to send the direction control 

signals to the motor amplifiers.  

The results in both the simulation and the experiment 

are illustrated in Figs. 3-15. Figs. 3-5 describe the paths 

of the bridge motion, trolley movement, and the payload 

lifting translation. All trajectories asymptotically 

converge to the references. However, the simulation 

curves are smoother and achieve steady states earlier 

than those in Experiment 1. The bridge moves and stops 

accurately at the load endpoint after 4 seconds for the 

simulation and 6 seconds for the experiment. The trolley 

reaches its destination after 4.1 seconds for the 

simulation and 6.2 for the experiment. The cargo is lifted 

from an initial cable length of 1 m to the desired cable 

length at 0.7 m after 4.2 seconds for both the simulation 

and the experiment.  

The responses of the cargo swings are depicted in Figs. 

6-7. The cargo swings are bounded with small angles 

during the cargo transfer process—ϕmax = 2.2° and θmax = 

2.9° for the simulation and ϕmax = 2.3° and θmax = 2.4° for 

the experiment. The simulated cargo swings are entirely 

suppressed after the short settling times, namely, t
s
 = 4 s 

for ϕ and t
s
 = 4.5 s for θ, within one vibration period. 

Tiny steady-state errors remain in the experimental 

responses, which reach the approximate steady-state after 

over two oscillation periods. 

The velocities of the system responses shown in Figs. 

8-12 asymptotically reach zeros. The motions of the 

bridge and trolley as well as the lifting movement of the 

payload at transient states are composed of two stages: 

the increasing and decreasing velocity periods. As seen 

clear in the simulated curves, the trolley speeds up within 

 

Fig. 3. Bridge motion. 

 

 

Fig. 4. Trolley motion. 

 

 

Fig. 5. Cargo hoisting motion. 

Table 1. Crane system parameters. 

System dynamics Controller 

g = 9.81 m/s2,  mc = 0.85 kg, 

mt = 5 kg,  mb = 7 kg, 

ml = 2 kg,  bt = 20 N.m/s, 

bb = 30 Nm/s,  br = 50 Nm/s 

diag(1.5,1.5,2.5)
ad

=K  

diag(3,3)
ud

=K  

diag(0.85,0.87,2)
ap

=K

diag(0.5,0.5)
up

=K   

1 2
1α α= = −  

 

Fig. 2. An overhead crane system for the experiments. 
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Fig. 12. Payload swing velocity .θ�  

 

 

Fig. 13. Bridge moving force. 
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Fig. 14. Trolley driving force. 

 

 

Fig. 15. Payload hoisting force. 

 

the first 1.7 seconds and slows down within the last 2.4 

seconds. The cargo is then lifted with increasing speed 

within the first 0.7 first seconds and with reducing speed 

within the remaining 3.5 seconds. 

The nonlinear control forces are illustrated in Figs. 13-

15. The simulation responses achieve steady states after 

4, 4.1, and 4.2 seconds for the bridge moving, trolley 

moving, and the cargo lifting forces, respectively. 

At steady states, 0
ss ss

t b
u u= = N and ss

l c
u m g= − =  

9.81 0.85 8.34− × = − N.  

Obviously, differences in shape still exist between the 

simulation responses and the experiment responses 

because the mathematical model and the realistic crane 

system do not absolutely match. Several nonlinearities 

that exist in practice, such as the flexibility of cable, the 

backlash of gears of the reduction box, and nonlinear 

frictions, are not considered in the mathematical model. 

Certainly, if the system dynamics is close to a realistic 

system, then the results will be precise. 
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Fig. 6. Cargo swing angle ϕ. 

 

 

Fig. 7. Cargo swing angle θ. 
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Fig. 8. Velocity of bridge motion. 

 

 

Fig. 9. Velocity of trolley motion. 

 

 

Fig. 10. Cargo hoisting velocity. 
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Fig. 11. Payload swing velocity .ϕ�  
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Table 2. Response specifications of controllers. 

Maximum overshoots and 

maximum swing angles 
PFL SMC [14]

Bridge motion 0% 5% 

Trolley motion 0% 4% 

Cargo hoisting motion 0% 0% 

Swing angle, θmax 2.90 2.90

Swing angle, ϕmax 2.10 2.30

 

The nonlinear controllers were previously designed 

using other control techniques such as SMC, adaptive 

control, and optimal approach. To investigate the con-

troller quality further, we compare the controller of this 

study with the SMC controller proposed by Almutairi 

[14]. Almutairi [14] applied the same type of mathemati-

cal model in the controller design as that presented in the 

current study. The comparison of the response characte-

ristics is shown in Table 2.  

The motions of the bridge and trolley controlled by 

SMC [14] remain at the maximum overshoot. Meanwhile, 

the maximum overshoots of the PFL-based bridge and 

trolley motions are completely eliminated. The swing 

angles of the PFL are also smaller than those of SMC 

[14].  

 

5. CONCLUSION 

 

The feedback linearization method provides an effec-

tive design tool for the control of a class of under-

actuated mechanical systems such as an overhead crane 

system. Based on this technique, a quality nonlinear con-

troller was designed. The proposed controller was ap-

plied in both simulation analysis and real-time experi-

ment. Both simulation and experiment results show that 

the proposed controller stabilizes the overhead crane 

system. All system responses asymptotically reach the 

desired values within a short period; the bridge and trol-

ley were controlled to move them to the desired position, 

and the cargo was lifted up to the reference point precise-

ly. Moreover, the cargo swings were kept small during 

the transfer process and then suppressed at the load des-

tination. In our future work, we will extend this nonlinear 

control design for the overhead crane by applying the 

adaptive control technique.  
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