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Abstract: In this paper, the problem of robustly asymptotic stabilization for a class of stochastically 

nonlinear singular jump systems is investigated. The jumping parameters are modeled as a continuous-

time, finite-state Markov chain. Based on the Lyapunov-Krasovskii functional and stochastic analysis 

theory as well as a state feedback control technique, some new sufficient conditions are derived to en-

sure the asymptotic stability of the trivial solution in the mean square. A key feature of this paper is 

that singular, nonlinear, noise perturbations, unknown parameters and continuously distributed delays 

are all considered. In particular, the obtained stabilization criteria in this paper are expressed in terms 

of LMIs, which can be solved easily by recently developed algorithms. Finally, two numerical exam-

ples are presented to illustrate the effectiveness of the theoretical results. Moreover, the second exam-

ple shows that delay-dependent stabilization criteria are less conservative than delay-independent crite-

ria. 

 

Keywords: Continuously distributed delay, Lyapunov functional, nonlinear jump system, robustly 
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1. INTRODUCTION 

 

During the past decades, Markovian jump systems 

(MJSs) have received a great deal of research attention 

because they can be employed to model some plants 

whose structure is subject to random abrupt changes such 

as random failures or repairs of the components, sudden 

environmental changes, changing subsystem inter-

connections, and changes of the operating point of a 

linearized model of a nonlinear system, etc. For instance, 

the exponential stability problem has been studied in [1-

5], the robust stability problem has been discussed in [6-

13], the stability and stabilization problem has been 

investigated in [8,10,14-16], and the feedback control 

problem has been considered in [7,9,11,15,17-20] for 

such a class of MJSs. It should be noted that almost all of 

the mentioned works are concentrated on the case of 

linear MJSs. For stochastically nonlinear jump systems, 

however, there are very few works to discuss the stability 

and stabilization of the equilibrium point [2,5,14].  

On the other hand, singular systems have been 

recognized to be better for describing physical systems 

than regular ones. In fact, singular systems are referred to 

as implicit systems, descriptor systems, generalized 

state-space systems, differential-algebraic systems, and 

semi state systems [21-28]. Thus, many control and filter 

problems based on singular systems have been widely 

studied in the literature. For example, Xu and his 

coauthors studied the 
∞

H  filtering for singular systems 

in [29], and the reduced-order 
∞

H  filtering for singular 

systems in [30]; Xia and Jia [31] considered the 
∞

H  

output feedback control of singular systems with time 

delays; In [32], the authors investigated the robust 

stability problem for a class of uncertain discrete-time 

singular fuzzy systems; Lu and Ho [33] discussed the 

generalized quadratic stability for continuous-time 

singular systems with nonlinear perturbation; Fang [34] 

considered the delay-dependent robust 
∞

H  control for 

uncertain singular systems with state delays; Wang et al. 

[35] studied the absolute stability criteria for a class of 

nonlinear singular systems with time delays; In [36], the 

authors discussed the improved results on delay-

dependent 
∞

H  control for singular time-delay systems. 

However, all of the above mentioned papers do not 

consider MJSs. To the best of our knowledge, there are 

only a few works to study singular MJSs. Therefore, it is 

important to discuss the stability and stabilization 

problem of singular MJSs.  

Recently, Boukas [14] discussed the stabilization 

problem for a class of stochastically singular MJSs, and 

he provided sufficient conditions to ensure the stochastic 

stability and robust stochastic stability for a class of 

continuous-time singular linear MJSs in [37]. More 

recently, Xia and his coauthors studied the problems of 

stability, state feedback control and static output 

feedback control for a class of discrete-time singular 

hybrid systems in [38], and they investigated the stability 
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and state feedback stabilization for a class of continuous-

time singular MJSs in [39]. But the authors in [14,37-39] 

did not consider time delays, whereas unknown 

parameters were removed in [14,38,39] and noise 

perturbations were not considered in [38,39]. As we 

know, time delays frequently occur in practical systems 

and are often the source of instability. Also, unknown 

parameters are the source of instability and poor 

performances in singular MJSs. In fact, the singular 

MJSs’ parameters can not be known in prior in practice. 

In addition, noise perturbations are the source of 

instability and poor performances, too. It is shown that 

the singular MJSs can be stabilized or destabilized by 

certain stochastic inputs. Therefore, time delays, 

unknown parameters and noise perturbations should be 

taken into account when designing and investigating the 

stability and stabilization problem for a class of singular 

MJSs.  

Motivated by the above discussion, in this paper we 

study the problem of robustly asymptotic stabilization for 

a class of stochastically nonlinear singular MJS with 

norm-bounded uncertainties and continuously distributed 

delays. Based on the Lyapunov-Krasovskii functional 

and stochastic analysis theory as well as a state feedback 

control technique, some new sufficient conditions are 

derived to ensure the asymptotic stability of the trivial 

solution in the mean square. A key feature of this paper 

is that singular, nonlinear, unknown parameters, noise 

perturbations and continuously distributed delays are all 

considered. Moreover, two numerical examples are given 

to illustrate the effectiveness of the theoretical results. In 

particular, the second example shows that delay-

dependent stabilization criteria are less conservative than 

delay-independent criteria.  

The rest of this paper is organized as follows. In 

Section 2, the model of a class of stochastically nonlinear 

singular MJSs with norm-bounded uncertainties and 

continuously distributed delays is introduced, and some 

necessary assumptions are given. By designing a linear 

feedback controller, both delay-independent and delay-

dependent robustly asymptotic stabilization conditions 

are obtained in Section 3. In Section 4, two numerical 

examples are given to show the effectiveness of the 

obtained results. Finally, the paper is concluded with 

some general remarks in Section 5.  

 

2. MODEL DESCRIPTION AND PROBLEM 

FORMULATION 

 

Notations: Throughout this paper, the following 

notations will be used. n

�  and n m×

�  denote the n-

dimensional Euclidean space and the set of all n×m real 

matrices, respectively. The superscript “T” denotes the 

transpose of a matrix or vector. Trace (·) denotes the 

trace of the corresponding matrix and I denotes the 

identity matrix with compatible dimensions. For any 

matrix A, λmax(A) (respectively, λmin(A)) denotes the 

largest (respectively, smallest) eigenvalue of A. For 

square matrices M1 and M2, the notation 
1

( ,M > ≥  

2
, )M< ≤  denotes M1 – M2 is positive-definite (positive-

semi-definite, negative, negative-semi-definite) matrix. 

Let 
1

( ) ( ( ), , ( ))T
m

w t w t w t= �  be an m-dimensional 

standard Brownian motion defined on a complete 

probability space ( , , )PΩ F  with a natural filtration 

0
{ } .

t t≥
F  Also, let (( ,0]; )nC −∞ �  denote the family of 

continuous functions φ  from ( 0]−∞,  to n

�  with the 

uniform norm 
0

sup | ( ) | .
θ

φ φ θ
≤

=� �  Denote by 
0

2 (( ,L −∞F  

0]; )
n

�  the family of all 
0

F  measurable, (( ,0];C −∞  

)n� -valued stochastic variables { ( ) :ξ ξ θ θ= −∞ < ≤ 0} 

such that 
0

2| ( ) | ,s dsξ
−∞

< ∞∫ E  where [ ]⋅E  stands for 

the correspondent expectation operator with respect to 

the given probability measure P. 

Let { ( ), 0}r t t ≥  be a right-continuous Markov chain 

on a complete probability space ( , , )PΩ F  taking 

values in a finite state space {1,2, , }S N= �  with 

generator ( )
ij N N

Q q
×

=  given by 

( ) if
{ ( ) | ( ) }

1 ( ) if ,

ij

ii

q t o t i j
P r t t j r t i

q t o t i j

Δ + Δ ≠⎧⎪
+ Δ = = = ⎨

+ Δ + Δ =⎪⎩
 

where 0tΔ >  and 
( )

0lim 0.
o t

t t

Δ

Δ → Δ
=  Here, 0

ij
q ≥  is 

the transition rate from i to j if i j≠  while 
ii
q =  

.

ijj i
q

≠
−∑  As usual, we suppose that the Markov chain 

{ ( ), 0}r t t ≥  is independent from the Brownian motion 

{ ( ), 0}.w t t ≥  

In this paper, we consider the following singular 

nonlinear system with Markovian switching and 

continuously distributed delays. 

( ( )) ( ) [ ( ( )) ( ) ( ( )) ( )

( ( )) ( ) ( ( ))

( , ( )) ( , ( ), ( )), ( ))]

( , ( ), ( ), ( )) ( ),

t

E r t dx t A r t x t B r t x t

C r t R t s h x s ds

U t r t f t x t x t r t dt

g t x t x t r t dw t

τ

τ

τ

−∞

= + −

+ −

+ + −

+ −

∫  

 (1) 

where ( ) n

x t ∈�  is the state of the system, ( , ( ))U t r t  
n n×

∈�  is the control input, the matrices ( ( ))A r t =  

( ( ( ))) ,
ij n n
a r t

×
( ( )) ( ( ( ))) ,

ij n n
B r t b r t

×
= ( ( )) ( ( ( )))

ij n n
C r t c r t

×
=  

and ( ( )) ( ( ( )))
ij n n

E r t e r t
×

=  are known matrix functions 

of the Markov jump process { ( ), 0}.r t t ≥  In particular, 

the matrix ( ( ))E r t  denotes a singular matrix such that 

( ( ))( ( ( ))) .
E r t

rank E r t n n= <  The constant 0τ >  denotes 

the time delay, and 
1 2

( , ,..., )
n

R diag R R R=  denotes the 

delay kernel vector, where Ri is a real value non-negative 

continuous function defined on [0, )∞  and such that 

0
( ) 1
i

R s ds
∞

=∫  for 1,2, , .i n= �  
1 1

( ( )) [ ( ( )),h x t h x t=  

2 2
( ( )), , ( ( ))]T

n n
h x t h x t�  denotes the activation function. 

:
n n n nf S+

× × × × →� � � � �  and :
n ng +

× ×� � �  
n n n m

S
×

× × × →� � �  denote the nonlinear 

uncertainties. 

Throughout this paper, we make the following 

assumptions. 

Assumption 1: Assume that the function h satisfies 

(0) 0h ≡  and 
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( ) ( )
,i i

i i

h h
u u

α β

α

α β

− +

−
≤ ≤ ∀

−
,β ∈� ,α β≠ 1,2, , ,i n= �  

where 
1 2

( , , , )
n

U diag u u u
− − − −

= �  and 
1 2

( , ,U diag u u
+ + +
=  

, )
n

u
+

�  are two known diagonal matrices. 

Assumption 2: There exist constant matrices R1i and 

R2i such that 

1 2
| ( , ( ), ( ), ( )) | | ( ) | | ( ) | .

i i
f t x t x t r t R x t R x tτ τ− ≤ + −  

Assumption 3: There exist positive definite matrices 

Q1i and 
2
( )

i
Q i S∈  such that 

1 2

[ ( , ( ), ( ), ) ( , ( ), ( ), )]

( ) ( ) ( )) ( ).

T

T T

i i

trace g t x t x t i g t x t x t i

x t Q x t x t Q x t

τ τ

τ τ

− −

≤ + − −

 

Assumption 4: ( 0 0 ( )) 0,f t r t, , , ≡ ( 0 0 ( )) 0.g t r t, , , ≡  

In this paper, we will design a delay-independent 

memory less state feedback controller of the form 

( ( )) ( ( )) ( )U t r t H r t x t, =  (the feedback gain ( ( ))H r t  is 

a constant matrix for each fixed mode), which depends 

on the state x(t) and the system mode r(t). As usual, for 

any initial data 
0

2( ) ( ) (( 0] )nx Lθ ξ θ= ∈ −∞, ;�F  and 

( ) (0)r rθ ≡  on 0,θ−∞ < ≤  we always suppose that the 

functions f, g, h satisfy enough conditions so that system 

(1) has a unique solution, which is denoted by ( ; ).x t ξ  It 

is obvious that under Assumptions 1-4, system (1) admits 

a trivial solution ( ;0) 0x t ≡  corresponding to the initial 

data 0.ξ =  For simplicity, we write ( ; ) ( ).x t x tξ =  

Now we give the concept of asymptotic stability for 

system (1). 

 

Definition 1: The trivial solution of (1) is said to be 

asymptotically stable in the mean square if for every 

0

2 (( ,0]; ),n

Lξ ∈ −∞ �F  the following equality holds: 

2
lim | ( ; ) | 0.
t

x t ξ
→∞

=E  

Owing to the fact that it is common that some 

systems’ parameters cannot be exactly known in prior in 

many applications, in this paper we consider the 

following stochastically singular nonlinear jump systems 

with unknown parameters: 

( ( )) ( ) {[ ( ( )) ( ( ))] ( ) [ ( ( ))

( ( ))] ( ) [ ( ( )) ( ( ))]

( ) ( ( )) ( ( )) ( )

( , ( ), ( )), ( ))}

( , ( ), ( ), ( )) ( ),

t

E r t dx t A r t A r t x t B r t

B r t x t C r t C r t

R t s h x s ds H r t x t

f t x t x t r t dt

g t x t x t r t dw t

τ

τ

τ

−∞

= + Δ +

+ Δ − + +

× − +

+ −

+ −

∫

�

 (2) 

where ( ( )),A r tΔ ( ( ))B r tΔ  and ( ( ))C r tΔ  are unknown 

matrices denoting time-varying parameter uncertainties 

and such that the following condition: 

1 2 3

[ ( ( )) ( ( )) ( ( ))]

( ( )) ( , ( ))[ ( ( )), ( ( )), ( ( ))],

A r t B r t C r t

M r t F t r t N r t N r t N r t

Δ Δ Δ

=
 (3) 

where ( ( ))M r t  and ( ( ))( 1 2 3)
k

N r t k = , ,  are known real 

constant matrices and ( ( ))F t r t,  is the unknown time-

varying matrix-valued function satisfying 

( , ( )) ( , ( )) , 0.T
F t r t F t r t I t≤ ∀ ≥  (4) 

Definition 2: The trivial solution of (2) is said to be 

robustly asymptotically stable in the mean square if the 

trivial solution of (2) is asymptotically stable in the mean 

square for all admissible unknown parameters. 

The following lemmas are needed to prove our main 

results. 
 

Lemma 1 [40]: For any real matrices X, Y, the 

following matrix inequality holds: 

T T T TX Y Y X X X Y Y+ ≤ + .  

In the sequel, for simplicity, when ( ) ,r t i=  the 

matrices ( ( )),A r t ( ( )),B r t ( ( )),C r t ( ( )),M r t ( ( )),H r t  

( , ( )),U t r t ( , ( ))F t r t  and ( ( )) ( 1 2 3)kN r t k = , ,  will be 

written as ,iA ,
i

B ,
i

C ,
i

M ,iH ( , ),U t i ( , )F t i  and 

( 1, 2,3),
ki

N k =  respectively. 

 

3. MAIN RESULTS 

 

In this section, the linear feedback controller ( , )U t i =  

( )iH x t  is designed to realize the robustly asymptotic 

stability in the mean square of the trivial solution for 

system (2). 

Theorem 1: Under Assumptions 1-4, if there exist 

positive scalars ( ),i i Sλ ∈  a positive diagonal matrix 

1 2
{ , ,..., },

n
L diag l l l=  and positive definite matrices 

, , ( )
i i

G D P i S∈  such that the following conditions hold 

for all ,i S∈  

0 ,
T T

i i i i i
E P P E Iλ≤ = ≤  (5) 

11

22

3 3

0 0 0

0 0
0,

0

1

3

i i i i i i i

T

i i

PB PC P PM

L N N

I

I

Γ⎡ ⎤
⎢ ⎥Γ⎢ ⎥
⎢ ⎥− + <⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

�

� �

� � �

� � � �

 (6) 

where 

11 1 1 1

1

2

,

T T
i i i i i i i i i

N
T

ij j j

j

PA A P N N Q D

G ULU q E P

λ

=

Γ = + + + +

+ + +∑
 

22 2 2 2 2 2
2 ,

T T

i i i i i i
G R R N N QλΓ = − + + +  

then the trivial solution of (2) is robustly asymptotically 

stable with the feedback controller gain 1
.

i i i
H P D

−

=  
 

Proof: Let us consider the following Lyapunov-

Krasovskii functional: 

2

0
1

( , ( ), ) ( ) ( ) ( ) ( )

( ) ( ( )) .

tT T T
i i

t

n
t

j j j j
t

j

V t x t i x t E P x t x s Gx s ds

l R h x s dsd

τ

θ
θ θ

−

∞

−

=

= +

+

∫

∑ ∫ ∫
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Then, by the Itô’s formula we have 

( , ( ), ) ( , ( ), ) 2 ( )

( , ( ), ( ), ( )) ( ),

T T

i i
dV t x t i V t x t i dt x t E P

g t x t x t r t dw tτ

= +

× −

L
 

where 

( ( ) )V t x t i, ,L
1

2 ( ) [( ( , ) ) ( )
T

i i i i
x t P A M F t i N x t= +  

2

3

1

2

0
1

2

0
1

( ( , ) ) ( )

( ( , ) ) ( ) ( ( ))

( ) ( )] ( ) ( )

[ ( ) ( )]

( ) ( ) ( ) ( )

( ) ( ( ))

( ) ( (

i i i

t

i i i

N
T T

i ij j j

j

T T
i i

T T

n

j j j j

j

n

j j j j

j

B M F t i N x t

C M F t i N R t s h x s ds

H x t f t i q x t E P x t

trace g t i E Pg t i

x t Gx t x t Gx t

l R h x t d

l R h x

τ

τ τ

θ θ

θ

−∞

=

∞

=

∞

=

+ + −

+ + −

+ + , +

+ , ,

+ − − −

+

−

∫

∑

∑ ∫

∑ ∫ ))t dθ θ−

 

1
2 ( ) ( ) 2 ( ) ( , ) ( )

T T

i i i i i
x t P A x t x t PM F t i N x t= +  (7) 

2

3

1

2 ( ) ( ) 2 ( ) ( , ) ( )

2 ( ) ( ) ( ( )) 2 ( ) ( )

2 ( ) ( , ) ( ) ( ( ))

2 ( ) ( , ) ( ) ( )

[ ( , ) ( , )] ( ) ( )

T T
i i i i i

tT T
i i i

tT
i i i

N
T T T

i ij j j

j

T T T
i i

x t PB x t x t PM F t i N x t

x t PC R t s h x s ds x t D x t

x t PM F t i N R t s h x s ds

x t P f t i q x t E P x t

trace g t i E Pg t i x t Gx t

τ τ

−∞

−∞

=

+ − + −

+ − +

+ −

+ +

+ +

∫

∫

∑

2

0
1

( ) ( ) ( ( )) ( ( ))

( ) ( ( )) .

T T

n

j j j j

j

x t Gx t h x t Lh x t

l R h x t d

τ τ

θ θ θ
∞

=

− − − +

− −∑ ∫

 

Taking 
1 2

( ) | ( ) | | ( ) |,
i i

y t R x t R x t τ= + −  from Lemma 1 

and Assumption 2 we have 

2

2

2

1 1

2 2

2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( )

2 ( ) ( ),

T T T

i i

T T

i

T T T

i i i

T T

i i

x t P f t i x t P x t f t i f t i

x t P x t y t y t

x t P x t x t R R x t

x t R R x tτ τ

, ≤ + , ,

≤ +

≤ +

+ − −

 (8) 

1

1 1

1 1

2 ( ) ( , ) ( )

( ) ( , ) ( , ) ( )

( ) ( )

( ) ( ) ( ) ( ),

T

i i i

T T T

i i i i

T T

i i

T T T T

i i i i i i

x t PM F t i N x t

x t PM F t i F t i M Px t

x t N N x t

x t PM M Px t x t N N x t

≤

+

≤ +

 (9) 

2

2 2

2 2

2 ( ) ( , ) ( )

( ) ( , ) ( , ) ( )

( ) ( )

( ) ( ) ( ) ( ),

T

i i i

T T T

i i i i

T T

i i

T T T T

i i i i i i

x t PM F t i N x t

x t PM F t i F t i M Px t

x t N N x t

x t PM M Px t x t N N x t

τ

τ τ

τ τ

−

≤

+ − −

≤ + − −

 (10) 

3

3 3

3 3

2 ( ) ( , ) ( ) ( ( ))

( ) ( , ) ( , ) ( ) ( ( )

( ( )) ) ( ) ( ( ))

( ) ( ) ( ( ) ( ( )) )

( ) ( ( )) .

t
T

i i i

t
T T T

i i i i

t
T T

i i

t
T T T

i i i i

t
T

i i

x t PM F t i N R t s h x s ds

x t PM F t i F t i M Px t R t s

h x s ds N N R t s h x s ds

x t PM M Px t R t s h x s ds

N N R t s h x s ds

−∞

−∞

−∞

−∞

−∞

−

≤ + −

× −

≤ + −

× −

∫

∫

∫

∫

∫

 (11) 

On the other hand, by Assumption 3 and the condition 

(5) we obtain 

max

1 2

[ ( , ) ( , )]

( ) [ ( , ) ( , )]

[ ( , ) ( , )]

( ) ( ) ( ) ( ).

T T

i i

T T

i i

T

i

T T

i i i i

trace g t i E P g t i

E P trace g t i g t i

trace g t i g t i

x t Q x t x t Q x t

λ

λ

λ λ τ τ

≤

≤

≤ + − −

 (12) 

By the well-known Cauchy-Schwarz inequality, we get 

2

0
1

2

0 0
1

2

0
1

0

0

( ) ( ( ))

( ) ( ) ( ( ))

[ ( ) ( ( )) ]

( ( ) ( ( )) )

( ( ) ( ( )) )

( ( ) ( ( )) )

( ( ) ( ( )) ).

n

j j j j

j

n

j j j j j

j

n

j j j j

j

T

t T

t

l R h x t d

l R u du R h x t d

l R h x t d

R h x t d

L R h x t d

R t s h x s ds

L R t s h x s ds

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

∞

=

∞ ∞

=

∞

=

∞

∞

−∞

−∞

−

= −

≥ −

= −

× −

= −

× −

∑ ∫

∑ ∫ ∫

∑ ∫

∫

∫

∫

∫

 (13) 

It follows from Assumption 1 that 

( ( )) ( ( )) ( ) ( ).T T
h x t Lh x t x t ULUx t≤  (14) 

Submitting (8)-(14) into (7), it can be derived 

[ ( , ( ), )] [ ( ) ( )],
T

i
V t x t i t tζ ζ≤ ΠE EL  (15) 

where 

( ) [ ( ) ( ) ( ( ) ( ( )) ) ],
t

T T T T
t x t x t R t s h x s dsζ τ

−∞

= − −∫  

11

22

3 3

0 ,

i i i i

i

T

i i

PB PC

L N N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Γ

Π = Γ

− +

�

� �

 

11 1 1 1

2

1

2

3 ,

T T
i i i i i i i i i

N
T T

ij j j i i i i i

j

PA A P N N Q D G

ULU q E P P PM M P

λ

=

Γ = + + + + +

+ + + +∑
 

22 1 1 1 1 2

1

(1 ) .
N

T
i ij j i i i

j

F E q P E Rρ λ

=

Γ = − − + +∑  
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By the condition (5) and the Schur complement lemma, 

we have 0.
i

Π <  Therefore, there must exist a scalar 

0( )
i

i Sα > ∈  such that 0.
i i

IαΠ + ≤  Setting α =  

min ,
i S i

α
∈

 it is clear that 0.α >  This fact together 

with (15) yields 

2

2

( , ( ), ) ( ) ( )

| ( ; ) |

| ( ; ) | .

T

i

i

V t x t i t t

x t

x t

ζ ζ

α ξ

α ξ

≤ Π

≤ −

≤ −

E E

E

E

L

 (16) 

Applying the Dynkin formula and from (16), it follows 

that 

0

2

0

( , ( ), ) (0, (0), (0))

( , ( ), ( ))

| ( ) | ,

t

t

V t x t i V x r

V s x s r s ds

x s dsα

−

=

≤ −

∫

∫

E E

E

E

L  

and so 

2

0

1
| ( ) | ( , ( ), )

1
(0, (0), (0))

1
(0, (0), (0)),

t

x s ds V t x t i

V x r

V x r

α

α

α

≤ −

+

≤

∫ E E

E

E

 

which implies that the trivial solution of (2) is robustly 

asymptotic stability in the mean square. This completes 

the proof.               � 
 

Remark 1: Obviously, the criteria given in [1,3,7-

11,15-20,37] fail in Theorem 1 since they ignored the 

nonlinear term and the singular term. Actually, if using 

the linear term to replace the nonlinear term and 

considering the singular term one can get a corollary, 

which generalizes and improves the corresponding 

results obtained in [1,3,7-11,15-20,37]. 
 

Remark 2: The criteria obtained in [2,5] do not hold 

in Theorem 1 since they did not consider the mixed time 

delays and the singular term, and so Theorem 1 extends 

and improves those given in [2,5]. 
 

Remark 3: Since the authors in [14,37-39] did not 

consider time delays, whereas unknown parameters were 

removed in [14,38,39] and noise perturbations were not 

considered in [38,39], the criteria obtained in [14,37-39] 

do not hold in Theorem 1. 
 

Remark 4: The criteria obtained in [11,12,30,32-

35,39] do not hold in Theorem 1 since they ignored noise 

perturbations and did not consider Markov jump 

parameters. 
 

Setting ( ( )) ( ( )) ( ( )) 0,A r t B r t C r tΔ = Δ = Δ ≡  the system 

(2) is reduced to the system (1). Thus, by Theorem 1 we 

obtain the following result. 
 

Corollary 1: Suppose that Assumptions 1-4 hold. If 

there exist positive scalars ( ),
i
i Sλ ∈  a positive diagonal 

matrix 
1 2

{ , ,..., },
n

L diag l l l=  and positive definite matri-

ces , , ( )
i i

G D P i S∈  such that the following conditions 

hold for all ,i S∈  

0 ,
T T

i i i i i
E P P E Iλ≤ = ≤  (17) 

11

22
0 0 0

0 0
0,

0

1

3

i i i i i i i
PB PC P PM

L

I

I

Γ⎡ ⎤
⎢ ⎥Γ⎢ ⎥
⎢ ⎥−

<⎢ ⎥
−⎢ ⎥

⎢ ⎥
−⎢ ⎥

⎢ ⎥⎣ ⎦

�

� �

� � �

� � � �

 (18) 

where 

11 1

1

2

,

T
i i i i i i i

N
T

ij j j

j

PA A P Q D

G ULU q E P

λ

=

Γ = + + +

+ + +∑
 

22 2 2 2
2 ,

T

i i i i
G R R QλΓ = − + +  

then the trivial solution of (1) is robustly asymptotically 

stable with the feedback controller gain 1
.

i i i
H P D

−

=  

Theorem 1 and Corollary 1 provide two delay- 

independent stabilization criteria. Generally speaking, 

delay-independent stabilization criteria are more conserva-

tive than delay-dependent stabilization criteria when the 

delay is small. Next, we try to obtain some new delay-

dependent stabilization conditions for the system (2) 

based on the linear feedback controller ( , ) ( ).
i

U t i H x t=  

Theorem 2: Suppose that Assumptions 1-4 hold. If 

there exist positive scalars ( ),i i Sλ ∈  a positive diag-

onal matrix 
1 2

{ , ,..., },
n

L diag l l l=  and positive definite 

matrices , , , ( )
i i

G K D P i S∈  such that the following 

conditions hold for all ,i S∈  

0 ,
T T

i i i i i
E P P E Iλ≤ = ≤  (19) 

11

22

3 3

0 0 0

0 0
0,

0

1

3

i i i i i i i

T

i i

PB PC P PM

L N N

I

I

τ

Γ⎡ ⎤
⎢ ⎥Γ⎢ ⎥
⎢ ⎥− + <⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

�

� �

� � �

� � � �

 (20) 

where 

11 1 1 1

1

2

,

T T
i i i i i i i i i

N
T

ij j j

j

PA A P N N Q D

G K ULU q E P

λ

τ τ τ

=

Γ = + + + +

+ + + +∑
 

22 2 2 2 2 2
2 ,

T T

i i i i i i
G R R N N Qτ λΓ = − + + +  

then the trivial solution of (2) is robustly asymptotically 

stable with the feedback controller gain 1

i i i
H P D

−

= . 

 

Proof: Let us consider the following Lyapunov-

Krasovskii functional: 
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0

2

0
1

( , ( ), ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ( )) .

tT T T
i i

t

t T

t

n
t

j j j j
t

j

V t x t i x t E Px t x s Gx s ds

d x s Kx s ds

l R h x s dsd

τ

τ θ

θ

τ

θ

τ θ θ

−

− +

∞

−

=

= +

+

+

∫

∫ ∫

∑ ∫ ∫

 

The rest is similar to the proof of Theorem 1, and so we 

omit it. This completes the proof.        � 
 

Remark 5: As discussed in Remarks 1-4, the criteria 

obtained in [1-3,5,7-12,14-20,30,32-34,37,39] do not 

hold in Theorem 2, and Theorem 2 extends and improves 

those given in [1-3,5,7-12,14-20,30,32-34,37,39]. 
 

Letting ( ( )) ( ( )) ( ( )) 0A r t B r t C r tΔ = Δ = Δ ≡  in The-

orem 2, we can obtain the following results. 
 

Corollary 2: Suppose that Assumptions 1-4 hold. If 

there exist positive scalars ( ),
i
i Sλ ∈  a positive diagonal 

matrix. 
1 2

{ , ,..., },
n

L diag l l l=  and positive definite matri-

ces , , ( )
i i

G D P i S∈  such that the following conditions 

hold for all ,i S∈  

0 ,
T T

i i i i i
E P P E Iλ≤ = ≤  (21) 

11

22
0 0 0

0 0
0,

0

1

3

i i i i i i i
PB PC P PM

L

I

I

τ

Γ⎡ ⎤
⎢ ⎥Γ⎢ ⎥
⎢ ⎥−

<⎢ ⎥
−⎢ ⎥

⎢ ⎥
−⎢ ⎥

⎢ ⎥⎣ ⎦

�

� �

� � �

� � � �

 (22) 

where 

11 1

1

2

,

T
i i i i i i i

N
T

ij j j

j

PA A P Q D G

H ULU q E P

λ τ

τ τ

=

Γ = + + + +

+ + +∑
 

22 2 2 2
2 ,

T

i i i i
G R R Qτ λΓ = − + +  

then the trivial solution of (1) is robustly asymptotically 

stable with the feedback controller gain 1
.

i i i
H P D

−

=  

 

4. ILLUSTRATIVE EXAMPLES 

 

In this section, two numerical examples and their 

simulations are given to illustrate the effectiveness of the 

obtained results. 

Example 1: Consider a two dimensional stochastically 

singular nonlinear jump systems with unknown param-

eters and continuously distributed delays: 

3

30

( ) {[ ( ( ))] ( ) [ ( ( ))]

( 0.2) [ ( ( ))]

( ( )) ( ))
1

( , ( ), ( 0.2)), )}

( , ( ), ( 0.2), ) ( ),

i i i

i

s

i

E dx t A A r t x t B B r t

x t C C r t

e
h x t s ds H x t

e

f t x t x t i dt

g t x t x t i dw t

−

−

= + Δ + + Δ

× − + + Δ

× − +

−

+ −

+ −

∫  (23) 

where 
1 2

( ) ( ( ) ( )) ,T
x t x t x t= , ( )w t  is a two dimensional 

Brownian motion, and r(t) is a right-continuous Markov 

chain taking values in {1,2}S =  with generator 

11 11
.

8 8
Q

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

Take 

( ( )) 0.05(| ( ) 1 | | ( ) 1 |),

( ( ), ( 0.2), , )

0.1[sin( ( )) sin( ( 0.2))]( 1,2),

h x t x t x t

f x t x t t i

x t x t i

= + − −

−

= + − =

 

1 2

1 1 1 2

( ( ), ( 0.2), ,1)

0.6 ( ) 0.6 ( 0.2)
,

0.3( ( ) ( 0.2)) 0.1( ( ) ( 0.2))

g x t x t t

x t x t

x t x t x t x t

−

−⎛ ⎞
= ⎜ ⎟

+ − + −⎝ ⎠

 

1 2

2 2 1

( ( ), ( 0.2), , 2)

0.8 ( 0.2) 0.3 ( )
.

0.6 ( ) 0.1( ( ) ( 0.2))

g x t x t t

x t x t

x t x t x t

−

−⎛ ⎞
= ⎜ ⎟

+ −⎝ ⎠

 

It is easy to check that the system (23) satisfies 

Assumptions 1-4. Other parameters of the system (23) 

are given as follows: 

1 1

1 1 2

2 2 2

2.2 0 0.2 0.1
, ,

0 1.5 0.1 0.2

0.5 0.2 1 1 2.1 0
, , ,

0.3 0.3 0 0 0 2.2

0.3 0.2 0.2 0.1 1 1
, , ,

0.1 0.5 0.1 0.2 0 0

0.5 0.2 0.1 0
,

0.1 0.4 0 0.1

A B

C E A

B C E

M N

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡
= =⎢ ⎥− −⎣ ⎦ ⎣

,

sin 0
( ) ( ) ( ) .

0 cos

t
A t B t C t M N

t

⎤
⎢ ⎥

⎦

⎡ ⎤
Δ = Δ = Δ = ⎢ ⎥

⎣ ⎦

 

Proposition 1: By using the Matlab LMI toolbox, we 

can get the following feasible solution for the LMIs (5)-

(6): 

4

3

3

1

3

2

3

1

2

1.2047 0
10 ,

0 1.2047

3.6602 2.0426
10 ,

2.0426 8.9552

1.9540 1.9540
10 ,

1.9540 8.6427

1.3089 1.3089
10 ,

1.3089 7.0888

2.5753 2.2324
10 ,

2.2324 2.1979

128.4549 38.2899

38.2

L

G

P

P

D

D

⎡ ⎤
= × ⎢ ⎥

⎣ ⎦

⎡ ⎤
= × ⎢ ⎥

⎣ ⎦

⎡ ⎤
= × ⎢ ⎥

⎣ ⎦

⎡ ⎤
= × ⎢ ⎥

⎣ ⎦

⎡ ⎤
= × ⎢ ⎥

⎣ ⎦

=

1 2

,
899 79.2501

439.7213, 107.8501,λ λ

⎡ ⎤
⎢ ⎥
⎣ ⎦

= =
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and the feedback gains are as follows 

1

1.3693 1.1476
,

0.0513 0.0052
H

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

2

0.1137 0.0222
.

0.0156 0.0071
H

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

Therefore, by Theorem 1 we see that the system (23) is 

robustly asymptotically stable. 
 

Proposition 2: By using the Matlab LMI toolbox, we 

can get the following feasible solution for the LMIs (19)-

(20): 

3
1.6953 0

10 ,
0 1.6953

L
⎡ ⎤

= × ⎢ ⎥
⎣ ⎦

 

305.0049 21.8400
,

21.8400 547.0824
G

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1

136.5653 136.5653
,

136.5653 426.2974
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

46.1877 46.1877
,

46.1877 264.0816
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1

398.3320 332.3297
,

332.3297 338.5776
D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

14.8937 9.3731
,

9.3731 33.7326
D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

116.5477 66.5601
,

66.5601 196.1952
K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1 2
38.3468, 19.2070,λ λ= =  

and the feedback gains are as follows 

1

3.1446 2.4119
,

0.2278 0.0216
H

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2

0.3478 0.0911
.

0.0253 0.1118
H

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

Therefore, by Theorem 2 we see that the system (23) is 

robustly asymptotically stable. 
 

Example 2: In Example 1, if we take 

1

2.2 0

0 1.2
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

and the other parameters do not change, then we can 

apply Theorem 2 to obtain the following result. 
 

Proposition 3: By using the Matlab LMI toolbox, we 

can get the following feasible solution for the LMIs (19)-

(20): 

3
4.4297 0

10 ,
0 4.4297

L
⎡ ⎤

= × ⎢ ⎥
⎣ ⎦

 

3
0.7691 0.1160

10 ,
0.1160 1.6188

G
⎡ ⎤

= × ⎢ ⎥
⎣ ⎦

 

1

154.9369 154.9369
,

154.9369 898.6387
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

108.3664 108.3664
,

108.3664 625.5130
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1

219.1967 173.7457
,

173.7457 229.9655
D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

37.3560 21.4856
,

21.4856 32.2606
D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

266.3663 152.5461
,

152.5461 240.5075
K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1 2
89.0625, 25.8461,λ λ= =  

and the feedback gains are as follows 

1

1.4759 1.0458
,

0.0611 0.0756
H

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2

0.3754 0.1774
.

0.0307 0.0208
H

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

Thus, by Theorem 2 we see that the system (23) is 

robustly asymptotically stable. 
 

Remark 6: It is worth pointing out that the criterion 

obtained in Theorem 1 fails in Example 2. Therefore, 

Example 2 has shown that delay-dependent stabilization 

criteria are less conservative than delay-independent 

criteria especially when the delay is small. 
 

Remark 7: As discussed in Remarks 1-5, the criteria 

obtained in [1-3,5,7-12,14-20,30,32-34,37,39] fail in 

Examples 1 and 2. 

 

5. CONCLUDING REMARKS 

 

In this paper, we have studied the problem of robustly 

asymptotic stabilization for a class of stochastically 

nonlinear singular jump systems with unknown 

parameters and continuously distributed delays. Based on 

the Lyapunov-Krasovskii functional and stochastic 

analysis theory as well as a state feedback control 

technique, some new delay-independent and delay-

dependent conditions are derived to guarantee the 

robustly asymptotic stability of the trivial solution or 

zero solution in the mean square. A key feature of this 

paper is that singular, nonlinear, noise perturbations, 

unknown parameters and continuously distributed delays 

are all considered. It is worth pointing out that nonlinear 

and time delays have seldom been considered in singular 

MJSs, let alone be continuously distributed delays. 

Actually, continuously distributed delays have never 

been used to investigate the asymptotic stability in 

stochastic singular MJSs owing to their complexities. 

Therefore, the results obtained in this paper are less 

conservatism and generalize those given in the previous 

literature. Moreover, two numerical examples are 

provided to illustrate the effectiveness of the obtained 

results. In particular, the second example has shown that 

delay-dependent stabilization criteria are less 

conservative than delay-independent criteria.  
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