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Abstract: Human-robot control interfaces have received increased attention during the past decades 

for conveniently introducing robot into human daily life. In this paper, a novel Human-machine Inter-

face (HMI) is developed, which contains two components. One is based on the surface electromyogra-

phy (sEMG) signal, which is from the human upper limb, and the other is based on the Microsoft Ki-

nect sensor. The proposed interface allows the user to control in real time a mobile humanoid robot 

arm in 3-D space, through upper limb motion estimation by sEMG recordings and Microsoft Kinect 

sensor. The effectiveness of the method is verified by experiments, including random arm motions in 

the 3-D space with variable hand speed profiles. 
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1. INTRODUCTION 

 

The human society is increasingly dependent on 

machinery and robots. In order to interact with the 

uncertain and nonlinear external environments, the 

robots themselves have to be robust and adaptive against 

with the disturbances [1-3]. Especially, with networked 

controlled robots connecting the cyberspace with 

physical space, robots make a much more convenient life 

for people [4-7]. However, the human-robot interface 

plays an utmost significant role in view of the purpose to 

serve humans. On the other hand, many disabled people 

have difficulty accessing current assistive robotic 

systems and rehabilitation devices with a traditional user 

interface (such as joysticks and key boards), therefore 

more advanced hands-free human-machine interfaces are 

necessary. Myoelectric signals (MES) contain rich 

information, from which a user’s motion intention, in the 

form of a muscular contraction, can be detected using 

surface electrodes.  

Electrically powered prostheses with myoelectric 

control have several advantages over other types of 

prostheses since the sEMG is noninvasively detected on 

the surface of the skin, the user is freed of straps and 

harnesses required in body powered and mechanical 

switch control. Moreover, many potential applications 

for myoelectric control have been reported, including 

wheelchairs [8], gait generation [9], grasping control [10].  

Hudgins et al. [11] utilized time-domain (TD) features 

and a neural network, resulting in classifying four types 

of upper limb motion with an accuracy of approximately 

90%. This technique employed transient signals, rather 

than the steady-state signals associated with a isometric 

contraction. However the main drawback, of using the 

transient sEMG as a control input is that it requires 

initialization of a contraction from rest. This prohibits 

switching from class to class in an effective or intuitive 

manner. It severely impedes the coordination of complex 

tasks involving multiple degrees of freedom.  

In the following 15 years, So many classifiers have 

been utilized to investigate the sEMG-based classifica-

tion performance, such as linear discriminant analysis 

(LDA) [12], time-delayed artificial neural network 

(ANN) [13], and so on. In this paper, support vector 

machine (SVM) is employed to analyze different patterns. 

The SVM is a kernel-based approach with a strong 

theoretical background, which becomes an increasingly 

popular tool for machine learning tasks involving 

classification and regression. It has recently been 

successfully applied to sEMG classification applications 

[14].  

At the same time, given that the sEMG-based control 

scheme is not reliable enough to implement self-

contained control, other sensors including vision sensors 

would be a very great supplement. From the other hand, 

some body motion, such as the pronation, is not easy to 

detect by the vision sensor. Based on this reason, we 

merge the information from Microsoft Kinect sensor into 

our sEMG-based control scheme to make the system 

more robust and multifunctional.  

The rest of this paper is organized as follows. In the 

next section, we introduce the system architecture. 

Section 3 presents the motion feature recognizer, 

including the SVM and Kinect. Section 4 provides the 

© ICROS, KIEE and Springer 2012 

__________  

 Manuscript received March 14, 2012; revised May 18, 2012;
accepted July 17, 2012. Recommended by Editor Shuzhi Sam Ge.
 This work is supported by Natural Science Foundation of Chi-
na under Grant Nos. 60804003, 61174045, 61111130208 and
60935001, and International Science & Technology Cooperation
Program of China, No 0102011DFA10950. 
 Baocheng Wang, Zhijun Li, and Wenjun Ye are with the De-
partment of Automation, Shanghai Jiao Tong University, Shang-
hai, 200240, China (e-mails: cheng_870701@163.com, zjli@ieee.
org, magic-ye@hotmail.com). 
 Qing Xie is with the Department of Rehabilitation medicine,
the Ruijin Hospital, Shanghai Jiao Tong University, Shanghai,
China (e-mail: ruijin_xq@yahoo.com.cn). 
* Corresponding author. 

 



Baocheng Wang, Zhijun Li, Wenjun Ye, and Qing Xie 

 

1226

motion tracking scheme. In Section 5, we give the 

experiments results and analysis. Finally, in Section 6, 

the conclusions are presented.  

 

2. SYSTEM ARCHITECTURE 

 

The proposed teleoperation system is composed of a 

mobile humanoid robot, sEMG data acquisition device, 

and a Microsoft Kinect. A data acquisition board (DAQ-

board) is used to process the sensor information and 

control the robot. The DAQ-board and the Kinect are 

connected via a serial port. 

The service robot shown in Fig. 1 consists of a mobile 

platform with 2 wheels and a upper body simulating 

human. Its height is 165cm and weighs about 50kg. The 

upper body includes 2 arms. Given the position in Fig. 1 

as the initial position, the shoulder motor’s rotation range 

is from –90o to 90o; the elbow one can rotates a whole 

circle. All joints are driven by servo motors with 

corresponding encoders for feedback and each servo 

motor is controlled by its corresponding driver. 

Fig. 2 shows the structure of the HMI based on sEMG 

and Kinect developed to allow controlling a mobile 

robot’s manipulator. A surface sEMG device, produced 

by NCC, Shanghai, China, is used for recording sEMG. 

While the system is capable of collecting sEMG with 

sixteen channels, we only use six channels, because of 

the redundancy of the electrodes [14]. The electrodes are 

all active bipolar, pre-gelled ones, Each electrode’s 

diameter is 10 mm, and the input impendence of the pre-

amplifier is greater than 100MΩ, The collected data is 

transmitted through the IEEE 802.11 protocol (i.e., wifi). 

Kinect is a motion sensing input device developed by 

Microsoft [15]. It is based on software and range camera 

technology, which interprets 3D scene information from 

a continuously-projected infrared structured light. We 

use it for tracking the human skeleton and therefore 

recognize the human motion. The valid range of the 

sensor is approximately 0.7-6m. 

 

 

Fig. 1. The developed mobile service robot. 

 

Fig. 2. The structure of the HMI. 

 

3. MOTION FEATURE RECOGNIZER 

 

3.1. Feature extraction 

In [16], Tkach et al. studied the stability of the time-

domain features for electromyographic pattern 

recognition, and find that mean absolute value, 

waveform length, and autoregressive coefficients are the 

most stable features under the effect of the shift of sEMG 

electrode location, variation in muscle contraction effort, 

and muscle fatigue. So the feature for recognition of 

sEMG signals we chosen consists of the three kinds of 

single feature: 

1) Mean Absolute Value (MAV) 
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3) Autoregression Coefficients (AR) 

This feature models individual sEMG signals as a 

linear autoregressive time series and provides 

information about the muscle’s contraction state. It is 

defined as 
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where ai represents autoregressive coefficients; p is the 

AR model order; xi is the i–th sample; and N is the 

number of samples in a segment. 

 

3.2. SVM 

Given a set of training examples, each marked as 

belonging to one of two categories; 
1 1
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where the xi is a feature vector, and the yi is the class 

label. The SVM is to construct an optimal hyperplane 

with maximum-margin and bounded error in the training 

data. The hyperplane can be shown as 

0
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In a mathematical way, the problem is equal to solve the 

following quadratic programming (QP) problem via the 

Lagrange function: 
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The kernel k(xi, xj), in (2), allows the algorithm to fit 

the maximum-margin hyperplane in a transformed 

feature space. It is often selected based on the data 

structure and type of the boundaries between classes. In 

this paper, we select the polynomial kernel as follows 

( ) ( )di j i jk x x rx x coe f, = ⋅ + , (3) 

where r, coef and d are the three parameters to adjust. 

“One-against-one” (OAO) technique is selected to solve 

the data-set slant problem in multiclass problems. By the 

approach, k(k–1)/2 (k is the number of classes) binary 

classifiers are trained to separate a pair of two classes. To 

classify a new sample, a class that gains most votes of 

the binary classifiers is chosen as the final output. The 

selection of parameters is presented in Section 5. 

 

3.3. Kinect 

In order to make full use of the Kinect sensor, we 

utilize the OpenNI (Open Natural Interaction) software 

[17]. OpenNI is a multi-language, cross-platform 

framework that defines APIs for writing applications 

utilizing natural interaction. OpenNI APIs are composed 

of a set of interfaces for writing NI (Natural Interaction) 

applications. This middle component makes a bridge 

between the user interface with the hardware, and 

facilitates the development of the system. 

From the components in OpenNI, we can directly 

obtain the coordinates of the joints (except for the 

fingers), i.e., the skeleton of the user. Therefore, we do 

not need any statistical classifier. We can calculate the 

angle of each joint in real-time, and then the motion 

pattern is defined with relative angles between joints. 

 

4. MOTION TRACKING 

 

Trajectory tracking is an appealing field in robotics, 

and many tracking techniques have been proposed 

[18,19]. In this paper, the control scheme of the robot 

arm is PID control. Suppose that the desired position is 

qd. During each sampling interval, the computer obtains 

the current positions qc by position measurement. The 

position error can be obtained as: 

k d c
e q q= − , (4) 

where ek denotes the error array of the kth sample and qd, 

qc, ek are all 6-dimensional vectors that correspond with 

the six joints of the two arms. The position error can be 

transferred to the corresponding voltage for the motor 

driver as follows 

1 2 1 3 2k k k
v K e K e K e

− −

= + + , (5) 

where v is the output 6-dimensional velocity vector, ek–1 

and ek–2 denote the error array of (k –1)th and (k –2)th 

sampling, K1, K2 and K3 are diagonal positive. 

 

5. EXPERIMENTS 

 

5.1. sEMG signals collection 

Six-channel sEMG signals are collected from six 

locations on the forearm, as shown in Table 1. The 

signals are band-pass filtered (10-500 Hz) and notch 

filtered (50 Hz), sampled at 1 kHz. The data collected is 

used to present 7 states, as shown in Table 2. Before 

collection, the skin of the upper limb is cleaned with 

70% alcohol swab to remove any oil or dust from the 

skin surface. Each contraction is held for 7s with 3-5s 

rest between adjacent contractions. This suite of seven 

contractions are repeated 42 times totally. The data 

collection is implemented on two days, and then be 

mixed and divided into two groups for training and 

testing. First, the original data needs to be segmented. A 

segment is a sequence of data limited in a time slot, 

which is used to estimate signal features. Real-time 

constraints enforce a time delay of less than 300 ms 

between the onset of muscle contraction made by a 

participant, and a corresponding motion in the controlled 

device [20]. We obtain 420 samples (i.e., feature vectors) 

for training each class, and the same amount for valida-

tion. 

 

5.2. Recognition of sEMG signals 

In order to find the best parameters of the polynomial 

kernel of the SVM and the order of the AR model, the 

parameters (C, d, r, coef, p) are changed one by one and 

the local optimal values of all the parameters will be 

picked with the best performance. The changing process 

and range of the parameters are showed in Fig. 3. From 

comparing those figures above, the picked parameters 

and the classification accuracy on validation data are 

showed in Table 3.  

 

Table 1. The position of each channel. 

Channel 1 Flexor Carpi Radials 

Channel 2 Extensor Carpi Radial 

Channel 3 Round Pronator muscle 

Channel 4 Extensor Carpi Ulnaris 

Channel 5 Long abductor muscle of thumb 

Channel 6 Superficial flexor tendon 

 

Table 2. The motion state. 

State 1 Rest 

State 2 Wrist Flexion 

State 3 Wrist Extension 

State 4 Forearm Pronation 

State 5 Forearm Supination 

State 6 Fist 

State 7 Hands Open 
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(a) C. (b) d. 

 
(c) r. (d) coef. 

 

 

(e) p.  

Fig. 3. The parameters chosen. 

 

Table 3. The chosen parameters and results. 

Parameters C = 1, d = 2, r = 0.5 coef = 1, p = 4 

States Recognition Accuracy(%) 

State 1 96.3 

State 2 100 

State 3 100 

State 4 96.3 

State 5 98.9 

State 6 100 

State 7 99.4 

 

 

Fig. 4. Feature vectors of reduced dimensions. 

The multifeatures (MAV + WL + AR4) produce a 36-

dimensional feature vector. In order to verify the 

effectiveness of the selected features set, principle 

component analysis (PCA) is applied to reduce the 

dimension of the original feature vectors from 36 to 2, 

and which can be plotted on a plane. 50 feature vectors 

in each class, the results are shown in Fig. 4. Analyzed 

from the figure, the seven classes are easily distinguished 

by the feature set. 

 

5.3. Data fusion 

In the experiment, we need to control the robot using 

the information from Kinect and sEMG device. Based on 

the intuition of arm motion and limits in degree of 

freedom in manipulator, the chosen motion is the rest, 

the pronation and supination of the forearm, as well as 

the arm lifting. Different motion can be recognized by 

different sensors. The first three kinds of actions are 

recognized from sEMG signals collected by the sEMG 

sensor, and the third one will be recognized from the 

joints coordinates obtained from the Kinect. Therefore, 

the sEMG signals collected from the forearm are fed into 

the sEMG-motion recognizer, where feature vectors are 

first extracted, and then SVM would classify it to the 

most possible motion type. As for the Kinect, the data 

fed into the corresponding motion recognizer is the 

coordinates of elbow joint with Kinect being the origin 

point. 

The recognition scheme of sEMG-motion recognition 

is as follows. When the system detects and recognizes 

the rest state, the manipulator would go back to its origin 

location, and when the pronation or the supination is 

detected and recognized, the manipulator would pronate 

or supinate to a fixed location. The recognition results 

are continuously generated with analyzing each segment 

of the data stream, and the current result would be 

recorded. If the current recognition result is the same 

with the last one, motion will not be triggered, otherwise 

the new state would be recorded, and the corresponding 

event would be triggered. 

For the Kinect sensor, the scheme is almost similar. 

We can obtain the displacement between the elbow and 

the shoulder from their coordinates. When the 

displacement is nearly zero, it is recognized as the 

natural droop of the arm. The recognition of the lift 

motion is recognized as follows. We need to detect the 

state of the natural droop as the initialization of 

recognition firstly. Then when the displacement reaches 

a set threshold in a limited time, which can be adjusted 

by the motion speed of the user, the lift event is triggered. 

The detection system would be initialized again when the 

detection period is over or the motion has been 

recognized. 

 

5.4. Control results and analysis 

The control experiment is shown in Fig. 5. Fig. 6 

illustrates the interface of the ourselves-developed 

software. On top left of the software, the real-time 

waveform collected from the sEMG device is displayed, 

and the results of the recognition are showed below. The 
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participant was facing the kinect, using his left arm to 

control the robot arm. The whole scene in front of the 

kinect (Fig. 5) is fed into it, and then the user’s body and 

the coordinates of every joints would be detected 

automatically by OpenNI. In order to provide a clear 

feedback to the participant, the body part is indicated in 

green color and the joints are depicted in lines on the 

green body. 

The real-time states of the robot’s elbow and shoulder 

joint are recorded, as shown in Figs. 7 and 8, respectively. 

Analyzed from the figures, there are some states that do 

not last enough time, and even not reach the set degree, 

resulting in a peek in the figure. It’s due to that the user’s 

joint goes back to the rest state quickly after doing some 

other motion, and the manipulator performs a real-time 

motion tracking. In Fig. 8, because the lift motion must 

conquer the gravity of the machinery, the speed 

switching from droop to lift is much slower than the 

adverse switch. The time spent in Table 4 also illustrates 

such a phenomenon, while the time spent by the 

pronation and supination is almost the same. Through 

this, we conclude that although that the recognition delay 

of sEMG-based control scheme between the onset of the 

manipulator and the user’s motion state is 300ms, yet 

because of the physical property of the mechanical 

device, the delay is amplified. In this experiment, 

because the two components are independent, the system 

can response the movement of the elbow and shoulder 

simultaneously, which can been seen from the start part 

in Figs. 7 and 8. 

 

6. CONCLUSIONS 

 

In this paper, we have merged the kinect with the 

sEMG-based recognition to control the robot’s arm in 

real-time. Kinect provides a powerful human-machine 

interface, making people free of hand-held devices using 

computer vision technique. However due to its limits, 

motion like pronation and supination of forearm, which 

do not cause depth change in vision, cannot be detected 

by kinect. By combining the sEMG-based control, we 

utilized an SVM classifier to analyze the difference 

between seven motion patterns, and analyzed the effects 

of feature set of sEMG and the parameters of SVM 

 

Fig. 5. The experimental environment. 

 

Fig. 6. The interface of the software. 

Fig. 7. The pronation and supination of the robot’s fore-

arm. 

 

Fig. 8. The lift of the robot’s arm. 

 

Table 4. The time spent by the motion. 

Motion Time(ms) 

From rest to pronation 710 

From pronation to rest 810 

From rest to supination 640 

From supination to rest 790 

From rest to lift 2050 

From lift to rest 1000 
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kernel. The sEMG-based control compensated the 
shortage of the kinect. The experimental results show the 
effectiveness of our proposed approach.  
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