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Abstract: In this paper, a novel method is presented to study the stability map of linear fractional order 

systems with multiple delays against uncertainties in delays. It is evident from the literature that the 

stability question of this class of dynamics has not been resolved yet. The backbone of the new metho-

dology is inspired by an advanced clustering with frequency sweeping technique which enables the ex-

haustive determination of stability switching curves in the space of the delays. The proposed method 

detects all the stability regions exactly, in the parametric space of the time delays. An illustrative ex-

ample is presented to confirm the proposed method results. 
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1. INTRODUCTION 

 

The stability of every dynamic system is a basic 

question and a fundamental issue. In confronting the 

time-delay systems, we are curious to know what will 

happen if the amount of delay increases and how the 

stability feature will change. Regarding the systems with 

multiple time delays, the stability map of the system can 

be expressed as stable and unstable regions in the two- or 

three-dimensional space. 

In this paper, one of the most important and 

unresolved problems of fractional delay systems is 

studied: the asymptotic stability of a general class of 

fractional order systems with multiple time delays, 

against delay uncertainties (this means that the time 

delays are constant but their true values are not exactly 

known). The problem is known to be notoriously 

complex, primarily because the systems are infinite 

dimensional due to delays. Multiplicity of the delays in 

this study complicates the analysis even further. And 

“fractional order” feature of the systems makes the 

problem much more challenging compared to integer 

order systems.  

The original idea in this strategy is derived based on 

the method (advanced clustering with frequency 

sweeping (ACFS)) reported in [1] to achieve the stability 

map of integer order systems with multiple time delays. 

ACFS does not impose any restrictions in the number of 

delays, and it can directly extract the 2-D cross sections 

of the stability views in any two delay domain. The main 

objective in 2D stability analysis is to construct all the 

potential stability switching curves (PSSC) which 

partition the delay space into stable and unstable regions. 

Obviously, the accuracy and completeness of the 

analysis strongly depends on finding all the existing 

PSSC without any approximations [1]. There has been a 

large effort to deal with this problem, for the standard 

case (integer order systems); see [1]-[4], and others. 

The researchers of [5] may be the pioneer to consider 

stability of the fractional order time delay system with 

single-delay. They have developed the Ruth-Hurwitz 

criteria for analyzing the stability of some special delay 

systems to those involve fractional power .s  For 

single delay case; in [6], necessary and sufficient 

conditions for BIBO stability of the retarded fractional 

order delay systems and sufficient conditions for some 

neutral types have been introduced. Recently, Pakzad et 

al. in [7] have presented an analytical method for finding 

the stability regions of fractional delay systems with 

single and commensurate delay in one-dimensional 

parametric space of delay, and with uncertain parameters 

in both time-delay space and coefficient space in [8], 

which uses the bilinear Rekasius transformation to 

eliminate the exponential type transcendental term in the 

characteristic equations. In addition, they have 

successfully extended an analytical algorithm based on 

‘Direct Method’ (presented by Walton and Marshal [9]) 

for testing the stability of such systems [10]. 

In this paper, we extend the approach of [1] to 

fractional order systems with multiple delays. necessary 

and sufficient conditions which yield the exact lower and 

upper bounds of the crossing frequency set (CFS) can be 

computed via an automated sequential formula. These 

bounds are crucial as they determine the sweeping range 

of the only parameter, the frequency that ACFS sweeps. 

The paper is organized as follows. Section 2, contains 

the problem statement. In Section 3, ACFS method is 

presented which extracts the 2-D PSSC for fractional 

delay systems, Section 4 brings an example to illustrate 

the results presented and finally Section 5 concludes the 

work. 
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2. PRELIMINARIES AND DEFINITIONS 

 

Standard notation has been used throughout the article: 

,� � : sets of natural and integer numbers. 

( , )+ −
� � � : set of real (positive real, negative real) 

numbers. 

� : set of complex numbers. 

1j = − : the imaginary unit. 

( )zℜ : real part of a complex number z 

( )zℑ : imaginary part of a complex number z. 

,z z∠ : magnitude and argument of a complex number z 

1 2
( , )

T
R p p

�
: denotes the resultant of bivariate polyno-

mials 
1 1 2
( , )p T T  and 

2 1 2
( , )p T T  with eli-

minating T
�
 where 1,2.=�  

 

Consider a fractional order system with the following 

characteristic equation: 

( ) ( ) ( )1 2

1 2

0 1

, ,

n m

s i s

i

i

CE s p s e q s e
τ τα α

τ τ
− −

= =

= +∑ ∑
�

�

�

, (1) 

where parameters τ1 and τ2 are non-negative, such that 
2

1 2
( , )τ τ ∈�  and p

�
 and qi are real polynomials in 

complex variable s
α  with arbitrary order (where 

).α ∈�  Note that the zeros of characteristic equation 

(1) are in fact the poles of the system under investigation. 

We find out from [6] that the transfer function of a 

system with a characteristic equation in the form of (1) 

will be H∞ stable if, and only if, it doesn't have any pole 

at ( ) 0sℜ ≥  (in particular, no poles of fractional order at 

0).s =  

For fractional order systems, if an auxiliary variable of 

v s
α

=  is used, a practical test for the evaluation of 

stability can be obtained. By applying this auxiliary 

variable in characteristic equation (1), the following 

relation is obtained: 

( ) ( ) ( )1 2

1 2

0 1

, ,

n m

v i v

i

i

CE v p v e q v e
α α

τ τ

τ τ
− −

= =

= +∑ ∑
�

�

�

. (2) 

This will transform the domain of the system from a 

multisheeted Riemann surface into the complex plane, 

where the poles can be easier calculated. In this new 

variable, the instability region of the original system is 

not given by the right half-plane, but in fact by the region 

described as: 

2
v

π

α

∠ ≤  (3) 

with ,v∈�  which the stable region has been displayed 

by hatched lines in Fig. 1. Note that under this trans-

formation, the imaginary axis in the s-domain is mapped 

into the lines 

2
v

π

α

∠ = ± . (4) 

Let us assume that; s jω= ±  or in other words, 
2j

s e
π

ω
±

=  are the roots of characteristic equation (1) 

for a 2

1 2
( , ) .τ τ ∈�  Then for the auxiliary variable, the 

roots are defined as follows: 

2
v

π

α

∠ = ± . (5) 

Therefore, with the auxiliary variable ,v s
α

=  there 

is a direct relation between the roots on the imaginary 

axis for the s-domain with the ones having argument 

2π α±  in the v-domain. 

 

3. METHODOLOGY 

 

In this section, we propose a method that can extract 

the 2-D PSSC for fractional order systems with multiple 

time delay. In other words, we perform the stability 

analysis of (1) in 2-D delay parameter space. 

 

3.1. ACFS methodology 

If there exists an imaginary root of equation (1) at 

c
s jω= ± (‘c’ for crossing) for a given set of time delays 

1 2
( , )τ τ τ=  the same imaginary root will also exist at all 

the countably infinite grid points of 

{ } ( )1 2 10 20

10 20

2 2
, ,

0,1, 2, , 0,1, 2,

2 2
0, 0.

l k

c c

c c

l k

l k

π π

τ τ τ τ τ

ω ω

π π

τ τ

ω ω

⎛ ⎞
= = + + +⎜ ⎟

⎝ ⎠

= =

− ≤ − ≤

… …  (6) 

This signifies that τi0 is the smallest positive ,
il

τ  

0
min( ),

i il
τ τ= 1,2,i = 0,1,2, , ( 0).

il
l τ= >…  Notice that 

for a fixed 
c

ω  the distinct points of (6) generate a grid 

in 2{ }τ +
∈�  space with equal grid size, 2

c
π ω  in 

both dimensions. 

Definition 1 (kernel curves): Assume that the set of 

10 20
( , )

c
ω

τ τ  is determined exhaustively in { }τ =  

1 2
( , )τ τ  space for all possible ωc values satisfying (1) 

and (6). These curves as a group are called the ‘‘kernel 

curves’’ of system described by the characteristic 

equation (1). We denote these curves by 
0 1 2
( , ).τ τ℘  

Definition 2 (offspring curves): The trajectories of 

1 2
( , )τ τ  grid points in (6) for 0,1,2, ,l = … 0,1,2,k = …  

 

Fig. 1. The v-stability region for fractional delay sys-

tems. 
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corresponding to the kernel are called the “offspring 

curves” or “offspring” in short. They are represented by 

1 2
( , )

lk
τ τ℘  where l and k identify the lth and kth gener-

ation offspring of the kernel τ10 and τ20, respectively, 

according to (6). Let's denote the complete set of kernel 

and offspring by 

( ) ( ) ( )1 2 0 1 2 1 2

0 0

0

, , ,

n n

lk

l k

l k

τ τ τ τ τ τ

= =

+ >

℘ =℘ ∪ ℘∑∑ . (7) 

The kernel and the offspring constitute the complete 

(and exhaustive) distribution of 
1 2

( , )τ τ  points for 

which the characteristic equation 
1 2

( , , )CE s τ τ  has root 

sets with at least one imaginary pair. Outside the set of 

curves 
1 2

( , )τ τ℘  there cannot be a point, which results 

in an imaginary characteristic root of (1). Thus in 

mathematical formalism, the complete imaginary root set 

of (1)  

2 0

1 2 1 2

0

1 2 1 2 1 2

[ | ( , , ) 0, ( , ) ]

[ | ( , , ) 0, ( , ) ( , )]

s C s C

s C s C

τ τ τ τ

τ τ τ τ τ τ

+
Ω = ∈ ∩

≡ Ω = ∈℘ ∩

�
 (8) 

is generated only by a small number of contours in 
2

1 2
( , ) .τ τ ∈�  These are the only locations in the 

1 2
( , )τ τ  space where the system (1) could transit from 

stable to unstable posture (or vice versa). These contours 

1 2
( , )τ τ℘  must be determined exhaustively. Since 

1 2
( , )τ τ℘  is completely generated from the kernel via 

(6), it is sufficient to determine the kernel itself 

exhaustively. The determination of the complete set of 

kernel and offspring is, mathematically speaking, a very 

challenging problem. In order to achieve this we deploy 

a transformation called the Rekasius substitution [11]. 

1
, 1,2

1
is i

i

i

T s
e T i

T s

τ−
−

= ∈ =

+

� . (9) 

It is important to note that, this substitution is an exact 

expression of is
e

τ−

 for purely imaginary roots .s jω= ±  

Moreover, transformation (9) is different from the first-

order Pade’ approximation of (1 0.5 ) /(1is

i
e s

τ

τ
−

≈ − +  

0.5 ).
i
sτ  Transformation (9) can also be written as: 

1
, 1,2

1

iv i

i

i

T v
e T i

T v

α
α

τ

α

−

−

= ∈ =

+

� . (10) 

By examining the amplitude and phase of (9), the 

relationship between T and τ can be obtained as follows: 

( )12
tan 0,1,

i c i

c

T r rτ ω π

ω

−⎡ ⎤= + =⎣ ⎦ … . (11) 

This equation describes an asymmetric mapping in which 

one Ti is mapped into countably infinite τi which are 

distributed with a periodicity of 2 / .
c

π ω  

Since (10) is exact when 2
,

j
v e

π αα

ω=  it is 

convenient to use it for solving s = vα roots of (2). By 

inserting (10) into (2), we have: 

1 2

1 2

0 11 2

( , , )

1 1
( ) ( ) .

1 1

i
n m

i

i

CE v

T v T v
p v q v

T v T v

α α

α α

τ τ

= =

⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
∑ ∑

�

�

�

 (12) 

By multiplying equation (12) by 
1 1

(1 ) (1 )n m

T v T v
α α

+ +  

the polynomial form of the characteristic equation is 

reached: 

1 2 1 2 1 2

1 1 2

0

2 1 2

1

( , , ) (1 ) (1 ) ( , , )

( ) (1 ) (1 ) (1 )

( )(1 ) (1 ) (1 ) .

n m

n

n m

m

i n m i

i

i

h v T T T v T v CE v

p v T v T v T v

q v T v T v T v

α α

α α α

α α α

τ τ

−

=

−

=

= + +

= − + +

+ − + +

∑

∑

� �

�

�

 (13) 

This expression is a polynomial in v of which the 

coefficients are parametric functions of T1 and T2. As is 

observed, characteristic equation (2), which had 

transcendental terms, has been converted into algebraic 

equation (13). To find the crossing frequencies set in 

equation (1), / 2j
v e

π αα

ω=  should be inserted into 

relation (13) and then the real and imaginary parts of the 

resulting equation should be separated as follows: 

21 2 1 2 1 2
( , , ) ( , , ) ( , , )j

v e

h v T T h T T jh T Tπ αα
ω

ω ω
ℜ ℑ=

= + . 

 (14) 

In the above relations, ( ),h h
ℜ
= ℜ ( ).h h

ℑ
= ℑ  For ω 

to be a zero of (14), h
ℜ

 and h
ℑ

 should be concurrently 

zero for some 
1 2

( , ).T T  Let us investigate those 
1 2

( , )T T  

solutions from 

1 2

0

( , ) 0
m

i

i

i

h a T Tω
ℜ

=

= =∑  (15) 

and 

1 2

0

( , ) 0
m

i

i

i

h b T Tω
ℑ

=

= =∑ . (16) 

Not that all ai and bi are real polynomials in T1. hℜ  

and ,h
ℑ

 which have positive degrees in terms of T2, are 

assumed to have no common factors. Such common 

factors, if they exist, can be separately studied. 

Definition 3: The resultant 
2T

R  with respect to ω 

and T1 is the resultant of h
ℜ

 and h
ℑ

 by eliminating T2 

[12]. The resultant of 
2T

R  and 
2 1
/

T
R T∂ ∂  with respect 

to ω is called the discriminant of 
2T

R  by eliminating T1 

[13,14]. 

Theorem 1: Minimum and maximum positive real 

roots of the discriminant of resultant of h
ℜ

 and h
ℑ

 

with respect to ω, that correspond to 2

1 2
( , )T T ∈�  

solutions in (14) yield the exact lower and upper bounds 

of the crossing frequency set. 

Proof: For the delay-dependent case, finite lower 

bound ω  and upper bound ω  of Ω are known to exist 

[1]. To find the global maximum ω  and the global 
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minimum ,ω  we start studying the extrema of ω via 

1
/ 0,ω τ∂ ∂ =  which is identical to studying 

1 1 1

0
T

T

ω ω

τ τ

∂ ∂ ∂
= =

∂ ∂ ∂
, (17) 

where 2 2

1 1 1
/ 0.5(1 ) 0T Tτ ω∂ ∂ = + ≠  as per (11). Since 

1 1
/ 0,T τ∂ ∂ ≠  we can study 

1
/ 0ω τ∂ ∂ =  alternatively 

on 
1

/ 0.Tω∂ ∂ =  At this point, the differentiability of ω 

with respect to T1 is essential as established above, and 

holds for the regular points of 
2
( , ).

T
R h h

ℜ ℑ
 Under this 

condition, we can write 

( ) ( )
2 2

1 1

, ,
0

T T
R h h R h h

T T

ω

ω

ℜ ℑ ℜ ℑ
∂ ∂∂

+ =
∂ ∂ ∂

, (18) 

which leads to 
2 1
( , ) / 0,

T
R h h T

ℜ ℑ
∂ ∂ =  assuming that 

2
( , ) / 0,

T
R h h ω

ℜ ℑ
∂ ∂ =  Thus, one has two equations, 

2T
R  and 

2 1
/ ,

T
R T∂ ∂  and they should be simultaneously 

zero. This requires to study the zeros of the resultant of 

these two equations, particularly by eliminating T1. The 

resultant of 
2T

R  and 
2 1
/

T
R T∂ ∂  becomes only a func-

tion of ω. 

( )
1 2 2 1

( ) ,
T T T

Z R R R Tω = ∂ ∂ , (19) 

which is the discriminant by Definition 3. The minimum 

and maximum positive real zeros of Z(ω) that correspond 

to 2

1 2
( , )T T ∈�  solutions in (14) are the exact lower 

and upper bounds of the crossing frequency set, 

respectively.  � 

In the sequel, The methodology ACFS is presented 

step by step. Notice that ACFS methodology only 

requires frequency sweeping from the precise lower 

bound ω  to the precise upper bound ω  that ACFS 

identifies via Theorem 1. For each [ , ]ω ω ω∈  with an 

appropriately chosen step size, perform the following 

steps: 

1) Solve the polynomial equation 
2
( , )

T
R h h

ℜ ℑ
 for 

1
T ∈�  values. 

2) For each 
1
T ∈�  found from above, if 

2
T ∈�  

values exist satisfying 0h
ℜ
=  and 0h

ℑ
=  then 

proceed to the next step, otherwise increase ω by 

an amount of the step size, and restart from the 

step above. 

3) Via (6) and (11), calculate the delay values 

1 2
( , )τ τ  corresponding to 2

1 2
( , )T T ∈�  pairs, and 

restart from step 1 increasing ω by an amount of 

the step size. 

 

3.2. Direction of crossing 

The root sensitivities associated with each purely 

imaginary characteristic root crossing jω with respect to 

one of the time delay, τi, is defined as 

/

/i
c

cc

s i

s j
i s js j

Cds
S

d C s
τ

ω

ωω

τ

τ=
==

∂ ∂
= = −

∂ ∂
. (20) 

And the corresponding root tendency with respect to 

one of the delays is given as: 

2

tan .
2

i

ic c

c

j

c

c

i

s

s j s j

s j

v v e

v v

Root Tendency RT sgn S

ds dv
sgn

dv d

dv dv
sgn

d d

π

α α

τ

τω
ω

ω

ω

τ τ

τ

π

α τ τ

±

=

=

=

= =

=

=

⎛ ⎞⎛ ⎞= = ℜ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= ℜ ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ℜ −ℑ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (21) 

In case the result is 0, a higher order analysis is needed, 

since this might be the case where the root just touches 

the imaginary axis and returns to its original half-plane. 

Theorem 2: Take an imaginary root, s jω=  (or v =  
2 )j

e
π α

α
ω  caused by any one of the infinitely many 

grid points in 
1 2

( , )τ τ  defined by 
10

( 2 / ,
c

lτ π ω+  

2 / ),ckπ ω+ 1,2, ,l = … 1,2,k = … . The root tendency 
1

c
s j

RT
τ

ω=

 (or 2 )
c

s j

RT
τ

ω=

 remains invariant so long as the 

grid points on different offspring. are selected keeping τ2k 

(or τ1l) fixed. 

Proof: Characteristic equation (1) can be written in 

terms of the auxiliary parameter v as (2), the simple roots 

of (2) are continuously differentiable with respect to 
2{ }τ +

∈�  [15]. Then one can find dv/dτ for simple roots 

of (2) as follows: 

c

c

i

i s j
s j

C
dv

Cd
vω

ω

τ

τ
=

=

∂
∂

= −
∂

∂

. (22) 

Since τ1 and τ2 are interchangeable we prove the theorem 

for τ1 and claim that it holds for τ2 also. First, we keep τ2 

fixed and look at the root tendency given by (21) with 

respect to τ1 at grid points corresponding to ωc, i.e., 

10
( 2 / ),

c
lτ π ω+ 0,1,2,l = … . It is given as 

1

1

1

tan
2c

c

s j

v v

dv
RT sgn j

d

τ

ω

τ τ

π

α τ
=

=

=

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞
= ℜ +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠

 

1

1
tan

2

v

v

C v
sgn

j C
π

τ

α

−⎛ ⎞∂ ∂⎛ ⎞
⎜ ⎟= ℜ −⎜ ⎟

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟+ ∂ ∂⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

( )

( )
( )

( )

1

2

1

0

1

2

0

0

tan
2

n

v

n

i i v

i

n

v

p v
e

dv

q v
i v q v e

dv
sgn

j p v v e

α

α

α

τ

τα

τα

τ

π

α

−

=

−−

=

−

=

⎛ ⎛
⎜ ⎜
⎜ ⎜
⎜ ⎜ ⎛ ⎞⎜ ⎜ + −⎜ ⎟⎜ ⎜ ⎝ ⎠= ℜ⎜ ⎜

⎛ ⎞⎛ ⎞⎜ ⎜ +⎜ ⎟⎜ ⎟⎜⎜⎜ ⎝ ⎠⎝ ⎠⎝⎝

∑

∑

∑

� �

�

�

�

�

�

�

 

1

1

tan
2

j v

ατ

π

α

−

⎞
− ⎟⎛ ⎞⎛ ⎞ ⎟+⎜ ⎟⎜ ⎟ ⎟⎝ ⎠⎝ ⎠ ⎠
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( )

( )

1

1

0

0

tan
2

n

v

n

v

p v
e

dv
sgn

j p v v e

α

α

τ

ταπ

α

−

=

−

=

⎛ ⎛
⎜ ⎜
⎜ ⎜= ℜ
⎜ ⎜ ⎛ ⎞⎛ ⎞
⎜ +⎜ ⎜ ⎟⎜ ⎟⎜⎜ ⎝ ⎠⎝ ⎠⎝⎝

∑

∑

� �

�

�

�

�

�

 

( )
( )

( )

2

1

1

1

2

1

0

tan
2

c

m

i i v

i

i

n

v

v v

q v
i v q v e

dv

j p v v e

α

α

τα

τα

τ τ

τ

π

α

−−

=

−

=
=

=

⎞⎛ ⎞
− ⎟⎜ ⎟

⎟⎝ ⎠+ ⎟⎛ ⎞⎛ ⎞ ⎟+⎜ ⎟⎜ ⎟ ⎟⎝ ⎠⎝ ⎠ ⎠

∑

∑
�

�

�

�

 (23) 

Since 1v
e

α
τ−�

,

c
v v=

1 10
2 ,

c
lτ τ π ω= + 1,2,l = …  expres-

sions remain the same for all the l values, we can state 

that 1v
e

α
τ−�

c
v v=

is dependent only on τ10 and independent 

of l, or the actual value τ1 itself. Therefore, the root 

tendency is invariant for all τl1, l = 1,2,…. In other words, 

the imaginary root always crosses either to C
+ (for 

RT = +1) or to C– (for RT = –1), when one of the delays 

is kept fixed, independent of the actual values of the 

second delay.  � 

This theorem helps identifying certain sections of 
0

℘  

and the ‘offspring curves’ to be marked as stabilizing 

transitions along the τ1 (or τ2) axis or vice versa.  

Once we detect completely 
0 1 2
( , ),τ τ℘

1 2
( , )

lk
τ τ℘  

‘offspring curves’ and the invariant root sensitivities, we 

can determine all possible stability regions in the 

parametric space of time delays {τ} using the well-

known D-Subdivision methodology [16]. This implies 

the exhaustiveness of our methodology because it covers 

the complete set of stability regions in the entire semi-

infinite time delay space entirely. 

 

4. ILLUSTRATIVE EXAMPLES 

 

We present an example case, which display all the 

features discussed in the text. 
 

Example: Consider the following combined integrat-

ing system [17] 

( )1 2( ) 1
s s

K
G s e e

s

τ τ− −

= − . (24) 

This is a combined integrating process companying 

with time delays, the whole character of which is stable 

instead of being unstable or integrating. Such kind of 

process exists extensively in steel, petrochemical, grain 

processing, tobacco, and mineral mining industry but few 

people pay much attention to it. Now most of combined 

integrating systems are taken as first order plus time 

delay process and controlled by routine control strategy 

such as PI controller. Assume that a fractional order PI 

controller (FOPI) is used and the controller transfer 

function C(s) is 

( ) (0 2)i
p

k
C s k

s
µ

µ= + < < . (25) 

� G(s)� � ��

�

r(t)

+

e(t)

−

u(t) y(t)
(s)C

Controller Plant
 

Fig. 2. A unity feedback control system. 

 

The control structure of the system is shown in Fig. 2. 

It is easy to verify that the transfer function of the closed-

loop system (for 1,K = 0.1,
p

k = 0.2,
i
k = 0.9)µ =  

can be defined as follows: 

1 2

1 2

0.9

1.9 0.9

(0.1 0.2)(1 )
( )

(0.1 0.2)(1 )

s s

s s

s e e
H s

s s e e

τ τ

τ τ

− −

− −

+ −
=

+ + −

. (26) 

The characteristic equation of the closed loop transfer 

function is 

1 21.9 0.9

1 2
( , , ) (0.1 0.2)(1 )

s s

CE s s s e e
τ τ

τ τ
− −

= + + − . (27) 

The shaded zone represents the stable region. 

Our objective in this example is to find all the stability 

map for 
1 2

( , , )CE s τ τ  based on the method described in 

this article. Using auxiliary variable 1 10
v s=  into (27) 

the characteristic equation is obtained as: 

10 10
1 219 9

1 2
( , , ) (0.1 0.2)(1 )

v v

CE v v v e e
τ τ

τ τ
− −

= + + − . (28) 

By applying the criterion expressed in the previous 

section, we can eliminate exponential term from (28) as 

follows: 

19 10 10

1 2 1 2

10 9 10

1 2

( , , ) (1 )(1 )

2 (0.1 0.2)(1 ).

h v T T v T v T v

T v v T v

= + +

+ + −

 (29) 

By inserting expression 2010 10 (cos(j
v e

π

ω ω π= =  

/ 20) sin( / 20))j π+  in the above equation and equating 

the real and imaginary parts of the obtained relation to 

zero, we get: 

3.9 2.9 2

1
cos 0.2sin 0.4

20 20

h T
π π

ω ω ω
ℜ

⎡⎛ ⎞⎛ ⎞ ⎛ ⎞
= + +⎢⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎣
 

2.9 2.9

2 1
sin sin

20 20
T T

π π

ω ω

⎤⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎥

⎝ ⎠ ⎝ ⎠⎦
 (30) 

1.9 1.9

1
0.2cos cos 0

20 20
T

π π

ω ω
⎛ ⎞ ⎛ ⎞

− − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and 

3.9 2.9

1
sin 0.2cos

20 20

h T
π π

ω ω
ℜ

⎡⎛ ⎞⎛ ⎞ ⎛ ⎞
= − +⎢⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎣
 

2.9 2.9

2
cos cos

20 20
T

π π

ω ω

⎤ ⎛⎛ ⎞ ⎛ ⎞
− + −⎜⎜ ⎟ ⎜ ⎟⎥

⎝ ⎠ ⎝ ⎠⎦ ⎝
 (31) 

1.9 1.9

1
0.2sin 0.4 sin 0

20 20
T

π π

ω ω ω

⎞⎛ ⎞ ⎛ ⎞
+ + + =⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎠
. 

Using homomorphism resultant algorithm [12] eliminate 

2
T  from h

ℜ
 and ,h

ℑ
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( )
2

3 3.8 1.8 0.9
, 0.04 0.16 in

20
T

R h h s
π

ω ω ω ω
ℜ ℑ

⎡ ⎛ ⎞
= − − ⎜ ⎟⎢

⎝ ⎠⎣
 

) 2 1.8

1
0.16 0.T ω ⎤− + =⎦  (32) 

Discriminant of the resultant of h
ℜ

 and h
ℑ

 in 

Theorem 1 is the resultant of 
2T

R  and 
2 1
/

T
R T∂ ∂  with 

eliminating T1, 

( ) 2

1 2

1

3.8 1.8 0.9

,

0.04 0.16 in 0.16
20

0.

T

T T

R
Z R R

T

s

ω

π

ω ω ω ω

∂⎛ ⎞
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

⎛ ⎞⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

=

 (33) 

The real solutions of (33) for ω is 

0ω =  and 0.6507872ω = . (34) 

The minimum and maximum positive real roots of 

1 2 2 1
( ) ( , / )

T T T
Z R R R Tω = ∂ ∂  are computed as 0 and 

0.6507872. From Theorem 1, it is concluded that [ , ]ω ω  

is [0, 0.6507872]. One can now use this ω range and the 

ACFS method in previous section, in order to extract the 

stability maps on 
1 2

;τ τ−  domain by sweeping the 

frequency from; 0; to 0.6507872. The potential stability 

switching curves of the system is extracted in Fig. 3, 

where the kernel curve is shown in red 
0

( ),℘  and the 

offspring curves are given in blue ( )
lk

℘  when viewed 

in color. The shaded zone in Fig. 3 show the complete 

map of stability for the given system. The number of 

unstable roots in each region, NU, is also shown 

sparingly. Obviously, in the stable regions, NU = 0. 

To get a better understanding of the properties of this 

system, step responses of H(s) for A, B, C and D points 

in Fig. 3 are also made in MATLAB to validate the 

stable and unstable regions. For this simulation, indicated 

time delay values on Fig. 3 are used and the result is 

depicted in Fig. 4. It is clear that the stable and unstable 

regions are in agreement with Fig. 4. 
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Fig. 4. Step responses of H(s) for A, B, C and D points. 

 

5. CONCLUSION 

 

In this paper, a novel methodology, based on 

Advanced Clustering with Frequency Sweeping (ACFS), 

is proposed for studying the asymptotic stability of 

multiple time-delay fractional order systems in the 

parameter space of delays. It is evident from the 

literature that the stability assessment of this class of 

dynamics remains unsolved. The method commenced by 

deploying the auxiliary variable v s
α

=  and Rekasius 

substitution for the transcendental terms in the character-

istic equation, reducing it into a finite dimensional 

algebraic equation. Moreover, a single-variable function 

is derived to precisely calculate the lower and upper 

bounds of the crossing frequency set. These bounds are 

critical to the ACFS implementation. By means of ACFS, 

potential stability switching curves (PSSC) on any 2D 

delay domain are extracted exhaustively. The proposed 

methodology detects all the stability regions precisely, in 

the space of the time delays. This map, in fact, is the 

exact display of robustness against delay uncertainties. 

an example presented to highlight the proposed approach. 
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