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On the State Observer Based Stabilization of Takagi-Sugeno Systems 

with Immeasurable Premise Variables 
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Abstract: This paper presents two approaches of observer based stabilization for Takagi-Sugeno (T-S) 

systems with immeasurable premise variables in continuous time case. These approaches are based on 

the description of the state estimation error by a T-S model. To design the observer based stabilization 

law, the concept of PDC (Parallel Distributed Compensation) is employed, the sufficient stabilization 

conditions are proved and expressed in the form of Linear Matrix Inequalities (LMI). The perfor-

mances of these approaches are tested by simulation for an illustrate example and a physical system 

representing a two-link robot. 
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1. NOMENCLATURE 

 

In this paper, we denote the matrix identity by I, the 

positive definite symmetric matrix X by X > 0 (the 

positive semi definite symmetric matrix X by X≥ 0) and 

the transpose of X by X 

T. We pose also: 
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2. INTRODUCTION 

 

Most plants in the industries have severe nonlinearities, 

which make difficult to study such systems. In order to 

overcome this problem, various schemes have been 

developed in the last two decades [1-3], among them the 

Takagi-Sugeno (T-S) approach [4,5].  

The T-S model approach consists to describe nonlinear 

or complex dynamic systems by means of interpolating 

the behaviour of several Linear Time Invariant (LTI) 

submodels. Each submodel contributes to the global 

model in particular subset of the operating space by a 

weighting or an activation function [5]. 

For few years, the trend of T-S control has been to 

develop some systematic design algorithms so as to 

guarantee the control performance and the system 

stability for the T-S model based controller [6-10].  

Moreover, the knowledge of the state variables of such 

systems is necessary for the implementation of the 

industrial feedback control or the system supervision and 

diagnosis. However, all or some of the process state 

variables may be immeasurable. A solution to overcome 

this non-accessibility of the state variables consists in 

synthesizing a state observer [11-15]. 

Hence, the state observer based stabilization of non 

linear system becomes a focus of many researches in 

recent years [12-17]. The main key used for this goal is 

the direct Lyapunov approach based on different kinds of 

candidate functions is used as the quadratic function, the 

piecewise function or the polyquadratic function. 

More particularly, a considerable interest has been 

paid for the stabilization by means of state observer and 

Lyapunov functions for nonlinear plants described by a 

T-S model.  

However, the most published works about this subject 

consider that the weighting functions of T-S model 

depend on measurable premise variables. While, in most 

applications, like diagnosis and stabilization design, the 

weighting functions depend on the input, the 

immeasurable state variables or/and the output variables 

of the system. Therefore, it seems interesting to consider 

the case of weighting functions depending on unknown 

premise variables. This idea has been considered in few 

works [18,19], to synthesize a state observer. But it stills 

less developed for the stabilization problem [17]. 

The aim of our contribution is then to design an 

observer based stabilization law of T-S systems with 

immeasurable premise variables using a quadratic 

Lyapunov function. For this goal, we aim in this work to 

extend the results developed in [18] and [19] for the state 

observer to design a state observer based stabilization 

law. Thus, we consider the nonlinear systems represented 

by T-S models and we make use of the concept of 

parallel distributed compensation (PDC) [12,15,20] for 

the development of the proposed approaches.  

This paper is organized as follows: Section 3 presents 

the structures of T-S model and T-S state observer with 
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immeasurable premise variables. In section 4, we prove 

new conditions for T-S observer based stabilization with 

immeasurable premise variables. A numerical example 

and a two-link robot are considered in section 5 to check 

the stabilization performances of the developed ap-

proaches. 

 

3. T-S SYSTEM AND OBSERVER DESCRIPTIONS 

 

3.1. T-S System description 

A continuous T-S model is based on the interpolation 

of several LTI local models as follows [5,12]: 
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where n is the number of submodels, p( )x t ∈R is the 

state vector, l( ) Ry t ∈ is the output vector, m( ) Ru t ∈  

is the input vector and ( ( ))
i
x tµ is the activation function. 
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×

∈R
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l pC

i

×

∈R  are respectively the 

state matrix , the input matrix and the output matrix.  

Different classes of models can be considered with 

respect to the choice of the premise variables and the 

type of the activation function.  

Each linear consequent equation represented by 

( ( ) ( ))
i i

A x t B u t+  is called “subsystem” or “submodel”. 

The normalized activation function ( ( ))
i
x tµ  corres-

ponding to the ith submodel is such that 
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3.2. T-S observer description 

For the state variables estimation of the T-S system (1), 

a Luenberger like observer is generally adopted. Such 

observer is described by the following system [12,19] 
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where ˆ( )x t  and ˆ( )y t  are respectively the estimated 

state vector and the corresponding output vector.  

The normalized activation function ˆ( ( )),
i
x tµ 1...i n=  

corresponding to the ith observer of the ith submodel 

depending on the immeasurable premise variables 

considered here as the whole state vector ˆ( )x t  such that 

1

ˆ( ( )) 1,  

ˆ( ( )) 0   {1,2,..., }.
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Let us definite the estimation error by 

ˆ( ) ( ) ( ).e t x t x t= −  (5) 

The T-S observer requires that the estimation error e(t) 

converges to zero rapidly i.e., e(t)
rapidly

⎯⎯⎯⎯→ 0 when t 

increases.  

This T-S observer structure with immeasurable 

premise variables has been considered in few previous 

works. The complexity of the expression of the 

estimation error makes difficult to study the convergence. 

Hence, many works propose different approaches to 

study the convergence by considering the structure of the 

estimation error. 

The studies of these approaches have been led to the 

observer design without considering its application in the 

stabilization problem.  

Since the availability of the separation principle 

between observation and control is not verified in the 

case of the immeasurable premise variables; it will be 

interesting to study the stabilization problem of T-S 

system provided with the observer (3). 

Many works have formulated sufficient conditions of 

stabilization based on the observer state with measurable 

premise variables; one can cite [14], only few approaches 

have been developed in the case of the immeasurable 

premise variables to establish stabilization conditions in 

terms of linear matrix inequalities (LMI) [17].  

 

4. T-S OBSERVER BASED STABILIZATION 

DESIGN 

 

To simplify the notation, we denote ˆ( ( ))
i
x tµ = ˆ ,

i
µ  

( ( ))
i i
x tµ µ=  and the time symbol t is omitted. 

When the estimated state ˆ( )x t  is available, the 

control law with the PDC technique can be written as 

follows: 
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Considering the system (7) and the estimation error (5), 

an augmented system is obtained as follows [17]: 
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where ,
ij i j

A A A= −
ij i j

B B B= −  and 
ij i j

C C C= −  for 

, 1, 2,..., .i j n=  
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In [17], nonlinear stabilization conditions of the 

system (8) have been derived. To overcome the non 

linearity problem, we have to choose several scalars, 

which lead to a linear problem but with a great number 

of Linear Matrix Inequalities (LMI). 

In the next section, we present improved observer-

based stabilization conditions for the studied system (1) 

provided with the control law (6), using the Lyapunov 

direct method that leads to the resolution of a minimum 

number of LMI compared with the results in [17]. 

 

4.1. T-S observer based stabilization conditions using the 

estimation error with unstructured perturbation 

4.1.1 Augmented system description 

This development is based on the result proved in [19], 

where the estimation error (5) is considered with a 

bounded uncertainty and Ci = C. Developing the time 

derivative of the estimation error, one obtains 
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Note that if ( ) 0e t →  then ˆ( , , ) 0.x x uΔ →  So, the 

term ˆ( , , )x x uΔ  acts like an unstructured perturbation 

that is assumed to be bounded as follows [19,21]: 

( )ˆ, ,  ,   0.x x u eβ βΔ ≤ >  (11) 

Considering the system (7) and the estimation error (9), 

the augmented system can be written as follows: 
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4.1.2 Improved stabilization conditions 

The system (12) can be also written as follows: 

,

0
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The stabilization conditions for the system (14) are given 

in Theorem 1. 

 

Theorem 1: The system (14) is globally asymptotic-

ally stable, if there exist two positive definite symmetric 

matrices X and P2, scalars μ, θ, α and τ, matrices Fi and 

Wi for 1,2,...,i n=  such that: 

( )

2

2 1

2 2 2

2

0, 0, >0, 0, 0, 0,

0,  

2

0,  

, 1,2,..., .

T T T
i j i i i j i j

T T
j i

T T T
j j j j

P X

XA F B A X B F B F

F B X I

A P P A C W W C I P

P I

i j n

θ α μ τ

μ μ θ

τ θ

α

−

> > > > >⎧
⎪
⎡ ⎤− + −⎪
⎢ ⎥ <⎪
⎢ ⎥− +⎪⎪⎣ ⎦

⎨
⎪⎡ ⎤+ − − + +

<⎪⎢ ⎥
−⎪⎢ ⎥⎣ ⎦

⎪
=⎪⎩

 (16) 

Proof: To prove the theorem 1, we make use of the 

following lemma: 

Lemma 1 [1]: For any matrices A and B with 

appropriated dimensions, the following inequality holds 

for any positive scalar ε  

1
.
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Considering the following Lyapunov quadratic function 
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and x
a
 is defined in (13). 

The time derivative developing of the function V applied 

to the system (14) gives: 
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Considering (15) and (19) and developing (20), one 

obtains:  
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Using Lemma 1 for the scalars 0α >  and 0θ >  

and the condition (11), one can write: 
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From (21) and the inequalities (22), one can deduce: 
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Using the Schur complement [22] for the inequalities 

(24) and the congruence with the full rank diagonal block 
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Developing (24b) and considering (27), the stabilization 

conditions (24) of the system (14) can be written as 

follows: 
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For fixed scalars μ and θ, the conditions (16) are 
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and τ > 0. So, the feedback gains, the observer gains and 
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1
,

i i
K F X

−

=  1

2i i
L P W

−

=  and .

τ
β

α
=  (30) 

� 

It is clear that the considered perturbation term on the 

estimation error depends on the input u(t) and the state 

x(t), so a large value of the input bound leads to a large 

value of the perturbation bound β. Then, in this case the 

LMI may be infeasible. To overcome these difficulties, 

another form for the state estimation error is proposed in 

the following section. 

 

4.2. T-S observer based stabilization conditions using the 

bounded input 

4.2.1 Augmented system description 

We consider the system (1) with the control law (6) 

and the observer (3), the time derivative of the estimation 
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Mi and Ni are the Lipchitz constants . 

 

The calculus of the Lipchitz constant Ni can be led 

using the following elementary Taylor series develop-
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where ( )maxi i
N x

x

µ= � . 

In the same way, we determine the Lipchitz constant Mi 

using the function f (x) = μi (x)x where Mi = ( ) .max f x

x

�  

Considering the systems (7) and (34), an augmented 

system can be written as the following form 
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4.2.2 Improved stabilization conditions 

The stabilization conditions for the system (38) are 

enounced in Theorem 2. 

 

Theorem 2: The system (38) is globally asymptotic-
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0 0,

0

, 1,2,..., .

T T T
j j

T T T
i j i i i j i j

T T
j i

i i i i

T

i

T
i

X P Q

A P C W P A W C Q

XA F B A X B F B F

F B X I

Q
N M I P A P B

n n

A P I

B P

i j n

α λ μ γ τ

μ μ λ

λ

τ γ

γ

α

−

> > > > > > > >⎧
⎪

− + − < −⎪
⎪
⎡ ⎤− + −⎪
⎢ ⎥ <⎪
⎢ ⎥− +⎪⎣ ⎦

⎡ ⎤⎛ ⎞⎨ − + + +⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥

⎢ ⎥− <⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

=

⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

  

 (40) 

Proof: Considering the Lyapunov quadratic function 

(18) with (19), then the development of the time 

derivative of the function V applied to the system (38) 

yields 

( ) ( )( )

( ) ( )

( ) ( )

1 1

,

1 1 2 2

2 2

1

ˆ

.

n
TT

i j i i j i i j

i j

TT T T T
i j i j j j

n T
T

i i i i i i i i

i

V x A B K P P A B K x

e B K Px x PB K e e P P e

B A P e e P B A

μ μ

δ δ
=

⎡= − + −⎢⎣

⎤+ + + Ψ + Ψ
⎦

+ Δ + + Δ +

∑

∑

�

 (41) 

Applying Lemma 1 (17) for scalars α > 0, γ > 0 and λ > 0 

and using the hypothesis 1 (36), one has 

1

2 2 2 2

2 2 1

2 2
,

T T T T T T

i i i i i i i i

T T T

i i i

B P e e P B e P B B P e

N e e e P B B P e

α α

αη α

−

−

Δ + Δ ≤ Δ Δ +

≤ +

 

1

2 2 2 2

2 1

2 2
,

T T
T T T T

i i i i i i i i

T
T T

i i i

A P e e P A e P A A P e

M e e e P A A P e

δ δ γδ δ γ

γ γ

−

−

+ ≤ +

≤ +

 (42) 

( )

( )

1 1

1

1 1
.

TT T
i j i j

TT T
i j i j

e B K P x x PB K e

e e x PB K B K P xλ λ
−

+

≤ +

 

The inequalities (41) and (42) give: 

(

)

(

( )

1 1

,

1
1 1

2 2 2 1
2 2

1

1
2 2

2 2

1

ˆ ( ) ( )

( )

ˆ .

n
T T

i j i i j i i j

i j

T
i j i j

n
TT

i i i i

i

T
i i

n
T T

j j j

j

V x A B K P P A B K

PB K B K P x

e N I M I P A A P

P B B P I e
n

e P P e

μ μ

λ

αη γ γ

λ
α

μ

−

−

=

−

=

≤ − + −

+

+ + +

⎞
+ + ⎟

⎠

+ Ψ + Ψ

∑

∑

∑

�

 (43) 

To have V� <0, it suffices that the following conditions 

are verified for a positive symmetric matrix Q 

2 2
,

T
j jP P QΨ + Ψ < −  (44a) 

( ) ( )

( )

1 1

1

1 1
0,

T

i i j i i j

T

i j i j

A B K P P A B K

PB K B K Pλ
−

− + −

+ <

 (44b) 

2 2 2 1

2 2

1

2 2
0.

T

i i i i

T

i i

Q
N I M I P A A P

n

P B B P I
n

αη γ γ

λ
α

−

−

−
+ + +

+ + <

 (44c) 

Using the Schur complement [22], then a congruence 

with the full rank diagonal block matrix 1

1
[diag P

−  
1

1
]P

−  applied to (44b), for , 1,2,...,i j n=  leads to the 

following: 

( )

1 1 1 1 1

1 1 1 1 1

2
1 1

1 1

T T T
i i j i i j i j

T T
j i

P A A P P K B B K P B K P

P K B Pλ

− − − − −

− −

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 < 0. (45) 

Using the property (26), the conditions (45) are verified 

if the following inequalities hold: 

1 1 1

1 1 1 1

1
1

1

1 1 1 2

1 1
2

T T T
i i j i

i j

i j

T T
j i

P A A P P K B

B K P

B K P

P K B P Iμ λ μ

− − −

−

−

− − −

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎣ ⎦

 

 < 0. (46) 

Considering (46), developing (44a) and using the Schur 

complement for (44c), the stabilization conditions (44) 

for the system (38) can be enounced as follows: 
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1 2

0 2 2 2 0 2

1 1

1 1 1

11 1

1 1

1 1 1 2

1 1

2 2 2

2 2

2

2

0, 0, 0, 0, 0, 0, 0, 0,

,       

0,

2

0

0

T T T
j j

T
i i

i jT T
j i i j

T T
j i

i i i i

T

i

T
i

P P Q

A P C L P P A P L C Q

P A A P
B K P

P K B B K P

P K B P I

Q
M N I P A P B

n n

A P I

B P

η α λ γ μ

μ λ μ

λ
γ αη

γ

− −

−

− −

− − −

> > > > > > > >

− + − < −

⎡ ⎤+ −
⎢ ⎥

−⎢ ⎥ <
⎢ ⎥

− +⎢ ⎥⎣ ⎦

⎛ ⎞
− + + +⎜ ⎟

⎝ ⎠

−
0,

, 1,2,..., .i j n

α

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥

<⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥−⎣ ⎦⎪
⎪ =⎩

  

 (47) 

We consider the following variable changes  

1

1
,X P

−

=  1

1
,

i i
F K P

−

=  
2i i

W P L=  and 2
.τ αη=  (48) 

Replacing (48) in (47), one obtains (40). 

For fixed scalars μ and λ, the conditions (40) are 

solved in X, P2, Fi, Wi ( 1,2,...,i n= ) and the scalars α > 0 

and τ > 0. Therefore, the feedback gains, the observer 

gains and the input bound η are given by 

1
,

i i
K F X

−

=

1

2i i
L P W

−

=  and .

τ
η

α
=  (49) 

 � 
 

5. NUMERICAL EXAMPLES 

 

5.1. Example 1 

To illustrate the proposed development, we consider 

the system presented in [17], where the premise variables 

are considered immeasurable. The system is represented 

by the following equations 

( )( )

( ) ( )

2

1

2

1

( ) ( ) ( ) ( ) ,

( ) ( ),

( ) 0, ( ) 1,

i i i

i

i i

i

x t x t A x t B u t

y t Cx t

x t x t

µ

µ µ

=

=

⎧
= +⎪

⎪
⎪

=⎨
⎪
⎪ ≥ =
⎪⎩

∑

∑

�

 (50) 

where 

1

2

( )
( ) ,

( )

x t

x t

x t

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 
1

1 0
,

1 1
A

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 
2

2.5 0
,

2.3 1
A

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 

1 2

1
,

0
B B

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 [ ]1 2

10 2 .C C= =  

( )
( )

( ) ( )

2

1

2 1

arctan ( )
( ) 0.5 ,

 

( ) 1 ( ) .

x t

x t

x t x t

μ
π

μ μ

⎧
= +⎪

⎨
⎪ = −⎩

 

Note that the system (50) is unstable in open loop.  

The state observer of the system (50) is given by 

( ) ( )
2

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ,

ˆ ˆ( ) ( ),

i i i i

i

x t x t A x t B u t L y t y t

y t Cx t

µ

=

⎧
⎡ ⎤= + + −⎪ ⎣ ⎦

⎨
⎪ =⎩

∑�

  

 (51) 

where L1 and L2 are the observer gains.  

The applied control law (6) has the following equation 

( ) ( )( ) ( )( )( ) ( )1 1 2 2
ˆ ˆ ˆ ,u t x t K x t K x tµ µ= − +  (52) 

where K1 and K2 are the local control gains.  

 

For the improved stabilization conditions of Theorem 

1, for μ = 8 and θ = 5; the resolution of (16) yields: 

1

0.1225 0.0072
,

0.0072 0.1197
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2

30.2056 17.1516
.

17.1516 65.4920
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Control gains: 

1
[6.5172 1.7995],K = −  

2
[6.5172 1.7995].K = −  

Observer gains:  

1

0.3802
,

0.1906
L

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

0.5286
.

0.3203
L

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

132.3745α =  and 19.8297.τ =  

Perturbation Bound: β = 0.387 

It can be determined that if β > 0.72 the inequalities (16) 

become infeasible. 
 

For the improved stabilization conditions of Theorem 

2, for μ = 5, λ = 5, M1 = M2 = 1, N1 = N2 = 1 and for an 

input bound η = 5; the resolution of (40) yields:  

1 

0.0021 0.0002
,

0.0002 0.0014
P

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

38.609 9.7204
,

9.7204 5518.4
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

7522.8 820.71
.

820.71 7394.4
Q

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Control gains:  

1
[5.7568 1.4431],K = −  

2
[5.7568 1.4431].K = −  

Observer gains: 

1

15.451
,

0.1834
L

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

15.451
.

0.1834
L

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

3526.1γ =  and 0.9515.α =  

Fig. 1 illustrates the state variables evolutions of the 

system (50) for both approaches (Theorems 1 and 2), 

with the initial conditions xo = [100  100] and 
0
x̂ =[0  0]. 

It appears on these curves that the state variables of 

the system (50) with control law (52) (unstable in open 

loop) converge rapidly which proves the availability of 

the developed stabilization conditions with estimated 

state and immeasurable premise variables. Moreover, the 

convergence of the sate variables in the proposed 

approaches is more rapid than that in [17]. 
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Fig. 1. State variables evolutions of the system (50) with 

control law (52) designed by the two studied 

approaches: the approach given by Theorem 1 

and that given by Theorem 2. 

 

5.2. Example 2 

We consider two-link robot system, as shown in Fig. 2, 

characterized by the following dynamic equation [23] 

( ) ( ) ( ), ,M q q C q q q G q r+ + =�� � �  (53) 

where 

( )
( ) ( )

( )

2

1 2 1 2 1 2 1 2 1 2

2

2 1 2 1 2 1 2 2 2

,

m m l m l l s s c c
M q

m l l s s c c m l

⎡ ⎤+ +
= ⎢ ⎥

+⎢ ⎥⎣ ⎦

 

( ) ( ) 2

2 1 2 1 2 1 2

1

0
, ,

0

q
C q q m l l c s s c

q

−⎡ ⎤
= − ⎢ ⎥−⎣ ⎦

�

�

�

 

( )
( )1 2 1 1

2 2 2

m m l gs
G q

m l gs

− +⎡ ⎤
= ⎢ ⎥

−⎣ ⎦
 

G(g) is the gravitational force, q = [q1 q2]
T are the vector 

of generalized coordinates, M(q) is the moment of inertia 

and ( , )C q q�  includes Coriolis and centripetal forces.  

The parameters of the two-link robot are the link mass 

m1 and m2(Kg) and the link length l1 and l2(m). The 

notations are also used 
1 1

sin( ),s q=
2 2

sin( ),s q=
1
c =  

1
cos( )q  and 

2 2
cos( ).c q=  

m2

I2

q2

m1

q1

I1

 

Fig. 2. Structure of two-link robot systems. 

 

Table 1. Parameters values of the robot. 

Parameter Value 

m1 1 Kg 

m2 1 Kg 

l1 1 m 

l2 1 m 

 

The angular positions are q1 and q2 (rad), the applied 

torques is r = [r1 r2]
T (N-m) and the acceleration due to 

gravity is g (m/s2).  

To give the state space representation, we use the state 

variables 
1 1

,x q=
2 1

,x q= �

3 2
x q=  and 

4 2
.x q= �  The 

generalized coordinates q1 and q2 are measurable through 

the optical encoder attached on the robot. So, equation 

(53) can be written as follows: 

1 2

2 1 11 1 12 2

3 4

4 2 21 1 22 2

1 1

2 3

,

( ) ( ) ,

,

( ) ( ) ,

,

.

x x

x f x g x r g r

x x

x f x g x r g r

y x

y x

=⎧
⎪ = + +⎪
⎪ =⎪
⎨

= + +⎪
⎪ =
⎪

=⎪⎩

�

�

�

�

 (54) 

The expressions f1(x), g11(x), g12, f2(x), g21(x) and g22 of 

(54) are given in [23]. 

The generalized coordinates q1 and q2 are constrained 

within , .
2 2

π π⎡ ⎤
−⎢ ⎥
⎣ ⎦

 The parameters of the robot are 

given in Table 1. 

The critical values of q1 and q2 are ,
2

π

−  0 and .
2

π

 

So, for these extreme values, a T-S fuzzy model for the 

system (54) is given by the following nine-rule fuzzy 

model [20]: 

 

Rule i: If x1 is about a and x3 is about b, then 

,

,

i i
x A x B u

y Cx

= +⎧
⎨

=⎩

�

1,2,...,9,i =  

,0,
2 2

a

π π⎧ ⎫
∈ −⎨ ⎬
⎩ ⎭

 and ,0, .
2 2

b
π π⎧ ⎫

∈ −⎨ ⎬
⎩ ⎭

 

The global system is given by 
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( )( )

( ) ( )

9

1

9

1

( ) ( ) ( ) ( ) ,

( ) ( ),

( ) 0, ( ) 1,

i i i

i

i i

i

x t x t A x t B u t

y t Cx t

x t x t

µ

µ µ

=

=

⎧
= +⎪

⎪
⎪

=⎨
⎪
⎪ ≥ =
⎪⎩

∑

∑

�

 (55) 

 

where 
1 2 3 4

[ ] ,
T

x x x x x=
1 2

[ ]
T

u r r=  and 
1

[y y=  

2
] .
T

y  

 

1

0 1 0 0

5.927 0.001 0.315 8.4 006
,

0 0 0 1

6.859 0.002  3.155 6.2 006

e
A

e

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

 

 

2

0 1 0 0

3.0428 0.0011 0.1791 0.0002
,

0 0 0 1

3.5436 0.0313 2.5611 1.14 005

A

e

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 

3

0 1 0 0

6.2728 0.003 0.4339 0.0001
,

0 0 0 1

9.1041 0.0158 1.0574 3.2 005

A

e

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

 

 

4

0 1 0 0

6.4535 0.0017 1.2427 0.0002
,

0 0 0 1

3.1873 0.0306 5.1911 1.8 005

A

e

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
− − − −⎢ ⎥⎣ ⎦

 

 

5

0 1 0 0

11.1336 0 1.8145 0
,

0 0 0 1

9.0918 0 9.1638 0

A

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

 

 

6

0 1 0 0

6.1702 0.001 1.687 0.0002
,

0 0 0 1

2.3559 0.0314 4.5298 1.1 005

A

e

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

 

 

7

0 1 0 0

6.1206 0.0041 0.6205 0.0001
,

0 0 0 1

8.8794 0.0193 1.0119 4.4 005

A

e

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

 

 

8

0 1 0 0

3.6421 0.0018 0.0721 0.0002
,

0 0 0 1

2.429 0.0305 2.9832 1.9 005

A

e

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

 

 

9

0 1 0 0

6.2933 0.0009 0.2188 1.2 005
.

0 0 0 1

7.4649 0.0024 3.2693 9.2 006

e
A

e

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

 

1 2 3

9 5 1 4 6 8 2 7 3 1

0 0 0 0 0 0

1 1 0.5 0 1 1
, , .

0 0 0 0 0 0

1 2 0 1 1 2

, , .

B B B

B B B B B B B B B B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = = = = = =

 

1 0 0 0
.

0 0 1 0
C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The state observer of the system (55) is given by: 

( ) ( )( )
( ) ( )

( ) ( )( )

( ) ( )

9

1

ˆ
ˆ ˆ ,

ˆ

ˆ ˆ ,

i i

i

i i

A x t B u t
x t x t

L y t y t

y t Cx t

µ

=

⎧ + +⎡ ⎤
⎪ = ⎢ ⎥⎪

−⎢ ⎥⎨ ⎣ ⎦
⎪

=⎪⎩

∑�

 (56) 

where Li for 1,2,...,9i = are the observer gains.  

The control law has the following form 

( ) ( )( ) ( )
9

1

ˆ ˆ .
i i

i

u t x t K x tµ

=

= −∑  (57) 

For the design covariance, triangle type membership 

functions are adapted for Rule 1 to Rule 9 [23]. 

For the improved stabilization conditions of theorem 1, 

with the scalars μ =1 and θ =10 the resolution of (16) 

yields:  

69.802τ =  and 2499.3α = . 

Perturbation Bound: 0.1671β =  

Control gains: 

1

18.562 10.957 1.9174 1.0311
,

1.0177 0.7053 10.739 8.2123
K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2 3 4 5 6 7 8 9 1
.K K K K K K K K K= = = = = = = =  

1

0.0478 0.0131 0.0077 0.0009

0.0131 0.0147 0.0037232 0.0006
,  

0.0077 0.0037 0.061576 0.0123

0.0009 0.0006 0.0123 0.0131

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

2

838.17 544.33 0.0832 0.0179

544.33 538.41 0.018 0.0693
.

0.0832 0.018 838.35 544.2

0.0179 0.0693 544.2 537.93

P

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 

Observer gains:  

1

6.2032 6.1837

13.198 5.936
,

6.1863 6.2058

13.116 10.435

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

 
2

6.2041 3.2411

10.316 3.1281
,

3.1846 6.205

6.7668 9.839

L

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

3

6.1967 8.2216

13.536 7.8928
,

8.1954 6.2047

17.396 6.2194

L

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
4

6.1982 4.247

13.717 5.5686
,

4.1873 6.2057

7.4223 12.471

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦
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5

6.2012 6.8796

18.402 5.142
,

6.8784 6.2059

16.049 16.444

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

 
6

6.2034 3.7632

13.442 5.4611
,

3.8211 6.2056

6.2201 11.809

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

 

7

6.2103 7.7701

13.404 7.2143
,

7.8105 6.2046

16.782 6.2648

L

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
8

6.1985 2.1668

10.907 2.0864
,

2.2275 6.2051

4.6835 10.261

L

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

9

6.2029 6.846

13.564 6.7014
.

6.8494 6.2058

14.393 10.55

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

 

 

It can be also checked that for β > 0.99, the inequalities 

(16) become infeasible. 

For the improved stabilization conditions of Theorem 

2, for μ = 10, λ = 5, Mi = 0.5, Ni = 0.5 (i = 1, 2, ..., 9) and 

an input bound η = 5; the resolution of (40) yields:  
 

1 

0.0527 0.0183 0.0051 0.0010

0.0183 0.0184 0.0047492 0.0013
,

0.0051 0.0047 0.0579 0.0165

0.0010 0.0013 0.0165 0.0159

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

2

3501.4 72.972 293.31 0.9220

72.972 2.9011 2.5762 0.1872
,

293.31 2.5762 5430.9 62.228

0.9220 0.1872 62.228 1.6245

P

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
− −⎢ ⎥⎣ ⎦

 

4413.2 126.93 609.33 4.38

126.93 126.2 4.3167 1.951
.

609.33 4.3167 7267.8 156.69

4.38 1.951 156.69 114.88

Q

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

 

Control gains: 

1

19.574 10.949 2.526 1.614
,

0.80589 0.83693 10.798 7.6609
K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2 3 4 5 6 7 8 9 1
.K K K K K K K K K= = = = = = = =  

Observer gains:  

1

53.347 3.3373

2542.4 504.25
,

1.8086 68.063

509.66 5913.4

L

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

2 3 4 5 6 7 8 9 1
.L L L L L L L L L= = = = = = = =  

174.48γ =  and 9.1596.α =  

 

Fig. 3 illustrates the state variables evolutions of the 

system (55) for both approaches (Theorems 1 and 2), 

with the initial conditions 
0

[0.5 0.5x = 0.5 0.5]
T

−  

and 
0
ˆ [0 0 0 0] .

T
x =  

 

 

Fig. 3. State variables evolutions of the system (55) with 

control law (57) designed by the two studied 

approaches: the approach given by Theorem 1 

and that given by Theorem 2. 
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It appears on these curves that the state variables of 

the system (55) with control law (57) converge also 

rapidly, which proves the availability of the developed 

stabilization conditions with estimated state and 

immeasurable premise variables.  

 

6. CONCLUSION 

 

In this paper, improved stabilization conditions for T-

S observer based controlled systems, where the premise 

variables are immeasurable, have been presented in form 

of Linear Matrix Inequalities (LMI). 

These conditions are based on two methods for state 

estimation error expressions. In the first one, we express 

the state estimation error with an unstructured 

uncertainty and in the second one; we use the input 

bound and the application of the Lipchitz constant to the 

activation function. The first approach leads to 

conservative conditions limiting the uncertainty bound 

for which the conditions are feasible. That difficulty is 

overcome by the second approach that the feasibility of 

the conditions obtained is not limited. These approaches 

are less conservative than in previous works by the 

expression of stabilization conditions with a minimum 

numbers of parameters and LMI. 

The availability of the proposed design techniques has 

been checked on an illustrative numerical example that is 

unstable in open loop and on a physical system 

representing a two-link robot. 
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