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Abstract: This paper develops an adaptive fuzzy control method for accommodating actuator faults in 

a class of unknown nonlinear systems with unmeasured states. The considered faults are modeled as 

lock-in-place (stuck at unknown place). With the help of fuzzy logic systems to approximate the un-

known nonlinear functions, and K-filters are designed to estimate the unmeasured states. Combining 

the backstepping technique with the nonlinear fault-tolerant control theory, a novel adaptive fuzzy 

faults-tolerant control (FTC) approach is constructed. It is proved that the proposed control approach 

can guarantee that all the signals of the resulting closed-loop system are bounded and the tracking error 

between the system output and the reference signal converges to a small neighborhood of zero by ap-

propriate choice of the design parameters. Simulation results are provided to show the effectiveness of 

the control approach. 
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1. INTRODUCTION 

 

In the past decades, many approximation-based 

adaptive backstepping control approaches have been 

developed to deal with uncertain nonlinear strict-

feedback systems via fuzzy logic systems, see for 

example [1-12] and references therein. Adaptive fuzzy 

backstepping control approaches in [1-5] are for single-

input and single-output (SISO) nonlinear systems, and in 

[6-8] are for multiple-input and multiple-output (MIMO) 

nonlinear systems, while those in [9-12] are for 

SISO/MIMO nonlinear systems with immeasurable 

states. The main features of the above adaptive fuzzy 

control approaches are (i) they can be used to deal with 

those nonlinear systems without satisfying the so called 

the matching condition, and (ii) they do not require the 

unknown nonlinear functions are linearly parameterized. 

Therefore, the approximator-based adaptive fuzzy 

backstepping control has become one of the most 

popular design approaches in intelligent control field. 

Although a great development has been achieved for 

the adaptive backstepping control, the aforementioned 

control approaches assume that all the components of the 

considered nonlinear systems are in good operating 

conditions. As we know, some faults, such as actuators 

and sensors usually occur in the real processes, which 

can degrade the control performances and even result in 

the instability of the control system or even catastrophic 

accidents [13,14]. It is thus important to develop a fault-

tolerant control (FTC) scheme against actuator or sensor 

failures. 

To handle the problem of nonlinear system with 

actuator or sensor faults, in recent years, many FTC 

approaches have been developed, see for example [15-

24] and references therein. [15,16] presented adaptive 

fault–tolerant control for linear systems with both loss of 

effectiveness and lock-in-place actuator faults. [17,18] 

and [19] developed adaptive fault-tolerant controllers for 

a class of SISO nonlinear systems and MIMO nonlinear 

systems with the same actuator faults as in [15,16], while 

[20] and [21] developed observer-based adaptive 

backstepping fault-tolerant control approaches for some 

nonlinear systems with additive profile faults. However, 

the above mentioned fault-tolerant control scheme 

require that the considered nonlinear systems with the 

matching conditions or the nonlinear functions are 

known. To remove these limitations, authors in [22,23] 

investigated a class of unknown SISO nonlinear strict–

feedback systems with both loss of effectiveness and 

lock-in-place actuator faults, in which fuzzy logic 

systems are employed to approximate the unknown 

functions, and based on the backstepping technique, two 

adaptive fuzzy backstepping FTC schemes were 

developed . The proposed control schemes guarantee not 

only the stability of the closed-loop system, but also keep 

the robust performance of the failed system. On the basis 

of the results of [22] and [23], authors in [24] proposed 

an adaptive fuzzy backstepping FTC scheme for 

unknown MIMO strict-feedback nonlinear systems, and 

the stability of the control system was given. However, 

the above fuzzy FTC methods [22-24] are all based on 

the assumption that the states of the nonlinear systems 

are directly measured. As what authors stated in [9-13], 
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in practice, state variables are often unmeasured for 

many practical nonlinear systems. Therefore, the existing 

approaches can not be implemented for the strict- 

feedback nonlinear systems with actuator faults and 

immeasurable states, which has motivated us for this 

study. It should be mentioned that in recent years, several 

fuzzy FTC approaches have been developed for fuzzy 

systems with actuator faults [25-29]. These fuzzy FTC 

scheme designs are mainly based on T-S fuzzy model, 

considered the actuators faults existing in nonlinear 

systems or fuzzy systems are not kinds of loss of 

effectiveness and lock-in-place like in [15,16,22-24]; 

therefore, they cannot be applied to deal with those 

nonlinear systems with actuator faults, immeasurable 

states and without satisfying the matching condition. 

In this paper, an adaptive fuzzy fault-tolerant control 

method is developed for a class of unknown nonlinear 

systems with the actuator faults of the lock-in-place, and 

without assuming that the states are available for 

measurements. With the help of fuzzy logic systems to 

approximate the unknown nonlinear functions, a fuzzy 

filter is developed to estimate the unmeasured states. 

Using the designed fuzzy filter, and combining the 

backstepping technique with the fault-tolerant control 

methods [19-21], a novel adaptive fuzzy fault-tolerant 

scheme is constructed. It is shown that the proposed 

control approach can guarantee that all the signals of the 

resulting closed-loop system are bounded, and the 

tracking error converges to a small neighborhood of zero 

by appropriate choice of the design parameters. 

 

2. PROBLEM FORMULATIONS AND FUZZY 

LOGIC SYSTEMS 

 

2.1. Nonlinear system descriptions 

Consider the following nonlinear system: 
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where uj, 1,2,..., ,j m=  are the control inputs whose 

actuators may fail during system operation, 
1 2

[ , ,
i
x x x=  

..., ] ,

T

i
x 1,2,..., ,i n=  are the vector of unmeasured states, 

y is the measured output, 0,jb ≠ 1,2,..., ,j m=  are 

unknown constants, ( ),j yβ 1,2,..., ,j m=  are known 

nonlinear functions, and ( ) 0j yβ ≠  for .y R∀ ∈  ( ),
i i
f x  

1,2,..., ,i n=  are unknown smooth continuous nonlinear 

functions, ( ),
i

d t 1,2,...,i n=  are external disturbances 

satisfying *( ) ,
i i

d t d≤  with di
* being unknown constants. 

As in [6], the actuator failures are modeled as 

( ) ,j ju t u= jt t≥  {1,2,..., },j m∈  (2) 

where the failure value ju  and failure time instant tj are 

unknown, so is the failure index j. 

The basic assumption for the actuator failure compen-

sation problem is as follows. 

Assumption 1: The system (1) is such that for any up 

to m –1 actuator failures, the remaining actuators can still 

achieve a desired control objective, when implemented 

with the knowledge of the plant and failure parameters. 

Suppose pk actuators fail at a time instant tk, 1,2,k =  

..., ,q  and 
0 1 2

... .

q
t t t t< < < < < ∞  Obviously, it follows 

from Assumption 1 that 
1

1.
q

kk
p m

=

≤ −∑  In other 

words, at time 
1

( , ),
k k

t t t
+

∈ 0,1,..., ,k q=  with 
1q

t
+

=∞, 

there are 
1

k

ii
p p

=
=∑  failed actuators, that is, ( )ju t =  

,ju 1 2
, ,..., ,

p
j j j j= 0 1,p m≤ ≤ −  and ( ) ( ),j ju t v t=  

1 2
, ,..., ,

p
j j j j≠  where ( ),jv t 1,2,...,j m= , are applied 

control inputs from some feedback control design. 

Given a reference signal yr(t), and assume that yr(t) has 

up to nth order bounded derivatives. The control 

objective is to design an output feedback control scheme 

for the plant (1) with actuators failing at time instants tk, 

k = 1,2,...,q, such that the plant output y(t) tracks the 

reference signal yr(t) as close as possible, and that all 

closed-loop signals are all bounded, despite the presence 

of unknown actuator failures and unknown functions. 

 

2.2. Fuzzy logic systems 

In the proposed design procedures and stability 

analysis, fuzzy logic systems will be used to approximate 

the unknown functions and construct a robust controller. 

Therefore, some useful Lemmas are first introduced as 

follows. 

Lemma 1 [30]: Let f (x) be a continuous function 

defined on a compact set Ω. Then for any constant ε > 0, 

there exists a fuzzy logic system ˆ ( ) ( )Tf x xθ θ φ=  such 

as  

sup ( ) ( ) ,

x

f x xθ φ ε
Τ

∈Ω

− ≤  (3) 

where 
1 2

[ , , , ]
T

N
θ θ θ θ= …  is the ideal constant optimal 

vector and 
1

( ) [ ( ), , ( )]T
N

x x xφ φ φ= …  is the basis 

function vector with 1N >  being the number of the 

fuzzy rules and 
l
φ  are the basis functions defined as 

1 1

1

( ) / ( ( )).l l
i i

N
n n

l i ii iF F
l

x xφ μ μ
= =

=

= ∑∏ ∏  (4) 

 

3. STATE OBSERVATION SCHEME 

 

Since the nonlinear functions ( )
i i
f x  in (1) are 

unknown, by Lemma 1, we can assume that ( )
i i
f x  can 

be approximated by the following fuzzy logic systems 

ˆ ˆ ˆ( ) ( )T

i i i ii i
f x xθ θ φ= , (5) 

where ˆ

i
x =

1̂
( ,x

2
ˆ , ,x � ˆ ) ,T

i
x 1,2,..., 1,i n= −  and x̂ =  

1̂
( ,x

2
ˆ , ,x � ˆ )T

n
x  are the estimates of state vectors 

i
x  

and ,
n
x  which will be defined later. 

Define the fuzzy approximation errors δi 
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*ˆ ˆ( ) ( )
i i i ii i
f x f x θ δ= + , (6) 

where θi
* are optimal parameter vectors defined by [11-

13]. 

,1 ,2

*
ˆ( , )

ˆ ˆargmin [sup ( | ) ( ) ]
i i i ii i

i x x U U i i ii i
f x f x

θ
θ θ

∈Ω ∈ ×
= −  

 (7) 

In (7), Ωi, Ui,1 and Ui,2 are bounded compact sets for θi, 

i
x  and ˆ ,ix  respectively. 

Denote 
1

[ ,..., ] ,
T

n
δ δ δ=  according to [11-13], we 

have the following assumption as follows. 

Assumption 2: There exist an unknown constant δ*, 

such that *
,δ δ≤ ⋅  denotes the two-norm of a vector. 

To develop a solution to the control problem, we use 

the proportional-actuation scheme [18,22,23] 

0

1
[ ] ,

( )
j j

j

v sign b u
yβ

=  1,2,..., ,j m=  (8) 

where u0 is the designed adaptive fuzzy controller to be 

designed by the backstepping technique. 

To express the system (1) with actuator failures (2) 

under the actuation scheme (8), we define 

1

1

,...,

[ ] ,

p

j j

j j j

k sign b b
≠

= ∑  (9) 

1

2,

1

, , ,

0, , , .

j j p

j

p

b u j j j

k
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=⎧⎪
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 (10) 

Rewrite (1) in the state-space form as:  

*
2, 1 0

1

ˆ( ) ( ) ,

,

m
T

j j

j

T

x Ax x B k y Bk u d

y C x

φ β δ
=

= + Θ + + + +

=

∑�

 (11) 

where  

0

,

0 0 0

A I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�

…

 
1

[ ,..., ] ,
T

n
x x x=  

[0,...,0,1] ,
T

B =  * * *

1
[ ,..., ] ,

T

n
θ θΘ =  

1
[1,0,...,0] ,

T n
C R

×

= ∈  ˆ( )xφ = 1 1̂[ ( ),diag xφ ˆ..., ( )].n xφ  

The system (11) is further rewritten as: 

2,

1

( )

,

m
T

j j

j

T

x Ax G B k y d

y C x

ϑ δ β
=

⎧
= + + + +⎪

⎨
⎪

=⎩
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 (12) 

where 

1

*

(1 ) 1

,

l

k
ϑ

+ ×

⎡ ⎤
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Θ⎣ ⎦
 

( 1) 1

0

( 1)

0
ˆ̂, ( )

1

T

n T

l n

G u xφ
− ×

+ ×

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

. 

Choosing a vector 
1 2

[ , ,..., ]
T

n
L L L L=  so that the 

matrix 
0

T
A A LC= −  is a strict Hurwitz matrix, i.e., 

given a positive definite matrix 0
T

Q Q= >  there exists 

a positive definite matrix 0
T

P P= >  satisfying 

0 0

T
PA A P Q+ = − . (13) 

Note that the states 
2
, ,

n
x x…  in the system (1) are not 

measured directly, thus we need to design filters to 

estimate 
2
, ,

n
x x…  and generate some signals for 

controller design. 

With knowledge of 
2,

,jk 1,2,..., ,j m=  we have a 

virtual state observer as 

0 2,

1

m
T

j j

j

z kξ ξ ϑ ζ
=

= + +∑  (14) 

with the filters defined as 

0 0 0
,A Lyξ ξ= +

�  (15) 

0
,

T T T
A Gξ ξ= +

�  (16) 

0 ( ).j j jA B yζ ζ β= +
�  (17) 

Since the signal ϑ  in (14) is not available as Θ* is 

not, and the actual state estimate should be 

0 2,

1

ˆˆˆ ,
m

T
j j

j

x kξ ξ ϑ ζ
=

= + +∑  (18) 

where ˆϑ  and 2,
ˆ

jk  are the estimate of ϑ  and k2, j, 

respectively. Denote μ is the first column of ξT. The 

vector μ is governed by 

0 0
.A Buµ µ= +�  (19) 

In view of (16) and (19), ξ is expressed as 

[ , ] .
Tξ μ= Ξ  (20) 

From (16), one obtains 

0
ˆ( ).T

A xφΞ = Ξ +�  (21) 

Define the observation error as ,e x z= −  then from 

(12), (14), (15), (16) and (17), we have 

0
.e A e dδ= + +�  (22) 

Consider the following Lyapunov function V0 = eTPe, 

the time derivative of V0 along with (22) is 

0 0 0
( ) 2 ( ).T T T

V e A P PA e e P dδ= + + +�  (23) 

By Young’s inequality and Assumption 2, we have 

2 2 *2
2 2 ,

T
e P e P e Pδ δ δ≤ ≤ +  (24) 

2 2 *2

1

2 2 .

n

T

i

i

e Pd e P d e P d

=

⎛ ⎞
≤ ≤ + ⎜ ⎟

⎝ ⎠
∑  (25) 

Substituting (24) and (25) into (23), we obtain 

2 2 *2 *2

0 min

1

( ( ) 2) .
n

i

i

V Q e P dλ δ

=

⎛ ⎞
≤ − − + +⎜ ⎟

⎝ ⎠
∑�  (26) 
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4. FAULT-TOLERANT CONTROL DESIGN 

AND STABILITY ANALYSIS 

 

In this section, an adaptive fault-tolerant control 

scheme will be developed by the backstepping technique 

and the filters (15), (16), (17) and the stability of the 

closed-loop system will be given.  

Define 

2 2,1 2,2 2,
[ , ,..., ]

T

m
k k k k=  and 

1, 2, ,
[ , ,..., ] ,

T

i i i m i
ω ζ ζ ζ=  

where 
,

,j iζ 1,2,..., ,j m= 1,2,...,i n=  are the ith variable 

of ζj, 1,2,..., .j m=   

From the first equation in (11), one obtains 

*

1 2 1 1 1 1 1
ˆ( ) .T

x x x dθ φ δ= + + +�  (27) 

Since x2 is unavailable, it is replaced by available filter 

signals. From (14), x2 is expressed as 

2 0,2 (2) 2 2 2

1 2 0,2 (2) 2 2 2
[0, ] ,

T T

T

x k e

k k e

ξ ξ ϑ ω

μ ξ ϑ ω

= + + +

= + + Ξ + +

 (28) 

where Ξ(2) are the second rows of Ξ, respectively. 

Substituting (28) into (27) yields 

1 1 2 0,2 2 2 2 1 1
,

T T
x k k e dμ ξ ϑ ω δ= + +Μ + + + +�  (29) 

where 

2 (1) (2)
ˆ[ , ( ) ] ,T T
xμ φΜ = +Ξ  (30) 

(1) (2)ˆ[0, ( ) ] .T T
xφΜ = +Ξ  (31) 

From (19), we obtain 

1 1
,

i i i
Lμ μ μ

+
= −�  2,..., 1,i n= −  (32) 

0 1
.

n n
u Lµ µ= −�  (33) 

Let μ1 is the first row of μ. 

Define a change of coordinates as 

1
,

r
y yχ = −  (34) 

( 1)
1ˆ ,

i

i i r i
yχ μ κ α

−

−

= − −  2,..., ,i n=  (35) 

where κ̂  is the estimate of unknown constant 
1

1/ .kκ =  

Based on the above change of coordinates, the detailed 

adaptive backstepping control design is given by the 

following n-Steps. 

Step 1: The time derivative of χ1 is 

1 1 2 0,2 2 2 2 1 1
.

T T

r
k k e d yχ μ ξ ϑ ω δ= + +Μ + + + + −� �  (36) 

Consider the following Lyapunov function:  
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1 2 2 2
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k
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where 
1 1

0,
T

Γ = Γ >
2 2

0,
T

Γ = Γ >
1

0γ >  and 
2

0γ >  are 

design constants. ˆ,ϑ ϑ ϑ= −
�

*2 * *ˆ ,δ δ δ= −
�

2 2 2
ˆk k k= −

�  

and; ˆ,ϑ
*ˆ ,δ

2
ˆk  and κ̂  are the estimates of ,ϑ

*

,δ
2
k  

and ,κ  respectively.  

The time derivative of V1 along (36) is 

1 0 1 1 2 0,2 2 2 1
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1 2 1

2

1

1 2 2 2

1

(

1ˆ ˆ)

1 ˆˆ .
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T

r

T
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d e y

k k k
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ϑ ϑ δ δ
γ
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γ

−

−
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 (38) 

Substituting (35) into (38) results in 

1 0 1 1 2 1 1 1 1 1 1 1

0,2 2 2 1 2 1 1

1 * * 1
1 1 2 2 2

2 1

ˆ (

) ( )

1 1 ˆˆ ˆ ˆ ,

r

T T

r

T T

V V k k y k

y k e d

k k k

χ χ χ κ χ κα χ α

ξ ϑ ω χ δ

ϑ ϑ δ δ κκ
γ γ

− −
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+ +Μ − + + + +

− Γ − − − Γ

� �
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�

�� �

�
�� �

�

 (39) 

where 
1 1

ˆ ,α κα=
1

α  will be designed later. Using 

Young’s inequality, we have 

2 22 2

1 2 2 1 1

1 1
,

4 4
e e eχ χ χ≤ + ≤ +  (40) 

2 2 *2 2

1 1 1 1 1 1

1 1 1 1
.

2 2 2 2
d d dχ χ χ≤ + ≤ +  (41) 

Substituting (26), (40), (41) and 
1

1/ kκ =  into (39) 

yields 

( )

2 2 *2 *2
1 min

1

1 1 2 1 1 1 0,2 2 2

* * *1 1
1 1 1

* * 11
1 1 1

2

1 1 1 1 1 1

1

( ( ) 3)

3 ˆˆ
4

ˆ tanh tanh

1 ˆ ˆtanh

1
ˆ

n

i

i

T T

T

r

V Q e P d

k k

k k y k

λ δ

χ χ χ α χ ξ ϑ ω

χ χ
χ δ χ δ χ δ

ς ς

χ
δ χ δ ϑ χ ϑ

ς γ

κ χ α χ κ
γ

=

−

⎛ ⎞
≤ − − + +⎜ ⎟

⎝ ⎠

⎛
+ + + + +Μ +⎜

⎝

⎞⎛ ⎞ ⎛ ⎞
+ + −⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎠

⎛ ⎞⎛ ⎞
+ − + Μ −Γ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛
+ − − −⎜

⎝

∑�

� �

� �

�

� �

( )1 *2
2 1 2 2 2 1

1ˆ ,
2

Tk k dχ ω −

⎞
⎟
⎠

+ −Γ +
�

�

 (42) 

where ς > 0 is a design parameter. 

For the convenience of the later derivations, we cite 

the following Lemma 2. 

Lemma 2 [1]: The hyperbolic tangent function fulfills 

that for any ς > 0 and any x∈R, 

tanh( / ) 0.2758 .x x x ς ς− ≤  

From Lemma 2, it can be seen that 

* * *

1 1 1
tanh( / ) 0.2758 '.χ δ χ δ χ ς ςδ ς− ≤ =  (43) 

Choose the stabilizing control function 
1
,α  tuning 

functions and parameters adaptation laws as 
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* 1
1 1 1 1 2 2 0,2

3 ˆ ˆ ˆ tanh
4

T T
c k

χ
α χ χ ω ϑ ξ δ

ς

⎛ ⎞
= − − − −Μ − − ⎜ ⎟

⎝ ⎠
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 (44) 

1 1
τ χ= Μ , (45) 

1 1 1
tanh( / )σ χ χ ς= , (46) 

1 1 2
ν χ ω= , (47) 

κ̂
� =

1 1 1
ˆ( ( ) ),

r
y

κ
γ χ α σ κ− + +�  (48) 

where c1 is a positive design constant, 0
κ

σ >  is a 

small constant. Substituting (43)-(48) into (42) yields 
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where 
2 *2 *2 *2
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Step i (2 1)i n≤ ≤ − : The time derivative of χi is 
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1

1
2 2 2 1 1 1 1

* *1
1 1 2 1 2 2*

1
2 2 1 2 3 2

2

ˆ (

ˆ) (
ˆ

ˆ ˆ ˆ) ( )
ˆ

ˆ ˆ( ),
ˆ

i Ti

i i i r

T i

i i

i

i

i

i

L y k
x

k e d H

k k

k

α
χ μ μ κ μ ξ ϑ

α
ω δ ϑ τ

ϑ

α
σ ϑ δ γ σ γ σ δ

δ

α
ν σ

−

+

−

−

−

−

−

−

∂
= − − − + +Μ

∂

∂
+ + + + + − −Γ

∂

∂
+Γ − − +

∂

∂
− −Γ +Γ

∂

�

�

�

�

 (50) 

where 
1

0,σ >
2

0σ >  and 
3

0σ >  are small constants. 

1 1
0 0 0

0

( 1)1 1 1

*1 1
1 1 1 2 1 2*

1
2 1 3 2

2

ˆ( ) ( ( ))

ˆ
ˆ

ˆ ˆ( ) ( )
ˆ ˆ

ˆ( )
ˆ

Ti i

i

ii i i

r r

r

i i

i i

i

i

H A Ly A x

y y
y

k

k

α α
ξ φ

ξ

α α α
μ κ

μ κ

α α
τ σ ϑ γ σ σ δ

ϑ δ

α
ν σ

− −

−
− − −

− −

− −

−

−

∂ ∂
= − + − Ξ +

∂ ∂Ξ

∂ ∂ ∂⎛ ⎞
− − − +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂
− Γ − − −

∂ ∂

∂
− Γ −

∂

�

� �

 

Consider the following Lyapunov function 

2

1

1
.

2
i i i

V V χ
−

= +  (51) 

The time derivative of Vi along the solutions of (50) is 

( ) 1
1 1 1 0,2

1

1
2 2 2 1 1

ˆ (

ˆ) (
ˆ

i i

i i i i i r

T T i

i

V V L y
x

k e d H

α
χ μ μ κ ξ

α
ϑ ω δ ϑ

ϑ

−

− +

−

⎡ ∂
= + − − −⎢

∂⎣

∂
+Μ + + + + + −

∂

� �

�

 (52) 

*1

1 1 1 1 2 1*

* 1

2 2 2 2 1 2 3 2

2

ˆ ˆ) (
ˆ

ˆ ˆˆ ) ( ) .
ˆ

i

i i

i

i
k k

k

α
τ σ ϑ δ γ σ

δ

α
γ σ δ ν σ

−

− −

−

−

∂
−Γ +Γ − −

∂

⎤∂
+ − −Γ +Γ ⎥

∂ ⎥⎦

�

�

 

Using Young’s inequality, we have 

2

2 21 1

2

1 1

1
,

4

i i

i i
e e

x x

α α
χ χ

− −

⎛ ⎞∂ ∂
− ≤ + ⎜ ⎟

∂ ∂⎝ ⎠
 (53) 

2

*2 21 1

1 1

1 1

1 1
.

2 2

i i

i i
d d

x x

α α
χ χ

− −

⎛ ⎞∂ ∂
− ≤ + ⎜ ⎟

∂ ∂⎝ ⎠
 (54) 

Substituting (53) and (54) into (52), and by Applying 

Lemma 2, the (52) can be rewritten as 

( ) ( )
1

2 2 1

min 1

1

ˆ( ) ( 2)
i

T
i q q i

q

V Q i e cλ χ ϑ τ ϑ

−

−

=

≤ − − + − + −Γ∑
�

��

( )

(

)

( )

( ) (

* * 1
2 2 2

2

2

1 , ,

1

2

1
, 1 1

1

1
1 0,2 2 2

1

*1 1
1 1 1 1 *

2 1 2 2

1 ˆˆ

ˆ

3

4

ˆˆ

ˆ ˆ ˆ
ˆ ˆ

T
i i

n i

i k j k j

j i k

i
k j k j i i i i

T Ti
i i

i i
i

i

k k

D k

E
x

L k H
x

κ

δ σ δ ν
γ

σ κκ

α
χ χ χ χ χ α

α
μ ξ ϑ ω

α α
ϑ τ σ ϑ δ

ϑ δ

γ σ γ σ

−

−

= =

−

+ +

−

− −

−

−

⎡ ⎤
+ − + −Γ⎢ ⎥

⎣ ⎦

+ + + Λ + Α

⎡ ⎛ ⎞∂
⎢+ + + +⎜ ⎟

∂⎢ ⎝ ⎠⎣

∂
− − +Μ + +

∂

∂ ∂
− −Γ +Γ −

∂ ∂

− +

∑∑

��

��

�

� �

) (

)

* 1
2 2 1

2

*
2 3 2

ˆˆ
ˆ

ˆ ˆ tanh .

i
i

i i
i

k

k

k

α
δ ν

χ η
σ η δ

ς

−

−

∂
− −Γ

∂

⎤⎛ ⎞
+Γ + ⎥⎜ ⎟

⎝ ⎠⎦

�

 

(55) 

When i =2, 

( )

( ) ( )

( ) (

) ( )

2 2 * *
2 min 1 1 2

2

1 1
2 1 1 2 2 2 2

2

1
2 2 3 1 1 2 2 2 1

1

1 1
0,2 2 2 2 1 1

1

* *1
1 1 2 1 2 2*

1 ˆ( ) 4

ˆˆ ˆ

3ˆ
4

ˆˆ ˆ
ˆ

ˆ ˆ ˆ
ˆ

T T

T T

V Q e c

k k k

D k L
x

k H
x

κ

λ χ δ σ δ
γ

ϑ τ ϑ σ κκ ν

α
χ χ χ α χ μ

α α
ξ ϑ ω ϑ τ

ϑ

α
σ ϑ δ γ σ γ σ δ

δ

− −

⎛ ⎞
≤ − − − + −⎜ ⎟

⎝ ⎠

+ −Γ + + −Γ

⎡ ⎛ ⎞∂
⎢+ + + + + −⎜ ⎟

∂⎢ ⎝ ⎠⎣

∂ ∂
− +Μ + + − −Γ
∂ ∂

∂ ∂
+Γ − − + −

∂

�

��

��

��

�

�

� (

)

1
2

2

* 2 2
2 1 2 3 2 2

ˆ
ˆ

ˆ ˆ tanh ,

k

k

k

α

χ η
ν σ η δ

ς

∂

⎤⎛ ⎞
−Γ + Γ + ⎥⎜ ⎟

⎝ ⎠⎦

�

 

where 
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*2
1 1

1
',

2
i iD D d ς

−

= + +  1

1

1

( 3),i

i i i
i

x

α
τ τ χ

−

−

∂
= − Μ ≥

∂
 

1

2 1 2

1

,

x

α
τ τ χ λ

⎛ ⎞∂
= − Μ−⎜ ⎟

∂⎝ ⎠
1

[ ,0,...,0] ,
T

λ χ=

1

1

,

i

i
x

α
η

−

∂
=

∂
 

1
1

1

,i
i i i i

x

α
ν ν χ ω−

−

∂
= −

∂
 

1
tanh .

i i

i i i i

χ η
σ σ χ η

ς
−

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 

Define 

1

1 1
ˆ(

ˆ
i

i

α
ϑ τ

ϑ

−

−

∂
− −Γ

∂

�

+ 1 1 1,
ˆ) ,

n

i j j

j i

σ ϑ χ
−

=

Γ = Λ∑  (56) 

*1

2 1*

ˆ(
ˆ
i

i

α
δ γ σ

δ

−

−

∂
− −

∂

�

+ *
2 2 1,

ˆ ) ,
n

i j j

j i

γ σ δ χ
−

=

= Α∑  (57) 

1

2 2 1

2

ˆ(
ˆ
i

i
k

k

α

ν
−

−

∂
− −Γ

∂

�

+
2 3 2 1,

ˆ ) ,
n

i j j

j i

kσ χ
−

=

Γ = Ε∑  (58) 

where 

11
, 1

1

,
ˆ

ji
i j

x

αα

ϑ

−

−

∂∂
Λ = Γ Μ

∂∂

 

1
, 2*

tanh ,
ˆ

j ji
i j j

η χα
γ η

ςδ

−

⎛ ⎞∂
Α = ⎜ ⎟

∂ ⎝ ⎠
 

11
, 2 2

12

.
ˆ

ji
i j

xk

αα

ω
−

−

∂∂
Ε = Γ

∂∂

 

Choose the stabilizing control function αi as 

2

1

1

1
0,2 2 2

1

1

1 , , , 1

1

*

3

4

ˆ ˆ( )

( )

ˆ tanh .

i

i i i i

T Ti

i

i k i k i k i k

k

i i

i i

c
x

k
x

L

H

α
α χ χ

α
ξ ω ϑ

μ χ

χ η
η δ

ς

−

−

−

+

=

⎛ ⎞∂
= − − ⎜ ⎟

∂⎝ ⎠

∂
+ + +Μ

∂

+ − Α +Λ +Ε

⎛ ⎞
− − ⎜ ⎟

⎝ ⎠

∑

 (59) 

When i = 2,  

2

1
2 1 1 2 2 2

1

1
0,2 2 2

1

2 1 1,2 1,2 1,2 2

* 2 2
2 2

3ˆ
4

ˆ ˆ( )

( )

ˆ tanh ,

T T

k c
x

k
x

L

H

α
α χ χ χ

α
ξ ω ϑ

μ χ

χ η
η δ

ς

⎛ ⎞∂
= − − − ⎜ ⎟

∂⎝ ⎠

∂
+ + +Μ
∂

+ − Α +Λ +Ε

⎛ ⎞
− − ⎜ ⎟

⎝ ⎠

 

where ci > 0 are design constants. Substituting (56)-(59) 

into (55) results in 

2 2

min

1 2

( ( ) ( 2))
i

i q q

q

V Q i e cλ χ

=

≤ − − + −∑�  (60) 

1 * *
1

2

1
2 2 2 1 1

1

, , , 1

1 1

1ˆ ˆ( )

ˆ ˆ( )

( ) .

T
i i

T
i i i

n i

k j k j k j k j i

j i k

k k k

E D

κ

ϑ τ ϑ δ σ δ
γ

ν σ κκ χ χ

χ χ

−

−

+

−

+

= + =

⎛ ⎞
+ −Γ + −⎜ ⎟

⎝ ⎠

+ −Γ + +

+ Λ + Α + +∑ ∑

� �

� �

�

�

�  

Step n: The time derivative of χn along (35) is 

( ) ( 1)
0 1

1
0,2 2 2 2 1 1

1

1
1 1 1 1

* *1
2 1 2 2*

1
2 2 1 2 3 2

2

ˆ ˆ

( )

ˆ ˆ( )
ˆ

ˆ ˆ( )
ˆ

ˆ ˆ( ),
ˆ

n n

n n r r

T Tn

n

n n

n

n

n

n

u L y y

M k e d
x

H

k k

k

χ μ κ κ

α
ξ ϑ ω δ

α
ϑ τ σ ϑ

ϑ

α
δ γ σ γ σ δ

δ

α
ν σ

−

−

−

−

−

−

−

−

= − − −

∂
− + + + + +

∂

∂
+ − −Γ +Γ

∂

∂
− − +

∂

∂
− −Γ +Γ

∂

�

�

�

�

�

 (61) 

where Hn is given in Hi with i = n. 

Consider the Lyapunov function as 

2

1

1
.

2
n n n

V V V χ
−

= = +  (62) 

Using (62), the time derivative of Vn is 

( ) ( 1)
1 0 1

ˆ ˆ

n n

n n n n r r
V V u L y yχ μ κ κ

−

−

⎡= + − − −⎣
�

� �  

1
0,2 2 2 2 1 1

1

( )T Tn

n
M k e d H

x

α
ξ ϑ ω δ−

∂
− + + + + + +

∂
 

1

1 1 1 1

* *1

2 1 2 2*

1

2 2 1 2 3 2

2

ˆ ˆ( )
ˆ

ˆ ˆ( )
ˆ

ˆ ˆ( ) .
ˆ

n

n

n

n

n

n
k k

k

α
ϑ τ σ ϑ

ϑ

α
δ γ σ γ σ δ

δ

α
ν σ

−

−

−

−

−

−

∂
− −Γ + Γ

∂

∂
− − +

∂

⎤∂
− −Γ + Γ ⎥

∂ ⎥⎦

�

�

�

 (63) 

Using Young’s inequality, we have 

2

2 21 1

2

1 1

1

4

n n

n n
e e

x x

α α
χ χ

− −

⎛ ⎞∂ ∂
− ≤ + ⎜ ⎟

∂ ∂⎝ ⎠
, (64) 

2

*2 21 1

1 1

1 1

1 1

2 2

n n

n n
d d

x x

α α
χ χ

− −

⎛ ⎞∂ ∂
− ≤ + ⎜ ⎟

∂ ∂⎝ ⎠
. (65) 

In the similar derivation procedures as Step i , the (63) 

can be rewritten as 

1
2 2

min

1

1 * * 1
1 2 2 2

2

3

, , , 1

1 1

( ( ) ( 2)) (

1 ˆˆ ˆ) ( )

( )

n
T

n q q n

q

T
n n

n n

k j k j k j k j

j n k

V Q n e c

k k

E

λ χ ϑ τ

ϑ δ σ δ ν
γ

χ χ

−

=

− −

−

+

= − =

≤ − − + − +

⎡ ⎤
−Γ + − + −Γ⎢ ⎥

⎣ ⎦

+ Λ + Α +

∑

∑ ∑

��

�� �

��  (66) 
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2

1
1 0

1

1
1 0,2 2 2

1

*1 1
1 1 1 1 *

* 1
2 1 2 2 2 2 1

2

*
2 3 2

3
ˆ

4

ˆˆ( )

ˆ ˆ ˆ( ) (
ˆ ˆ

ˆˆ ) (
ˆ

ˆ ˆ) tanh ,

n

n n n

T Tn

n n

n n

n

n

n n

n n

n

k D u
x

L M k H
x

k

k

k

κ

α
σ κκ χ χ

α
μ ξ ϑ ω

α α
ϑ τ σ ϑ δ

ϑ δ

α
γ σ γ σ δ ν

χ η
σ η δ

ς

−

−

− −

−

−

− −

⎡ ⎛ ⎞∂
⎢+ + + + ⎜ ⎟

∂⎢ ⎝ ⎠⎣

∂
− − + + +

∂

∂ ∂
− −Γ +Γ −

∂ ∂

∂
− + − −Γ

∂

⎤⎛ ⎞
+Γ + ⎥⎜ ⎟

⎝ ⎠⎦

�

� �

�

 

where 

*2

1 1

1
',

2
n n

D D d ς
−

= + +  1

1

1

,n

n n n
M

x

α
τ τ χ

−

−

∂
= −

∂
 

1

1

1

,

n

n n n n

x

α
ν ν χ ω

−

−

∂
= −

∂
 1

1

,

n

n

x

α
η

−

∂
=

∂
 

1
tanh .

n n

n n n n

χ η
σ σ χ η

ς
−

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 

Choose the actual control u0 and parameters adaptive 

laws as 

2

1 1
0 0,2 2 2

1 1

1

1 , , , 1

1

*

3 ˆ(
4

ˆ) ( )

ˆ tanh ,

Tn n

n n n

n
T

n k n k n k n k

k

n n

n n

u c k
x x

M L

H

α α
χ χ ξ ω

ϑ μ χ

χ η
η δ

ς

− −

−

+

=

⎛ ⎞∂ ∂
= − − + +⎜ ⎟

∂ ∂⎝ ⎠

+ + − Α +Λ +Ε

⎛ ⎞
− − ⎜ ⎟

⎝ ⎠

∑  (67) 

1
ˆ (

n
ϑ τ= Γ

�

–
2
ˆ),σ ϑ  (68) 

*

2
ˆ (

n
δ γ σ=

�

– *

3
ˆ ),σ δ  (69) 

2 2
ˆ (

n
k ν= Γ

�

–
4 2
ˆ ),kσ  (70) 

where c
n
 > 0 is a design constant. Substituting (67)-(70) 

into (66) yields 

2 2

min 2

1

* *

3 4 2 2 1

ˆ( ( ) ( 2))

ˆˆ ˆ .

n
T

n q q

q

T
n

V Q n e c

k k k D
κ

λ χ σ ϑ ϑ

σ δ δ σ σ κκ

=

≤ − − + − +

+ + + +

∑ ��

��

�

 (71) 

Using Young’s inequality, we have 

2 2

min

1

2 22 2*

2 3 4 2 1

( ( ) ( 2))

1
( ),

2

n

n q q

q

V Q n e c D

k k
κ

λ χ

σ ϑ σ δ σ σ κ

=

≤ − − + − +

− + + +

∑�

�� �

�

 (72) 

where 

22 2 2*

2 3 4 2 1

1
( ).

2
n

D D k k
κ

σ ϑ σ δ σ σ κ= + + + +  

Let 
min

( ) ( 2) 0,Q nλ − + >  and define  

min 2

1

max max 1

4

1 2 31

max 2

( ) ( 2)
min ,2 , ,

( ) ( )

, , , 1, , .
( )

q

Q n
C c

P

q n
κ

λ σ

λ λ

σ
γ σ γ σ

λ

−

−

− +⎧
= ⎨

Γ⎩

⎫
= ⎬

Γ ⎭
…

 

Then (72) can be written as  

,
n n

V CV D≤ − +�  (73) 

which implies that 

(0) / .Ct

n n
V V e D C

−

≤ +  (74) 

From (74), it can be concluded that for each 1, , ,i n= …  

the signals ,
i
x ˆ ,

i
x ,

i
χ ˆ,ϑ

*ˆ ,δ ˆ,κ
2
k̂  and u0(u) are bound-

ed, and that ( / 2)( ) ( ) 2 (0) 2 / .C t

r
y t y t V e D C

−

− ≤ +  

As ,t →∞
( / 2)

0,
C t

e
−

→  it follows that ( ) ( )
r

y t y t− ≤  

2 / .D C  Moreover, as stated in [12,17,19], the constant 

2 /D C  can be made as small as possible by choosing 

the positive definite matrix Q, and the design parameters 

cq, γ1, γ2, ,
κ

σ
1
,σ

2
σ  and 

3
,σ 1, , .q n= …  

From the above design procedures and analysis, the 

following theorem is summarized as. 

Theorem 1: For nonlinear system (1) with actuator 

fault (2), if Assumptions 1-2 are satisfied, the controller 

(67) with the filters (15), (16), (17) and parameter adaptive 

laws (48), (68), (69), and (70) can guarantee that all the 

signals in the closed-loop system remain bounded and 

the output error converges to a small neighborhood of the 

origin by choosing the design parameters appropriately. 

 

5. SIMULATION STUDY 

 

In this section, two examples are given to show the 

effectiveness of the proposed adaptive fuzzy fault-

tolerant method. 

Example 1 (Numerical example): Consider the fol-

lowing uncertain nonlinear system: 

1 2 1 1 1

2 2 1 1 1 2 2 2 2

1

( ) ( ),

( ) ( ) ( ) ( ),

,

x x f x d t

x f x b y u b y u d t

y x

β β

= + +

= + + +

=

�

�  (75) 

where 2

1 1 1
( ) cos ,f x x=

1

2 2
( ) ,

x

f x e x= +
1

3,b =
1
( )yβ =  

2
( ) 1,yβ =

1 2
( ) ( ) sin( )d t d t t= =  and 

2
5.b =  

Define fuzzy membership as follows: 

1
1̂

( )l
F

xµ = 2

1̂
exp[ ( 3 ) 4], 1, ,5,x l l− − + = �  

2

2

1 2 1

2

2

ˆ ˆ ˆ( , ) exp[ ( 3 ) 1]

ˆexp[ ( 3 ) 4].

l
F

x x x l

x l

µ = − − +

× − − +

 

Specify the observer gain vector 
1 2

[ , ] [7,7] ,
T T

L L L= =  

such that A0 is a strict Hurwitz matrix.  

Construct filters (15), (16), (17) and choose the control 

0
u (67), the stabilizing control 

1
α (44) and the adaptive 

laws κ̂ (48), ˆϑ (68), *
ˆδ (69) and 

2
k̂ (70). 
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The design parameters in the controller and adaptation 

laws are chosen as 
1 2 3

0.9,
κ

σ σ σ σ= = = =
1

4,c =  

2
4,c =

1
0.03,γ =

2
0.4,γ = 1,ς =

1
11 ,IΓ =

2
2 .IΓ =  

In this simulation, the actuator faults introduced for 

simulation are u1 = 0.2 when t ≥ 15. The tracking 

reference signal is chosen as y
r
(t) = sin(t). 

The initial conditions are chosen as 
1
(0) 0.1,x =

2
(0)x  

0.1,=
0,1
(0) 0.1,ξ =

0,2
(0) 0.1,ξ =

ˆ(0) [0.1,0,0,0,0,0,ϑ =

0,0,0,0,0] ,
T  and the other initial values are chosen as 

zeros. The simulation results are shown by Figs. 1 and 2, 

respectively. 

From Figs. 1 and 2, it can be seen that the proposed 

fault-tolerant control method can guarantee that all the 

variables are bounded and the output y(t) can track the 

given reference signal y
r
.  

Remark 1: It should be pointed out that adaptive 

fuzzy backstepping faults-tolerant control approaches 

have been recently developed by [22-24] for a class of 

uncertain nonlinear systems in strict-feedback form. 

However, these adaptive fuzzy faults-tolerant control 

methods are all based on the assumption that the states of 

the nonlinear systems are directly measured. Therefore, 

these approaches in [22-24] can not be implemented for 

the systems with actuator faults and immeasurable states. 

In order to demonstrate the effectiveness of our fault-

tolerant control scheme, the tracking, observer errors and 

control input curves of the proposed adaptive fuzzy 

control method are plotted in Fig. 3 without fault-tolerant 

technique. It can be seen that the closed-loop system 

becomes unstable. 

Example 2 (Applied example) [32]: To further illus-

trate the effectiveness of the proposed adaptive fuzzy 

control approach. Let us apply the proposed adaptive 

control scheme to a pendulum system with disturbances. 

The equation of motion of the pendulum is given by: 

1
sin ,mlq mg q klq u

l

= − − =�� �  (76) 

where u IR∈  is the torque applied to the pendulum, 

q IR∈  is the anticlockwise angle between the vertical 

axis through the pivot point and the rod, g is the gravity 

acceleration, and the constants k, l and m denote a 

coefficient of friction, the length of the rod, and the mass 

of the bob, respectively. It is assumed that the constants 

k, l and m are unknown. Let 2

1
( ),x ml q π= −

2
x =  

( )2 ( ) .
k

m
ml q q π+ −�  By choosing k, l and m so that ml2 = 

1, that is, m = g-2, k = g-2, and l = g. 

The nonlinear system can be expressed as follows: 

1 2 1

2 1 1 2 2 1

1

,

sin ,

.

x x x

x b u b u x

y x

= −

= + +

=

�

�  (77) 

Define fuzzy membership as follows: 

1
1̂

( )l
F

xµ = 2

1̂
exp[ ( 2 ) / 6],x l− − +   1, ,5.l = �  

2

2

1 2 1

2

2

ˆ ˆ ˆ( , ) exp[ ( 2 ) / 2]

ˆexp[ ( 2 ) / 6]

l
F

x x x l

x l

µ = − − +

× − − +

 

 

Fig. 1. The curves of x1 (solid), yr (dash) and curves of

u1 (solid), u2 (dash). 

 

Fig. 2. The curves of xi (solid), ˆ

i
x (dash), i = 1,2. 

Fig. 3. The curves of xi (solid), ˆ

i
x (dash), i = 1,2;

curves of x1 (solid) and yr (dash). 
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Given the reference signal ( ) 0,
r
y t =  the actuator 

faults introduced for simulation are 
1

0.2u =  when 

15.t ≥  Construct filters (15), (16), (17) and choose the 

control 
0
u (67), the stabilizing control 

1
α (44) and the 

adaptive laws κ̂ (48), ˆϑ (68), *
ˆδ (69) and 

2
ˆk (70).  

The design parameters are chosen as 
1

5,L =
2

5,L =  

1
1,c =

2
1,c =

1
0.04,γ =

2
0.5,γ = 0.8,ς =

1
11 ,IΓ =  

2
2 ,IΓ =

1 2 3
0.7.

κ
σ σ σ σ= = = =  

In the simulation, the initial conditions are chosen as, 

x1(0) = 0.314, x2(0) = 0, ˆ(0)ϑ =[0.5,0,0,0,0,0,0,0,0,0,0]T, 

and the other initial values are chosen as zeros. The 

simulation results are shown by Fig. 4, respectively. 

From the above simulation studies, it is clearly know 

that the proposed adaptive fuzzy fault-tolerant control 

method can guarantee the all the variables are bounded 

and can achieve the good control performances even in 

the presence of the actuator faults, unknown functions 

and immeasurable states. 

 

6. CONCLUSION 

 

This paper has developed an adaptive fuzzy faults-

tolerant control method for accommodating actuator 

faults in a class of unknown nonlinear systems with 

unmeasured states. The considered faults are modeled as 

the lock-in-place. With the help of fuzzy logic systems to 

approximate the unknown nonlinear functions, a fuzzy 

filter has been first established for estimating the 

unmeasured states. Based on the backstepping technique 

and the nonlinear tolerant-fault control theory, a novel 

adaptive fuzzy faults-tolerant control approach has been 

constructed. It is proved that the proposed control 

approach can guarantee that all the signals of the 

resulting closed-loop system are bounded and the 

tracking error between the system output and the 

reference signal converges to a small neighborhood of 

zero by appropriate choice of the design parameters. The 

detailed simulation studies have been provided to show 

the effectiveness of the control approach.  

REFERENCES 

[1] B. Chen, X. P Liu, and P. Shi, “Direct adaptive 

fuzzy control for nonlinear systems with time-

varying delays,” Inf. Sci., vol. 180, no. 5, pp. 776-

792, 2010. 

[2] B. Chen, X. P. Liu, K. F. Liu, and C. Lin, “Direct 

adaptive fuzzy control of nonlinear strict-feedback 

systems,” Automatica, vol. 45, no. 6, pp. 1530-

1535, 2009. 

[3] M. Wang, B. Chen, X. P. Liu, and P. Shi, “Adap-

tive fuzzy tracking control for a class of perturbed 

strict-feedback nonlinear time-delay systems,” 

Fuzzy Sets Syst., vol. 159, no. 8, pp. 949-967, 2008. 

[4] M. Wang, B. Chen, and P. Shi, “Adaptive neural 

control for a class of perturbed strict-feedback non-

linear time-delay systems,” IEEE Trans. Syst., Man, 

Cybern. B, vol. 38, no. 3, pp. 721-730, 2008. 

[5] W. S. Chen, L. C. Jiao, R. H. Li, and J. Li, “Adap-

tive backstepping fuzzy control for nonlinearly pa-

rameterized systems with periodic disturbances,” 

IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 674-685, 

2010. 

[6] B. Chen and X. P. Liu, “Adaptive fuzzy output 

tracking control of MIMO nonlinear uncertain sys-

tems,” IEEE Trans. on Fuzzy Systems, vol. 15, no. 2, 

pp. 287-300, 2007. 

[7] T. S. Li, S. C. Tong, and G. Feng, “A novel robust 

adaptive-fuzzy-tracking control for a class of nonli-

near MIMO systems,” IEEE Trans. on Fuzzy Sys-

tems, vol. 18, no. 1, pp. 150-160, 2010. 

[8] H. Lee, “Robust adaptive fuzzy control by back-

stepping for a class of MIMO nonlinear systems,” 

IEEE Trans. on Fuzzy Systems, vol. 19, no. 2, pp. 

265-275, 2011. 

[9] C. C. Hua, Q. G. Wang, and X. P. Guan, “Adaptive 

fuzzy output-feedback controller design for nonli-

near time-delay systems with unknown control di-

rection,” IEEE Trans. Syst., Man, Cybern. B, vol. 

39, no. 2, pp. 363-374, 2009. 

[10] S. C. Tong and Y. M. Li, “Observer-based fuzzy 

adaptive control for strict-feedback nonlinear sys-

tems,” Fuzzy Sets Syst., vol. 160, no. 12, pp. 1749-

1764, 2009. 

[11] S. C. Tong, C. L. Liu, and Y. M. Li, “Robust adap-

tive fuzzy filters output feedback control of strict-

feedback nonlinear systems,” Int. J. Appl. Math. 

Comput. Sci., vol. 20, no. 4, pp. 637-653, 2010. 

[12] S. C. Tong, C. Y. Li, and Y. M. Li, “Fuzzy adap-

tive observer backstepping control for MIMO non-

linear systems,” Fuzzy Sets Syst., vol. 160, no. 19, 

pp. 2755-2775, 2009. 

[13] S. C. Tong, G. J. Yang, and W. Zhang, “Observer-

based fuzzy fault-tolerant control for fuzzy systems 

with time delays,” Int. J. Appl. Math. Comput. Sci., 

vol. 21, no. 4, pp. 617-627, 2011. 

[14] D. Xu, B. Jiang, and P. Shi, “Nonlinear actuator 

fault estimation observer: An inverse system ap-

proach via a T-S fuzzy model,” Int. J. Appl. Math. 

Comput. Sci., vol. 22, no. 1, pp. 183-196, 2012. 

[15] D. Ye and G. Yang, “Adaptive fault-tolerant track-

Fig. 4. The curves of xi (solid), ˆ

i
x (dash), i = 1,2;

curves of u1 (solid) and u2 (dash). 



Baoyu Huo, Shaocheng Tong, and Yongming Li 

 

1128

ing control against actuator faults with application 

to flight control,” IEEE Trans. on Control Systems 

Technology, vol. 14, no. 6, pp. 1088-1096, 2006. 

[16] G. Yang and D. Ye, “Adaptive fault-tolerant H∞ 

control via state feedback for linear systems against 

actuator faults,” Proc. of the IEEE Conference on 

Decision and Control, pp. 3530-3535, 2006. 

[17] G. Tao, S. M. Joshi, and X. L. Ma, “Adaptive state 

feedback and tracking control of systems with actu-

ator failures,” IEEE Trans. Autom. Contr., vol. 46, 

no. 1, pp. 78-95, Jan. 2001. 

[18] X. D. Tang, G. Tao, and S. M. Joshi, “An adaptive 

control scheme for output feedback nonlinear sys-

tems with actuator failures,” Proc. of the 15th IFAC 

World Congress, T-Tu-A03, July, 2002, Barcelona, 

Spain. 

[19] X. Tang, G. Tao, and S. M. Joshi, “Adaptive actua-

tor failure compensation for nonlinear MIMO sys-

tems with an aircraft control application,” Automa-

tica, vol. 43, no. 11, pp. 1869-1883, 2007. 

[20] M. Lingya and B. Jiang, “Backstepping-based ac-

tive fault-tolerant control for a class of uncertain 

SISO nonlinear systems,” Journal of Systems Engi-

neering and Electronic, vol. 20, no. 6, pp. 1263-

1270, 2009. 

[21] B. Jiang, Z. F. Gao, and P. Shi, “Observer-based 

integrated robust fault estimation and accommoda-

tion design for discrete-time systems,” Internation-

al Journal of Control, vol. 83, no. 6, pp. 1167-1181, 

2010.  

[22] P. Li and G. Yang, “Backstepping adaptive fuzzy 

control of uncertain nonlinear systems against actu-

ator faults,” Control Theory Appl., vol. 7, no. 3, pp. 

248-256, 2009. 

[23] P. Li and G. Yang, “Adaptive fuzzy control of un-

known nonlinear systems with actuator failures for 

robust output tracking,” Proc. of the American 

Control Conference, pp. 4898-4903, 2008. 

[24] P. Li and G. Yang, “An adaptive fuzzy design for 

fault-tolerant control of MIMO nonlinear uncertain 

systems,” Control Theory Appl., vol. 9, no. 2, pp. 

244-250, 2011.  

[25] S. C. Tong, T. C. Wang, and W. Zhang, “Fault tole-

rant control for uncertain fuzzy systems with actua-

tor failures,” International Journal of Innovative 

Computing, Information and Control, vol. 4, no. 10, 

pp. 2461-2474, 2008. 

[26] H. Wu and M. Z. Bai, “Stochastic stability analysis 

and synthesis for nonlinear fault tolerant control 

systems based on T-S fuzzy model,” International 

Journal of Innovative Computing, Information and 

Control, vol. 6, no. 9, pp. 3989-4000, 2010. 

[27] K. Zhang, B. Jiang, and P. Shi, “Fault estimation 

observer design for discrete-time Takagi-Sugeno 

fuzzy systems based on piecewise Lyapunov func-

tions,” IEEE Trans. on Fuzzy Systems, vol. 20, no. 

1, pp. 192-200, 2012. 

[28] K. Nguang, P. Shi, and S. Ding, “Fault detection for 

uncertain fuzzy systems: an LMI approach,” IEEE 

Trans on Fuzzy Systems, vol. 15, no. 6, pp. 1251-

1262, 2007. 

[29] W. J. Chang, C. C. Ku, and P. H. Huang, “Robust 

fuzzy control via observer feedback for passive sto-

chastic fuzzy systems with time-delay and multip-

licative noise,” International Journal of Innovative 

Computing, Information and Control, vol. 7, no. 1, 

pp. 345-364, 2011. 

[30] L. X. Wang, Adaptive Fuzzy Systems and Control, 

Prentice Hall, Englewood Cliffs, NJ, 1994. 

[31] H. G. Zhang and Y. B. Quan, “Modeling, identifi-

cation, and control of a class of nonlinear systems,” 

IEEE Trans. on Fuzzy Systems., vol. 9, no. 2, pp. 

349-354, 2001. 

[32] Z. P. Jiang and D. J. Dill, “A robust adaptive back-

stepping scheme for nonlinear systems with unmo-

deled dynamics,” IEEE Trans. Autom. Contr., vol. 

44, no. 9, pp. 1705-1711, 1999. 
 

Baoyu Huo received her BS degree from 

Mathematics & Information Science 

College, Hebei Normal University, Shi-

jiazhuang, China, in 2010. She is now 

working towards an ME degree in Ap-

plied Mathematics, from Liaoning Uni-

versity of Technology, Jinzhou, China. 

Her current research interests include 

nonlinear adaptive control, fuzzy control 

and FTC.  

 

Shaocheng Tong received his BA degree 

in Mathematics from Jinzhou Normal 

College, Jinzhou, China, an MA degree 

in Fuzzy Mathematics from Dalian Ma-

rine University, PRC, and a Ph.D. degree 

in Fuzzy Control from Northeastern Uni-

versity, PRC, in 1982, 1988 and 1997, 

respectively. Currently, he is a Professor 

in the Department of Basic Mathematics, 

Liaoning University of Technology, Jinzhou, PRC. His research 

interests include fuzzy control theory, nonlinear adaptive con-

trol, and intelligent control.  

 

Yongming Li received his BS and MS 

degrees in Applied Mathematics from 

Liaoning University of Technology, Jinz-

hou, China, in 2004 and 2007, respec-

tively. He is currently a lecturer in the 

Department of Basic Mathematics, 

Liaoning University of Technology. His 

current research interests include fuzzy 

and neural networks control and nonli-

near adaptive control. 

 


