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Active Fault Detection for Open Loop Stable LTI SISO Systems 

 

Regardt Busch* and Iain K. Peddle 

 

Abstract: Active fault detection for a stable open-loop LTI SISO system is considered. The optimal 

active fault detection setup is developed around an estimator based architecture. The auxiliary signal 

and estimator are then designed in order to maximize detection performance. Equations are derived 

which relate the estimator design to the nominal residual signal covariance. The relationship between 

the auxiliary input and the system performance degradation constraint is considered. The effect of es-

timator gain and excitation signal frequency on the dual Youla-Jabr-Bongiorno-Kucera parameter is in-

vestigated. Finally, the effect of the excitation signal frequency on detector performance is investigated, 

and a minimum targeted detection time parameter is introduced. This set of equations are then used to 

minimise the fault detection time for fixed performance constraints and minimum targeted detection 

time. 
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1. INTRODUCTION 

 

One way to increase the reliability of a control system 

is by employing Active Fault Tolerant Control (AFTC). 

AFTC involves the control system responding to faults 

by actively altering the control law. To be able to do this 

efficiently, faults must be detected in a reliable and 

timely manner. Fault detection schemes can be classified 

as either passive or active fault detection. For a brief 

discussion of many AFTC related topics please refer to 

[1] and [2]. AFTC has been applied to a number of 

practical problems, for example, a detailed study on 

applying AFTC to small unmanned aerial vehicles was 

conducted in [3]. 

Active fault detection (AFD) is the technique of 

detecting anomalous changes in a system by means of 

injecting an external excitation signal into the system and 

then monitoring the system’s response to this excitation 

signal. With passive fault detection the system response 

is simply monitored, and the excitation is provided by 

control inputs or unknown external disturbances. For more 

details on passive fault detection please refer to [4-6]. 

Active fault detection has many advantages over a 

traditional passive approach. These include shorter 

average detection time, guaranteed detection time, and 

that the detection of a fault is not subject to unknown 

external excitation. Active fault detection does 

unfortunately have one major drawback. By injecting an 

auxiliary signal into the system, some nominal system 

performance may need to be sacrificed. 

A number of AFD techniques have been developed 

over the last few years, these include methods based on 

the linear matrix inequality (LMI) framework [7-9], as 

well as, methods based on the dual Youla parametrisa-

tion. The research presented in this article is to a large 

extent a continuation of the work presented in [10-12]. 

In [10] the dual Youla parametrisation is introduced. 

The link between the dual Youla parametrisation and 

system changes are considered and derived in explicit 

form. In addition to this the author considered the link 

between the dual Youla parametrisation and a number of 

standard uncertain models. 

The theory developed in [10] is used in [11,12] to 

develop active fault detection and diagnosis (FDD) 

systems. In [12] the setup used for active fault detection 

is introduced, and active fault detection and diagnosis is 

briefly discussed for open-loop, closed-loop and 

reconfigured closed-loop systems. In [11] active FDD for 

a closed-loop system is considered in more detail. 

Furthermore, the optimal design of the external 

excitation signal was also considered for a fixed observer 

based feedback control system. 

The subject of designing the auxiliary signal to 

optimize AFD performance has been discussed in a 

number of papers. The focus has however primarily been 

directed towards multi-model approaches. Examples of 

such research include [13,14]. 

In order to simplify the AFD system the focus is 

initially shifted to the open-loop stable SISO case, which 

leads to significant simplifications of the optimal AFD 

solution. This might seem restrictive at first but the 

resulting theory can easily be expanded to the MIMO 

case, or applied to unstable systems by first stabilising 

the system using feedback control. 

For this paper it is considered that an estimator can be 

designed for the sole purpose of fault-detection. This 

allows the estimator to be optimised for AFD instead of 

being fixed due to control system requirements as is the 
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case in [11,12]. 

With the extra degree of freedom this provides, the 

optimising equation of [11] yields a trivial solution. 

Therefore it is augmented with a final constraint that 

captures the detector dynamics. The theory is therefore 

extended beyond that of [8,9] in order to take the 

dynamics of the detector into consideration. A parameter 

called the minimum targeted detection time is introduced. 

This parameter is related to the detector dynamics, and 

places a lower limit on the excitation signal frequency, 

thereby allowing a non-trivial optimal AFD solution to 

be obtained. 

Finally, the theory developed in this article is 

demonstrated by means of an illustrative example. 

 

2. PRELIMINARIES 

 

In this section the system setup used for AFD is 

derived, and a number of key concepts are introduced 

during this process. Amongst these concepts are: the 

introduction of an auxiliary signal; residual generation; 

and the Dual Youla parameter which describes the 

parametric faults in the system.  

 

2.1. System setup 

A generic two port model with uncertain parameters is 

given in transfer matrix form as 

( ) ( , ) ( ) ( , ) ( ),
ed eu

E s G s D s G s U s= Θ + Θ  (1) 

( ) ( , ) ( ) ( , ) ( ).
yd yu

Y s G s D s G s U s= Θ + Θ  (2) 

By using a linear fractional transform [15], the 

uncertain model parameters are removed from the 

primary plant model and placed in a feedback path. This 

modified setup is shown in Fig. 1. A state-space 

realisation of this uncertain plant is now given by  

,
w u d

x x w u d= + + +A B B B�  (3) 

,
z zw zu zd

z x w u d= + + +C D D D  (4) 

,
y yw yu yd

y x w u d= + + +C D D D  (5) 

,
e ew eu ed

e x w u d= + + +C D D D  (6) 

where r

d ∈R  is the disturbance input, q
e∈R  the error 

output, m
u∈R  the actuator input, p

y∈R  the sensor 

output, k
w∈R  an external input and k

z∈R  an 

external output. The loop from z to w is closed through Θ, 

where the diagonal elements of Θ describe the parametric 

faults of the system. 

2.2. Coprime factorisation 

A coprime factorisation of the system Gyu(s) and K(s) 

is given by [12] 

1 1
, , , ,

yu
G NM M NN M N M RH

− −

∞
= = ∈

� � � �  (7) 

1 1
, , , ,K UV V UU V U V RH

− −

∞
= = ∈

� � � �  (8) 

where the eight matrices must comply to the double 

Bezout equation, given by  

0
.

0
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N V N VN M N M

I

I

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� � � �

� � � �

 (9) 

It is now assumed that Gyu is open-loop stable and 

therefore that AFD can be applied in the open-loop case. 

From this point on the value of F is assumed to be zero. 

Given these assumptions, the equations given in [16] can 

be simplified as follows: 

0 0 ,

u

y yu

A B L
M U

I
N V

C D I

⎡ ⎤−
⎡ ⎤ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 (10) 
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N M
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+ − +⎡ ⎤
⎡ ⎤− ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
−⎣ ⎦ ⎢ ⎥−⎣ ⎦

� �

� �

 (11) 

From (10) and (11) it can be shown that,  

0.M V IU U= = = =
� �  (12) 

Furthermore, it is easy to show that (10) and (11) 

comply with the requirements stipulated by (9). 

 

2.3. Introducing the auxiliary input and residual output 

A residual vector can be generated by using the co-

prime factors as follows [11]  

.r My Nu= −
� �  (13) 

It can be shown that this is equivalent to the vector r 

shown in Fig. 2 [17]. 

With reference to Fig. 2 an auxiliary signal η is 

 

 

Fig. 1. System model described in terms of the nominal 

plant G(s) and the deviations from the nominal 

plant given by Θ. 

 

Fig. 2. System setup used for AFD in state space form. 

The plant is defined as in figure 1. The auxiliary 

input (η) as well as the residual signal (r) are 

also shown. 
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introduced which excites both the plant and estimator. 

This signal has no effect on r in the nominal case, but 

affects the residual signal if a fault has occurred. In this 

paper only single frequency periodic signals of the form  

sin( )a tη ω=  (14) 

will be considered. 

According to [11] the four transfer functions from the 

two inputs to both outputs are given by  

( ),
ed ed
P G= Θ  (15) 

( ),
e eu
P G
η
= Θ  (16) 

( ),
rd yd
P G= Θ  (17) 

( ) ,
r yu
P G N
η
= Θ −  (18) 

where the simplifications obtained in (12) have been 

applied to the equations given in [11]. 

In [11] it is noted that Prη is equal to the dual Youla 

parameter S. According to [10,11] it is possible to rewrite 

S or Prη as  

( )
1

( ) ,
r yw zw zu
P MG I G G
η

−

Θ = Θ − Θ�  (19) 

where the simplifications obtained in (12) have been 

applied to the equations given in [11]. For further 

background on the Youla parameterisation please refer to 

[18,19]. 

 

3 OPTIMAL OPEN-LOOP AFD FOR SISO 

SYSTEMS 

 

In this section optimal open-loop AFD is investigated 

by making use of the theory presented in the previous 

section. In the open-loop case accurate state estimation is 

not of primary importance, since a separate state 

estimator for the purpose of applying feedback control 

can be employed. Therefore, the estimator gains can be 

designed to optimise for AFD performance. 

With AFD the injection of the auxiliary signal results 

in a reduction of the nominal system performance. The 

following design goals are considered important during 

the design of the optimal estimator and auxiliary signal 

pair:  

1) Design the estimator gain so that A + LC2 is stable.  

2) Design the auxiliary signal, η, in such a way as to 

limit nominal performance degradation.  

3) Design the estimator gain, L, and the auxiliary signal, 

η, in order to minimise the fault detection time.  

 

3.1. A setup for active fault detection  

Design goal 2 requires that the impact of the axillary 

signal on the system error output be known and kept 

within the stipulated design constraint. Now, consider 

design goal 3. This design goal requires that the impact 

of the axillary signal on the triggering output be known 

and maximised. Furthermore, this design goal requires 

that the impact of the estimator gain on the nominal 

detector noise level be known and minimised. A 

complying setup is shown in Fig. 3. 

 

Fig. 3. Setup used for active fault detection. From left to 

right the following is shown: plant excitation 

dynamics; linearised detector dynamics; and fault 

trigger. 

 

With reference to this figure a number of definitions 

are now made:  

Define Λ0 as the nominal system AFD disturbance 

constraint. Therefore 
max 0

( (0, ) )
e
P S
η

σ η ≤ Λ  must hold 

for all t > 0 and the postulated fault condition Θ1.  

• The signal η is the excitation signal used for the 

purpose of AFD, and is given by sin( )a tη ω=  

where a is a simple gain such that the performance 

degradation constraint Λ0 is adhered to.  

• h is the signal on which thresholding is performed, 

and is given by, h = D(s)r. Where, D(s) is a linear 

approximation of the detector dynamics.  

 

From these definitions and the informal discussion 

provided earlier, the following optimisation criteria is 

now formulated.  

Proposition 1: Find the estimator gain L, excitation 

frequency ωη, and the admissible gain a which 

maximises the average fault signal to nominal noise ratio 

on h(t) over a fixed time period td. 

 

In the remainder of this section the subsystems making 

up the optimal AFD setup are considered and combined 

to arrive at the optimised AFD solution. With reference 

to Fig. 3 these subsystems are: the auxiliary signal and 

how it relates to the disturbance constraint; an approxi-

mated description of the detector dynamics and how it 

relates to the excitation frequency; a characterisation of 

the effect of the auxiliary signal on the residual output; 

and a description of the nominal detection noise. 

 

3.2. Disturbance constraint and the auxiliary signal 

amplitude 

Implementing AFD results in a reduction in nominal 

system performance. It is therefore of primary import-

ance to limit this performance degradation. Therefore,  

0 0
,cΛ =  (20) 

where c0 is a constant. 

The auxiliary signal must be designed to satisfy the 

single constraint Λ0. Assuming maximum additional 

system disturbance, the maximum auxiliary signal 

amplitude is given by  

0 0

1 1
.

(0, ) (0, )
e eu

a c c
P j G j
η

ω ω

= =  (21) 
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3.3. Approximated detector dynamics 

The aim of this section is to approximately 

characterise the detector’s response in terms of excitation 

frequency as a linear transfer function. The detector is 

responsible for detecting the small change in the residual 

signal due to a failure. Although not the only possible 

approach, in this paper the focus is on using an 

integrative change in mean detector. 

As previously stated the auxiliary signal is a single 

frequency periodic signal of the following form:  

sin( ).a t
η

η ω=   (22) 

Given enough time for transient behaviour to have 

ceased, the residual output is of the form,  

( ) sin( ) ,r t a t
η

ω φ υ= + +  (23) 

where υ  is a zero mean noise component. 

To generate a detection signal with a zero mean in the 

nominal case and a non-zero mean in the faulty case the 

residual is multiplied by a single frequency periodic 

signal of frequency ωη. The detection signal is therefore 

given by  

0 0
sin( )t

η
ν υ ω φ= +  (24) 

in the nominal case, and  

2

1 1 1 1
sin( ) ( )sint a t

η η
ν υ ω φ ω φ= + + +  (25) 

in the faulty case. 

Now, consider the second term of (25). This term has 

a non-zero mean value, and is used for fault detection. 

Since it is not known at what time a fault will occur it is 

further assumed that 
1

0.φ =  Of primary interest is the 

effect of the excitation frequency on detector perform-

ance. This parameter can be designed for, while the 

phase at which a failure occurs is random. 

The detector integrates 
1
,ν  and after a time td seconds 

the output is given by  

2

0
( )sin

sin(2 )
.

2 4

t
d

d d

h a t dt

t t

ω

ω

ω

=

= −

∫
 (26) 

It can be seen that as ω becomes large, h approaches 

2
.

t
d  Furthermore, when ω becomes small h approaches 

zero. 

It is now shown that the detector’s integration action 

can be closely approximated by a second order transfer 

function of the form  

2

2

2

( ) ,

2 2

d

d d

t S
D S

a a
S S

t t

≈
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ +⎜ ⎟ ⎜ ⎟
⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (27) 

where a is a constant approximately equal to one. 

The value of a for small values of ω is calculated by 

setting (26) equal to the magnitude of (27)  

3

2

2

2

(2 )
2

( )3! ,
2 4

2 ( ) 2 ( )

d

d
d d

d d

t
t

t t j

a a
j j

t t

ω

ω
ω

ω

ω ω

−
− =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ +⎜ ⎟ ⎜ ⎟
⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (28) 

where S jω=  and sin(2 )
d
tω  is approximated by a 

second order Taylor series expansion. 

Now, assuming that a, td and ω are positive, real 

numbers, (28) is simplified as  

( )2 2 2
2 3.

d
a t ω+ =  (29) 

Therefore, as ω approaches zero  

3
.

2
a =  (30) 

From Fig. 4, equations (30) and (27) it can be seen that 

auxiliary signal frequencies lower than 1/td are severely 

penalised by the detector dynamics. It is therefore up to 

the control engineer to select a reasonable minimum 

targeted detection time. Please note it is not suggested 

that it is impossible to detect a fault in less time than td, 

merely that doing so may require a much larger change 

in .ν  Furthermore, the optimal auxiliary signal frequency 

is not simply a function of the detector dynamics, but is 

also influenced by other factors, such as ( ).
r
P
η
Θ  

It is rarely possible to know the system model with 

perfect accuracy, therefore it is often necessary to employ 

a leaky detector. From Fig. 4 it can be seen that employ-

ing a leaky detector causes a severe performance drop in 

the low cut-off region of the detector dynamics. Since 

this area is typically excluded as an optimal solution due 

to the detector dynamics the extra dynamics can usually 

be ignored, as is the case in the examples shown later. 

 

 

Fig. 4. True frequency response of detector versus 

second order approximated response. For this plot 

t =1 and the magnitude is normalised so that 

h(∞) =1. Furthermore, the effect of using a leaky 

detector is shown. As the leakiness increases the 

severe performance drop moves closer to 1/td. 
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3.4. Dual Youla parameter 

As previously stated the transfer function from 

auxiliary input to residual output is given by the dual 

Youla parameter. With reference to (19), this parameter 

is given by 

1( ) ( ) .
r yw zw zu
P MG I G G
η

−

Θ = Θ − Θ�  (31) 

As is evident from (11) the transfer function M�  is 

dependant on L, therefore  

1( , ) ( ) ( ) .
r yw zw zu
P L M L G I G G
η

−

Θ = Θ − Θ�  (32) 

Prη is an indication of the effectiveness of the auxiliary 

signal in altering the residual, therefore it is advanta-

geous to maximise Prη.  

( ( , ))max r

L

P L
η
Θ  (33) 

 

3.5. Noise covariance on nominal residual signal 

From the proposition it would seem that the noise 

covariance on h(t) is required. However if it is assumed 

that the system has been on for a long time the dynamic 

effect of the detector is of minimal importance, therefore 

it is acceptable to consider the noise covariance on the 

nominal residual instead. 

The nominal residual noise power determines the 

maximum attainable detector sensitivity for a given false 

detection rate (NOTE: Calculating statistical metrics, 

such as the false detection rate, is beyond the scope this 

paper. The interested reader should refer to literature 

such as [20]. It is assumed that a simple change detector 

is used. If this is not the case refer to literature on 

detector theory and the universally most powerful test, 

such as [21].). It is therefore desirable to minimise the 

residual covariance. It is not suggested that the optimal 

AFD system simply minimizes output noise covariance, 

but that in the final optimisation a lower output noise 

covariance is advantageous as it leads to a higher signal 

to noise ratio. 

The covariance on the residual prior to a fault 

occurring can be calculated using the H2 system norm. 

The H2 norm for a stable proper continuous system is 

given by  

H

2

1
Trace H( j ) H( j ) d .

2
H ω ω ω

π

∞

−∞

⎡ ⎤= ⎣ ⎦∫  (34) 

From (17) (with 0)Θ =  and (34) the output noise 

power is dependant on the estimator gain, and is given by  

2
0
( )

rd
P L =� �  

 
P (L)
rd
0

rd rd
0 0

1
Trace P ( j ,L) P ( j ,L) d .

2
ω ω ω

π

∞

−∞

⎡ ⎤
⎢ ⎥⎣ ⎦∫ (35) 

The estimator gain which minimises the nominal 

residual covariances satisfies 

2
0

1
.max

( )L rd
P L

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
� �

 (36) 

3.6. Combining results 

In this section the components of the optimal open-

loop AFD setup have been investigated. Firstly the input 

shaping filter was introduced and discussed for a number 

of different scenarios. Next approximated detector 

dynamics were derived. Then the noise power on the 

residual of nominal system was minimised. This allows 

the sensitivity of the detector to be maximised. Lastly 

equations were derived which can be used to maximise 

the effect of η on r. This allows the detector threshold to 

be reached as fast as possible. 

From the equations given in Sections 3.2, 3.3 and 3.4, 

the transfer function from input ηh to the thresholding 

signal h is given by  

( , ) ( ) ( , ).
h r

h
P L S aD S P L S

η η
=  (37) 

The peak gain in the frequency response of a linear 

system is given by the H
∞
 norm  

( ) ( ) .maxH s H j

ω

ω
∞
=� �  (38) 

Therefore,  

( ) ( ) ( , ) .maxh r
P L aD j P L j

η η

ω

ω ω
∞
=� �  (39) 

Therefore the estimator gain which leads to the largest 

h is given by  

( )( ) .max h
h

L

P L
η ∞

� �  (40) 

As was stated in proposition 1 the average fault signal 

to nominal noise ratio on h(t) must be maximised, 

therefore from (36) and (40),  

2
0

( )
,max

( )

h

L rd

P L

P L

η ∞

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

� �

� �
 (41) 

where the optimal estimator gain, Lopt satisfies (41), 

while the optimal auxiliary signal frequency satisfies 

( ) .
h opt
P L

η ∞
� �  

 

3.7. Discussion 

3.7.1 Solving the optimisation problem 

For simple first and second order problems the 

optimisation problem can easily be solved by producing 

plots using a computer. However, for more complex 

problems drawing simple plots becomes impractical. In 

these cases the optimisation problem can be solved using 

a number of standard numerical techniques. For a 

detailed discussion of these and other techniques please 

refer to [22,23]. Ultimately even the most efficient 

algorithm will be undone by the exponential time 

complexity of the optimisation problem as the number of 

states increase. 

If, however, a slightly suboptimal solution is 

acceptable the time complexity problem can be easily 

overcome by restricting the estimator error dynamics to 

that of a simple low-pass filter. This modified problem 

leads to the following proposition:  
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Proposition 2: Find the estimator bandwidth ωL, 

excitation frequency ωη, and admissible gain a which 

maximises the average fault signal to nominal noise ratio 

on h(t) over a fixed time period td. 

 

When using this modified proposition the estimator 

gain in (41) is determined via the optimal bandwidth and 

the chosen filter topology, therefore the time complexity 

of the numerical solution is now independent of the 

number of states. Furthermore, using this problem setup 

allows the use of the same simple plots to solve higher 

order problems as was suggested previously for first 

order problems. 

 

3.7.2 Choosing the targeted detection time 

One of the parameters required by the optimisation 

problem presented is the targeted detection time. This 

parameter places a soft lower bound on the optimal 

excitation frequency. When choosing this parameter the 

following should be considered: 

• Changing td provides a mechanism for exchanging 

small error detection performance (sensitivity) for 

detection speed and vice versa. A longer td provides 

more sensitivity but slower detection speed for 

larger errors while a shorter td provides less 

sensitivity but faster detection speed for larger 

errors. 

• The shortest reasonable td is determined by the 

inverse of the system bandwidth. As the minimum 

excitation frequency is pushed beyond the system 

bandwidth the efficacy of the excitation signal starts 

to diminish. 

• The longest reasonable td is determined by the fault 

detection specification.  

 

Fig. 5 shows the effect of varying the targeted 

detection time. It can be seen from the figure that as td is 

shortened the detection gain is reduced and vice versa. 

 

 

Fig. 5. Peak gain plot showing the effect of the targeted 

detection time. As td becomes shorter the optimal 

estimator bandwidth increases, while the peak 

gain is significantly reduced. This is indicated by 

the arrow in the figure. 

3.7.3 Comparison to multi-model approaches 

When comparing the method developed in this paper 

to the commonly used multiple-model fault detection 

method, a number of important advantages are identified. 

In the multiple-model method a bank of Kalman filters 

are usually employed. Each one of these Kalman filters 

are then designed to match a postulated failure case. If a 

large number of non-nominal models need to be detected, 

this method can quickly result in a large computational 

load. Additionally it is difficult to envisage all possible 

failure cases. The method shown in this paper only 

requires a single estimator for each fault class which 

must be optimised for. Non time critical faults are still 

detected even if they were not explicitly designed for. 

Detection in such cases merely occurs in a sub-optimal 

manner. 

One major disadvantage to consider is that when a 

fault is detected by a multiple-model setup, the properties 

of the new model are immediately known. With the 

method presented in this paper system identification 

needs to be performed as a separate step. In a computa-

tionally constrained environment this is most likely a 

compromise worth making. 

 

4. EXAMPLES 

 

A few examples are used to illustrate the application 

of the theory developed in this paper. 

 

4.1. Example 1 

This simple example will demonstrate the problem 

with simply applying the existing theory to the open loop 

optimal AFD problem. It will be shown that using the 

existing theory in this manner leads to a trivial solution, 

because the existing theory was intended to be used with 

a pre-existing estimator, and not to be used in designing 

an estimator for optimal AFD. 

In general a first order linear differential equation is 

given by the following equation:  

.X aX bU= +
�  (42) 

This can be represented by the following state space 

representation.  

[ ] [ ] ,
A

X a X b δ= +
�  (43) 

[1] .y X=  (44) 

Consider the following fault model:  

0
(1 ),

a
a a θ= +  (45) 

0
(1 ),

b
b b θ= +  (46) 

where θa and θb are zero in the nominal case. 

Using an upper linear fractional transform the system 

can be written as  

0 0 0
[ ] [ ] [ ] ,X a X a b w b U= + +

�  (47) 

1 0
,

0 1
z X U

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (48) 

[1]y X=  (49) 
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with 

0
.

0

a

b

w z

θ

θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  (50) 

Next, the disturbance model is introduced. In this 

example the following properties will be assumed:  

• Zero mean white process noise which enters the 

system in the same manner as the control input  

• Bandwidth limited zero mean white measurement 

noise  

• The error signal is equal to the plant output  
 

Adding the disturbance model results in the following 

three port model:  

10 0 0

2

0

0 0 0

,
0

nn

P

X wa a bX

x wcx

b k
U d

c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

�

�

  (51) 

1

2

1 0 0
,

0 0 1
n

Xz
U

xz

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (52) 

[1 ] ,
m

n

X
y k

x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (53) 

[1 ] .
m

n

X
e k

x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (54) 

The values for a0, b0, c, km and kp are now chosen as,  

–1, –5, –10000, 0.01, 0.1 respectively. 

Suppose that the plant suffers damage which results in  

0.4 0
.

0 0.1

−⎡ ⎤
Θ = ⎢ ⎥−⎣ ⎦

 (55) 

Therefore, there is a 40% reduction in damping and a 

10% reduction in control authority.  

From Fig. 6 it can be seen that simply applying the 

theory from [11] leads to incomplete results. The results 

obtained suggests that the best estimator is the open-loop 

case, and that the optimal excitation frequency is 

0 rad ·s–1. This would lead to an infinite detection time. 

 

4.2. Example 2 

Example 1 is now repeated for the Optimal AFD 

problem, using the augmented theory described in this 

paper where detector dynamics are also taken into 

consideration. 

This example uses the same model as in example 1, 

and the model is therefore not restated here. 

Now, using the equations derived in this work, a 

frequency plot can be easily produced showing the AFD 

performance as a function of the estimator bandwidth. 

The results are shown in Fig. 7. From this figure it is 

easy to determine the optimal estimator bandwidth as  

1
0.0455 rad s .Lopt

ω
−

= − ⋅  (56) 

Finally, with 
opt

L
ω

 known, a plot of ( )
h opt
P L

η
 can 

be produced. The result is shown in Fig. 8. From the 

figure the optimal excitation frequency is 

 

Fig. 6. AFD performance as a function of estimator band-

width. 
p
opt

L  is given by peak of 
2

0

( )
.

( )

h

rd

P L

P L

η ∞
� �

� �

 

Fig. 7. AFD performance as a function of estimator band-

width. popt
L  is given by peak of 

2
0

( )
.

( )

h

rd

P L

P L

η ∞
� �

� � 
 

Fig. 8. Magnitude response of ( ).
h opt
P L

η
 The optimal 

excitation frequency ( )
opt

η
ω  is given by the 

peak of the magnitude response. 
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1
0.1365 rad s .

opt
η

ω
−

= ⋅  (57) 

These results are used to set up a simulation of the 

optimal AFD system. The simulation results for a case 

with a large amount of noise is shown in Fig. 9. From the 

simulation results it can be seen that the AFD system is 

very robust against the effects of white noise. 

It is important to note that model inaccuracies are a 

major hurdle to effective fault detection. Parametric 

uncertainties are mathematically identical to faulty 

parameters, and therefore much effort should be spent in 

determining accurate system models. Not withstanding 

this there are a number of steps that can be taken in order 

to deal with parameter uncertainties. These include 

employing the system as part of a intelligent active fault 

tolerant control system and/or using a leaky detector. 

 

5. CONCLUSION 

 

Optimal open-loop active fault detection was 

investigated for a stable SISO system. The design of the 

estimator was considered an integral part of the AFD 

optimisation process instead of being a fixed controller 

attribute. It is suggested that a separate estimator should 

be used for optimal state estimation, if desired. The 

research presented in [10,11,18] and [12] was simplified 

for the open-loop case considered. Equations were 

derived to minimise the noise covariance on the nominal 

residual output as well as to maximise the Dual Youla 

parameter. In order to realise a non-trivial solution, the 

theory was extended to include dynamical effects of the 

detector. It was found that this effect can be closely 

approximated by a second order transfer function, with a 

low-pass cut-off frequency determined by the minimum 

targeted detection time design parameter. The theory 

developed was applied to a few simple illustrative 

examples. 

As was previously stated, a simplification was made 

by considering the system in the open-loop case. Closing 

a control loop around the system reduces AFD 

performance due to the controller’s disturbance rejection. 

Future research will therefore deal with formalizing this 

effect as well as expanding the research to MIMO 

systems. 
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