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Abstract: This paper focuses on time-domain identification issues of multi-input multi-output (MI-

MO) fractional order Hammerstein systems which are the extension of traditional Hammerstein type 

models by allowing linear part to be fractional order systems. The principal component analysis (PCA) 

method in subspace family is extended to identify coefficient matrixes of fractional order systems. Sin-

gular value decomposition (SVD) is utilized to estimate the unknown parameters of nonlinear part of 

system directly. A proper instrumental variable is chosen to eliminate the bias of identification results. 

Numerical simulation validates the proposed method. 
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1. INTRODUCTION 

 

Fractional order calculus appears in three hundred 

years ago. However, due to the lack of physical and me-

chanical background, fractional order calculus is just 

considered as a pure mathematical theory and studied by 

mathematicians in the past years. With the development 

of science and technology, it has been shown that many 

real systems can be described or modeled more accurate-

ly by using fractional order calculus than traditional in-

teger order calculus in recent years [1-4]. Therefore, the 

researches of fractional order calculus attract lots of at-

tention. In the system control field, the identification 

issue of fractional order systems has become a hot spot. 

Identification of fractional order systems was initiated 

in the late nineties. In [5], a method based on fractional 

order model discretization and least square (LS) was 

proposed. In [6,7], modal fractional models based on the 

diagonal representation form were skillfully used and the 

parameters to-be-identified were transformed into modal 

parameters. In [8], an instrumental variable was designed 

and used in identification process. In [9,10], a subspace 

identification method called multi-input multi-output 

output-error state space (MOESP) was extended to iden-

tifying fractional order systems. In [11], an overview of 

the identification issues of fractional order systems was 

presented. There have been several achievements for 

identifying common fractional order systems already, but 

less for systems with nonlinear part, such as fractional 

order Hammerstein systems which are the extension of 

traditional Hammerstein type models with linear part 

being fractional order systems. The identification issue 

of fractional order Hammerstein systems was firstly dis-

cussed in [12]. However, the proposed method is only 

suitable for single input single output (SISO) fractional 

order Hammerstein systems. 

In this paper, we firstly discussed the identification 

issue of multi-input multi-output (MIMO) fractional 

order Hammerstein systems. A subspace method based 

on principal component analysis (PCA) is extended to 

identify coefficient matrixes of fractional order systems. 

Singular value decomposition (SVD) is used to estimate 

the unknown parameters of nonlinear part of system 

directly. A proper instrumental variable is chosen to 

eliminate the bias of identification results. Numerical 

simulation validates the proposed methods. 

The whole paper is organized as follows: In Section 2, 

the mathematical background of fractional order calculus 

and fractional order Hammerstein systems are introduced. 

In Section 3, the identification method based on subspace 

orthogonal projection identification method via PCA 

(SOPIM+PCA) is proposed. In Section 4, a numerical 

simulation example is given to validate the proposed 

method. In Section 5, the conclusion is drawn finally. 

 

2. MATHEMATICAL BACKGROUND 

 

2.1. Fractional order calculus 

Several definitions of fractional order differentiation 

or integration which are appropriate for system modeling 

and control will be introduced in this section.  

The Caputo’s definition is widely used in theoretical 

analysis of control systems, because the Laplace trans-

form of this definition allows utilization of initial values 

of classical integer order derivatives with clear physical 

interpretations [1]. The Caputo’s definition can be ex-
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pressed as follows [2] 
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where .n∈�  γ  is the fractional differential order or 

fractional integral order. 
a t

γ
D  denotes fractional order 

differential operator if 0γ >  or fractional order integral 

operator if 0.γ <  a is the initial time. In general, the 

initial time is zeros and the operator can be written as 

.

γ
D  

The Caputo’s definition can not be easily calculated 

because it involves the calculation of high order 

derivative and integration. The Grünwald-Letnikov’s 

definition is derived from traditional integer order 

differentiation and widely used in numerical calculation. 

The Grünwald-Letnikov’s definition can be expressed as 

follows [1]: 
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gest integer which is no more than x. ( )Γ i is the Gamma 

function defined by 
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A proper sample time T
s
 is usually chosen as the com-

putational step. Define ,
k s
t kT� ( ) ( ),

s
f k f kT�  and 

the numerical calculation formula of fractional order 

differentiation or integration can be expressed as follows: 
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From the definitions mentioned above, several pro-

perties of fractional order calculus can be easily deduced. 

1) The fractional order operator is linear, that is 

( )( ) ( ) ( ) ( ),f t g t f t g tγ γ γ
λ µ λ µ+ = +D D D ,λ∀ .µ  (5) 

2) For fractional order integral, we have 

1 2 2 1 1 2( )
( ) ( ) ( ),f t f t f t

γ γ γ γ γ γ− − − − − +

= =D D D D D  (6) 

where 
1

0,γ >
2

0.γ >  

3) The Laplace transform is as follows: 

{ ( )} ( ),f t s F sγ γ− −

=L D  (7) 

where 0,γ > { }( ) ( ).f t F s=L  

 

2.2. Fractional order Hammerstein systems 

The equation of linear time-invariant fractional order 

system can be written as follows [2]: 
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If ,
k

γ ,
k

kγ γ= ,γ
+

∈�  equation (8) can be simplified 

to the particular case referred to as commensurate 

fractional order system. γ is the commensurate fractional 

differential order. Consider a commensurate MIMO 

fractional order system. The state space equation can be 

described as follows [13]: 
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where 0 2,γ< < ,

n n×

∈�A ,

n m×
∈�B ,

l n×
∈�C ∈D  

.

l m×
�  w(t) and v(t) are zero-mean Gaussian random 

noises. 

The structure of fractional order Hammerstein system 

is shown in Fig. 1. It consists of a static nonlinear block 

N connected to a commensurate fractional order system. 

( )iN  is a nonlinear function which maps m m

→� �  

and can be described by a linear combination of basis 

functions in the form [14] 
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where r ,∈�  αk ,

m m×

∈� ( ) : ( 1, 2,m m

k
k→ =i � �ϕ ...,r).  

For system (9) and (10), we make several assumptions 

as follows 

A1) The input signal u(t) is persistently exciting.  

A2) The fractional order system (9) is observable and 

controllable.  

A3) The dimension of coefficient matrix A is known, 

that is rank(A) = n. 

A4) The random noises w(t), v(t) are irrelevant to the 

input signals u(t) and ( ( )).
k

tuϕ  

A5) The basis functions 
k

ϕ  are known and the coef-

ficient matrix α1 is assumed to be identity matrix. 

The problem studied in this paper is that determining 

coefficient matrixes {A, B, C, D}, fractional differential 

order γ and coefficient parameters αk from a group of 

input and output data { ( ), ( )},k ku y 1,2,...,k N=  in the 

presence of random noises disturbed. 

Several notations are given to make subsequent analy-

sis convenient. || • ||F denotes the Frobenius norm. Adopt-

ing the MATAB notation, ( ,:)rX  and (:, )kX  denote 

respectively the rth row and the kth column of X. Simi-

larly, ( : ,:)i jX  and (:, : )i jX  denote respectively the 

rows of X from the ith row to jth row and the columns 

( )tv

( )ty

( )tw

( )•N( )tu

* ( )tu

Fig. 1. Fractional order Hammerstein system. 
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from the ith column to jth column. The orthogonal pro-

jection of the row space of X onto the row space of Y is 

defined as follows: 

1( ) ,T T −

= =
Y

X Y X XY YY YΠ  (11) 

where ΠY is the orthogonal projection operator.  

The orthogonal projection of the row space of X onto 

the orthogonal complement of row space of Y is defined 

as follows: 

,

⊥ ⊥
=

Y
X Y XΠ  (12) 

where ⊥
Y  denotes the orthogonal complement of row 

space of Y and .

⊥
= −

Y Y
IΠ Π  

 

3. IDENTIFICATION METHOD 

 

3.1. Subspace method 

Substituting (10) into (9), the state space equation of 

fractional order Hammerstein system can be written as 

follows: 
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Due to the existence of fractional differential order γ, the 

output of system is nonlinear with respect to parameters 

space. Therefore, several changes should be made to 

traditional subspace method in system identification. 

Consider the case fractional differential order γ known 

and make the following definitions: 
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From the Caputo’s definition, it is concluded that the 

term ( 1) ( )j
t

γ− +
D w  exists. Thus, (14) can be rewritten as 

follows: 

1
( 1)

0

1
( 1)

0

( ) ( ) ( )

( ) ( 1).

k
k k j j

j

k
j j

j

t t t

t k

γ γ

γ

−

− − +

=

−

− +

=

= +

+ ≥

∑

∑

�D D

D

x A x A B u

A w

α

 (15) 

Therefore, we have 

( 1) ( 1) ( 1)

( 1)

( ) ( ) ( )

( )

i i i

i

t t t

t

γ γ γ

γ

− − − − − −

− −

= +

+

�

�

y C x D u

v

αD D D

D  

2
1 ( 1) ( 1)

0

( ) ( ) ( )
i

i i j j

j

t t t
γ γ

−

− − − − +

=

= +∑ �y CA x CA B uαD D  

      
2

( 1)

0

( ) ( ) ( ).
i

j j

j

t t t
γ

−

− +

=

+ + +∑ �DCA w D u vα  

The equations above can be written into matrix forms 

which is 
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The matrix layout of Wi(t), Vi(t) are similar to Yi(t). 

Choose the proper sample time Ts and set ,
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The matrix layout of , 1,i N k− +
W , 1i N k− +

V  are similar to 

, 1.i N k− +
Y  

Indeed, (17) can be rewritten as another form 
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Pre-multipying (18) with ( ) ,T

i

⊥
Γ  the orthogonal 

complement of Γi with full column rank [15], and mov-
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The main information of fractional order Hammerstein 

system is contained in matrix ( ) ( )T T
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from which a group of basis of the extended observable 

matrix can be determined directly. Consider the case that 

there is no random noise disturbed in fractional order 

Hammerstein system, and (19) can be written as 
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where K is the loading matrix with submatrices K1 and 

K2. Q is non-singular matrix which usually be chosen as 

identity matrix.  

The loading matrix K can be estimated by using SVD, 

that is 
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The rank of Σ1 should be li + n without random noises 
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easily determined.  
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Therefore, the least square solution of Bα, Dα can be 

calculated respectively. 

In order to determine coefficient matrixes B, D, α ac-

curately, we consider this identification problem as an 

optimization problem of the form [17] 
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The problem can be solved by using the SVD method, 

that is  
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The identified results of α should be unique under as-

sumption A5. Therefore, we have 
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Consider the case which fractional differential order γ 

is unknown. Nonlinear optimization techniques can be 

used to estimate the fractional differential order. We can 

choose the quadratic criterion as follows: 
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2
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where ˆ( )αy  is the output of identified model and y is 

the output of original model. From (32), the estimation of 

fractional differential order is transformed into nonlinear 

optimization problem. As a matter of convenience, we 

choose traversal method to estimate the fractional diffe-

rential order. 

 

3.2. Instrumental variables 

Actually, (20) can not be established because of the 

existence of random noises disturbed in fractional order 

Hammerstein system. The estimation results are usually 

biased without considering the influence of random nois-

es. Instrumental variables method is often used to elimi-
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nate this bias. An instrumental variable Z based on past 

inputs is chosen in this paper, where p < k, p∈�  and it 

can be chosen as p = k – 1. 

Utilizing orthogonal projection, (19) can be written as 

( ) ( )

( ) ( )

, 1

, 1

, 1 , 1 .

T T i N k

i i i

i N k

T T

i i i N k i i N k

− +⊥ ⊥

− +

⊥ ⊥

− + − +

  −       

= +

� Z

Z Z

Y
H

U

GW V

Γ Γ Π

Γ Π Γ Π

 (33) 

Calculate the first term at the right side of (33), we can 

obtain 

( )

( ) ( )

, 1

1

, 1 ,

T

i i i N k

T
T T

i i i N k

⊥

− +

−
⊥

− +
=

Z
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GW Z ZZ Z

Γ Π

Γ

 

( ) ( 1 ) ( )

( 1 ) ( 2 ) ( 1 )

( 1) ( ) ( 1)
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k p k p N p

k k N

− + − − 
 + − + − + − =
 
 
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� � ��

� � ��

� � � �

� � ��

u u u

u u u
Z

u u u
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� � � �
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 
 
 
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Consider the r-th row and h-th column block matrix of 

, 1 .

T

i N k− +
W Z  It is obvious that random noises w(t) and 

( )t�u  are irrelevant from assumptions, therefore we have 

( )

1

1

( )

( )

( )
1

0

1
( ) ( 1)

1 1
( )

( 1) 0 .

N
i r T

j k

i r N k
i r

i
s j k i

T

k j p h
N

k i
N T

j p h N

γ

γ

γ γ
ω

− −

=

− −

− +

= =

  − + − 

 
= − 

 

⋅ − + − → →∞

∑

∑∑
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Thus, 

( ) , 1

1
lim 0.

T

i i i N k
N N

⊥

− +
→∞

=GW
Ζ

Γ Π  (34) 

Similarly, we have  

( ) , 1

1
lim 0.

T

i i N k
N N

⊥

− +
→∞

=V
Ζ

Γ Π  (35) 

Therefore, (33) can be written as 

( ) ( ) , 1

, 1

1
lim 0.

T T i N k

i i i
N i N kN

− +⊥ ⊥

→∞ − +

  − =      
�

Y

H
U

Ζ
Γ Γ Π  (36) 

The orthogonal column space of 
, 1

, 1

1
lim

i N k

N i N kN

− +

→∞
− +

 
 
  
�

Y

U
Ζ

Π  

is equal to the column space of ( ) ( )T T

i i i

⊥ ⊥ − HΓ Γ  

and the rank of 
, 1

, 1

1
lim

i N k

N i N kN

− +

→∞
− +

 
 
  
�

Y

U
Ζ

Π  is equal to li + n. 

Utilizing instrumental variable, the influence of 

random noises will be eliminated only if the length of 

identification data is enough. Also, the results of identifi-

cation are unbiased. The proposed method is referred to 

as subspace orthogonal projection identification method 

via PCA, abbreviated SOPIM+PCA.  

 

4. SIMULATION EXAMPLE 

 

Consider a two order commensurate fractional order 

Hammerstein system described by state space equation 

as follows: 

0.9
0 0.1 1 0

( ) ( ) ( ) ( )
1 0.2 0 1

0 0.1 0 0
( ) ( ) ( ) ( ).

0.5 0.1 0 0

t t t t

t t t t

 −   
= + +    −    


    = + +    −   

D x x u w

y x u v

 (37) 

Preceded by a static nonlinearity described by a third 

order polynomial of the form 

( ) 2 3
0.7 0.2 0.5 0

( ) ( ) ( ) ( ) .
0 0.5 0 0.2

t t t t

− −   
= + +   

   
N u u u u

 (38) 

The sample time T
s 
=
 

0.1sec and the input signals are 

random sequences with length N = 2047. System (37) is 

disturbed by Gauss white noises with SNR=20dB. 

Choose parameter i = 2, p = 50. The traversal step is 

0.0001. The identified results are as follows: 

ˆ 0.9022,=γ  

 0.0212    0.4029
ˆ ,

0.2590   0.2260

 
=  − − 

A
 0.3574   0.1510

ˆ ,
0.3792    0.0091

− 
=  − 

B  

0.6554   0.6144
ˆ ,

0.7184   0.6459

− − 
=  − 

C
0.0006    0.0031

ˆ ,
 0.0002   0.0003

− 
=  − 

D  

2

0.7083   0.1817
ˆ ,

0.0008    0.5564

− 
=  
 

α
3

0.5074    0.0070
ˆ .

0.0038    0.2124

− 
=  − 

α  

Because the identified results of A, B, C based on sub-

space method are not unique, we need transform state 

space models of fractional order system into transfer 

functions and compare the coefficients of transfer func-

tions. The transfer functions of fractional order system 

are as follows: 

2
, , ,

, 2
( ) , , 1, 2.

i j i j i j

i j

e s d s c
G s i j

s bs a

γ γ

γ γ

+ +

= =

+ +

 (39) 
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Table 1 shows the eigenvalues comparison of original 

model and identified model. Table 2 shows the theoretic-

al values and identified results of coefficients of transfer 

functions. Fig. 2 shows the output curves of original 

model and identified model. Fig. 3 shows the output 

error curves of original model and identified model. In 

order to check the statistical property of the SOPIM+ 

PCA, the Monte Carol experiments are carried out with 

50 runs under different random noises. Table 3 shows the 

mean and variance of identified results. Compared with 

theoretical results, the identified results are unbiased. 

Therefore, the SOPIM+PCA can be used to identify 

fractional order Hammerstein systems precisely. 

 

Table 1. The eigenvalues comparison of original model 

and identified model. 

Original model Identified model 

-0.1000 + 0.3000i 

-0.1000 - 0.3000i 

-0.1024 + 0.2984i 

-0.1024 - 0.2984i 

 

Table 2. The theoretical values and identified results of 

coefficients of transfer functions (SNR=20dB). 

 Theoretical value Identified value 

γ 0.9 0.9022 

a 0.2 0.2048 

b 0.1 0.0995 

c1,1 0.1 0.0991 

d1,1 0 -0.0014 

e1,1 0 -0.0006 

c1,2 0 -0.0036 

d1,2 0.1 0.0940 

e1,2 0 0.0031 

c2,1 0 0.0029 

d2,1 0.5 0.5017 

e2,1 0 0.0002 

c2,2 -0.05 -0.0471 

d2,2 -0.1 -0.1144 

e2,2 0 -0.0003 

α2 
0.7 0.2

0 0.5

− 
 
 

 
0.7083   0.1817

0.0008    0.5564

− 
 
 

 

α3 
0.5 0

0 0.2

− 
 
 

 
0.5074    0.0070

0.0038    0.2124

− 
 − 
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Fig. 2. The output curves of original model and 

identified model (SNR=20dB). 
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Fig. 3. The output error curves of original model and 

identified model (SNR=20dB). 

 

Table 3. The mean and variance of identified results with 

50 Monte Carlo runs. 

 
Theoretical

value 
Mean Variance/10-3 

γ 0.9 0.8999 0.0142 

a 0.2 0.2016 0.0350 

b 0.1 0.1004 0.0034 

c1,1 0.1 0.1010 0.0036 

d1,1 0 0.0011 0.0661 

e1,1 0 0.0001 0.0111 

c1,2 0 0.0001 0.0087 

d1,2 0.1 0.0994 0.0335 

e1,2 0 -0.0003 0.0123 

c2,1 0 -0.0008 0.0328 

d2,1 0.5 0.5023 0.1038 

e2,1 0 -0.0006 0.0113 

c2,2 -0.05 -0.0499 0.0098 

d2,2 -0.1 -0.0994 0.2035 

e2,2 0 -0.0003 0.0117 

α2

0.7  0.2

 0    0.5

− 
 
 

0.6963  0.2000

0.0121   0.5080

− 
 − 

 
0.2568  0.2400

3.2954  1.3177

 
 
 

α3

0.5   0

  0   0.2

− 
 
 

0.4997  0.0001

0.0040   0.2030

− − 
 
 

 
0.0659  0.1057

0.4615  0.5824

 
 
 

 

5. CONCLUSION 

 

The identification issues of MIMO fractional order 

Hammerstein systems are discussed in this paper. The 

SOPIM+PCA is proposed to identify coefficient matrixes 

of fractional order systems and unknown parameters of 

nonlinear part. The identification results are unbiased by 

using an instrumental variable. Simulation results show 

that the SOPIM+PCA can effectively identify fractional 

order Hammerstein systems. 
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