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Two-DOF Lifted LMI Conditions for Robust D -Stability of 

Polynomial Matrix Polytopes 
 

Yong Wang and Shu Liang* 

 

Abstract: This technical note investigates the problem of checking robust D -stability of polytopes of 

polynomial matrices. Lifted linear matrix inequality (LMI) conditions with two-DOF (two degree of 

freedom) positive integers ( , )τ κ  are derived to possess more flexible tradeoff between the conservat-

ism and computational complexity. In the process of formulating the LMIs, the relevant region D  is 

represented by a quadratic constraint in the complex plane. The matrix, composing the quadratic form 

with the vector of a variable, is called the region matrix. Then a variable substitution approach is put 

forward for the lifted LMI version by extending the dimensions of the region matrix and the Lyapunov 

matrix. The effectiveness and advantages of the proposed method have been illustrated by numerical 

examples. 
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1. INTRODUCTION 

 

Polynomial matrices play a key role in modern system 

and control theory, since they are capable of representing 

more naturally the system dynamics in many cases [1,2]. 

Unfortunately, checking stability of uncertain polyno-

mial matrices are mostly NP-hard [3]. Tractable LMI 

methods for these problems are often based on the 

concept of quadratic stability, for example [4-8]. As 

quadratic stability results have remarkable conservatism, 

it has become an active topic to improve the various 

methods and reduce the conservatism. The parameter-

dependent LMI methods have been explored in recent 

years [9-11], which are less conservative for robust 

stability analysis. Moreover, [10] provides convergent 

LMIs based on homogeneous polynomially method 

utilizing the generalized Pólya’s theorem. These conver-

gent LMIs can asymptotically eliminate the conservatism. 

Other methods guaranteeing the convergence discussed 

in [7] such as the sum of squares (SOS) based LMIs can 

also make the conservatism vanished. It seems that the 

major problem about the conservatism has been 

thoroughly solved, however, practically, it is not true due 

to the huge computation burden. The number of the LMI 

conditions grows exponentially for the homogeneous 

polynomially method [10]. And for the SOS technic, the 

dimension of the LMIs also suffers from the exponential 

expansion [7]. Therefore, for solving the practical 

problem, it is significant to give a suitable compromise 

between the conservatism and computation burden. It is 

interesting to consider the so-called lifted LMI 

conditions investigated in [11-13,15] which are obtained 

by employing appropriate higher degree multipliers. 

Recently, via combining the “lifted LMI” method with 

Finsler’s projection framework, [14] derives a series of 

sufficient LMI conditions for the robust D -stability 

analysis of polynomial matrices polytopes. The condi-

tions are tied to one-DOF positive integer variable κ . 

Increasing the κ  will simultaneously lead to the reduc-

tion of conservatism and the rise of computational 

complexity. 

Despite the plentiful improvements, there is room for 

further investigation. First, although some results in [14] 

cover wide varieties of LMI conditions, those can be 

further extended. And as κ  rises, the number of 

decision variables increases fast and aggravates the 

computation burden rapidly. Thus it is necessary to find 

LMI conditions that gradually enlarge the amount of 

decision variables. Second, though complicated, the LMI 

conditions in [14] have strong similarities in form with 

the original ones ( κ =1 case). However, complicated 

theoretic deductions and vast calculations are required to 

tackle the lifted LMI versions, which bring difficulty for 

further improvement. Hence it is an open problem to 

explore more essential relationships and look for a 

simple approach to reach qualified LMI conditions. 

Motivated by the discussions above, this note derives 

new LMI conditions for the robust D -stability of 

polynomial matrices polytopes. The main contributions 

of this work are as follows. Firstly, our LMI conditions 

are more general, which can cover those in [14]. 

Moreover, two-DOF positive integer variables ( , )τ κ  

are contained in the LMI conditions, which have more 
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flexible tradeoff between the conservatism and computa-

tional complexity. Secondly, an ingenious variable sub-

stitution approach is put forward to expand equivalently 

the dimensions of region matrix and Lyapunov matrix at 

the same time. Then novel lifted LMI conditions are 

obtained in a comprehensible and intuitively pleasing 

way. 

The rest of the note is organized as follows. Section 2 

presents preliminaries, including fundamental knowledge 

of polynomial matrix polytope, description of special 

matrices, definition and explanation of high order LMI 

region in complex plane and four useful lemmas. Section 

3 gives the main results. Section 4 provides examples 

and simulation results. Finally, Section 5 concludes the 

technical note. 

Notation: AT: transpose of A; A*: transpose conjugate 

of A; A–*: shorthand notion for 1 *( )A
− ; 0( 0)A A> < : 

positive definite (negative definite) matrix A ; A B⊗ : 

Kronecker’s product of matrices A and B ; e{ }AH : a 

shorthand notion for *

A A+ ; u{ , }P AQ : a shorthand 

notion for quadric form *

A PA ; A
⊥
: any matrices whose 

columns form bases of the right null-space of matrix A ; 

,0 ,0
n n n m
I

×
: n n×  identity matrix, n n×  zero matrix, 

and n m×  zero matrix, respectively. 

 

2. PRELIMINARIES 

 

2.1. Some fundamental knowledge of polynomial matrix 

polytope 

Let polynomial matrix A (s,α) belong to the polytope 

set 
1 1

( ) | 1, 0, ,1,2,
N N

i i i i

i i

s i Nα α α

= =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

= ≥ =∑ ∑ �A  where 

0 1
( ) ,r
i r
s A A s A s= + + +�A 1,2 ,,i N= �  are N real 

square polynomial matrices of dimension n and degree 

1.r ≥  Without any ambiguity, the coefficient matrices 

Ak, k =1,2 r�  regarding to various polynomial matrices 

,( )
i
sA  are not differed in label throughout the paper for 

the sake of simplicity. We assume that every leading 

coefficient matrix Ar is nonsingular. Then ( , )s αA  

always remains admissible since it cannot feature infinite 

eigenvalue under this nonsingular condition [2]. 

For any ,( )sA  there always exists a pair of matrices 

( , )V J  where ,

rn rn

J
×

∈� .n rn

V
×

∈�  The pair contains 

all the information on the eigenvalues with associated 

multiplicities and eigenvectors from the respective 

Jordan chains. As the ( )sA  is real polynomial matrix, 

its eigenvalues occur in conjugate pairs. Then there 

exists matrix JR which is the real Jordan canonical form 

having the same eigenvalues with matrix J. Correspond-

ingly, there exists real pair matrices ( , )
R R

V J  where 

,

rn rn

R
J

×

∈� .

n rn

R
V

×

∈�  They satisfy 

0 1
0 ,

r

R R R r R R n rn
A V AV J A V J

×
+ + + =�  (1) 

0
,rank( ) rn=

R
J  (2) 

where ( )r k n rn

k

+ ×
∈

R
J �  and 

1( ) ( ) .
T

T T r k T

k R R R R R
V V J V J

+ −⎡ ⎤= ⎣ ⎦R
J �  (3) 

For more details on the matrix polynomials, readers can 

refer to [16]. 

 

2.2. Description of some matrices for this note 

Let x, y, z, k be positive integer numbers. Define 

1 1

1 1( , , )

1 1

( 1)

0 0

0 0

0 0

,

x y y y z

x y y y zx y z

k

x y y y z

xyzk xz k y

I I I

I I I

I I I

× ×

× ×

× ×

× + −

⎡ ⎤⎡ ⎤⊗ ⊗⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⊗ ⊗⎣ ⎦⎢ ⎥Π
⎢ ⎥
⎢ ⎥

⎡ ⎤⊗ ⊗⎢ ⎥⎣ ⎦⎣ ⎦

∈�

�

�
�

�

�

 (4) 

0 1

0 1( , )

0 1

( )

( , )
0

0 0

0

0

0 0

,  fo

0

r 1

 for,  0.

r n n

n rr n

k

n

n n r

kn k r

r

n

n

r

n

A A A

A A A
C

A A A

k

C k

× +

⎡ ⎤⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∈

=
⎪
⎪⎩

≥

� �

� � �
�

� � � � � �

�

�

� �
 (5) 

For scalar number s, define 

( ) 1( ) ,
T

x k

x x xk
s I sI s Iπ

−⎡ ⎤
⎣ ⎦� �  ( )

1 ( )
x

x
s Iπ �  (6) 

and for matrix A, 

( ) 1( ) ( )
T

x T k T

x n x xk
A I I I A I Aπ

−⎡ ⎤⊗ ⊗ ⊗⎣ ⎦� � . (7) 

We exploit the following three relations 

( )(1) (1, 1, ) ( )
1( ) ( ) ( ),

d y d d
x x x yys s sπ π π

+

++
⊗ = Π  (8) 

( ) ( , 1, )
1 2( ) ( ) ( )d d r k n

xd k x R x d x k
I J Iπ

+ −

− + −
⊗ = Π ⊗

R R
J J , (9) 

( , , ) (1, 1, ) (1, , ) ( , , )
2 2 2 1 ,( )

x y z k y xz k xyz x y z

k k
I

+ −

+
⊗Π Π = Π Π  (10) 

which are useful to obtain our results and can be proved 

after long but elementary algebraic calculations. 

 

2.3. High order LMI region in complex plane 

Definition 1 (q-order LMI region): For integers 1,q ≥  

1d ≥  and ( 1)q d+  dimensional Hermit matrix H(q), 

define q-order LMI region D  by 

( ) { }( )  | ( ) 0q
DD H s f s∈ <� � , (11) 

where ( )( )
1u{ , ( ) .}

dq
D qf H sπ

+
Q�  H(q) is called region 

matrix. When q =1, the region becomes the well-known 

LMI region [5]. When d =1, the region becomes 

polynomial region discussed in [17]. 

In order to deal with the lifted LMIs by variable sub-

stitution, one important step in this note is equivalently 

lifting the problems into higher order LMI regions. 

 

2.4. Some lemmas for this note 

Lemma 1 [18]: For a vector n

x∈�  and two matrices 
* n n

Q Q
×

= ∈�  and m n

R
×

∈�  such that ,rank( )R n<  

following statements are equivalent: 
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1)  *

1
0, { | 0, 0 }

n

m
x Qx x x x Rx

×
< ∀ ∈ ∈ ≠ =� ; 

2)  u{ , } 0Q R
⊥

<Q ; 

3)  ,

n m

M
×

∃ ∈�  such that } .e{ 0Q MR+ <H  

 

Lemma 2: Let 1τ ≥  and choose an arbitrary τ τ×  

matrix .0Q
τ
>  For 1m ≥  and ( 1)m d+  dimensional 

Hermit matrix H(m), let ( )m dτ +  dimensional Hermit 

matrix be 

{ }( ) ( ) (1, 1, )u ,m m m dH Q H
τ τ τ

+
⊗ ΠQ� � . (12) 

Then ( ) ( )( ) ( ),m m

D H D H
τ

=
�  i.e., the original m-order 

region ( )( )m

D H is equal to new (m + τ –1)-order region 
( )( .)m

D H
τ

�  

Proof: Using the properties ( )( ) ( )A B C D AC⊗ ⊗ =  

( )BD⊗  and identity (8), it can be verified that 

( )

( )

( ) ( )

( )

( ) (1, 1, ) ( )

( )( ) (1)
1

(1)

( )

( ) u{ , ( )}

u{ , ( )}

u{ , ( ) ( )}

u{ , ( )} ( ).

m

m

m d

m
D H

m m d d

m

dm

m

D H

f s H s

Q H s

Q H s s

Q s f s

τ

τ τ

τ τ τ

τ τ

τ τ

π

π

π π

π

+

+

+

+

=

= ⊗ Π

= ⊗ ⊗

= ⊗

Q

Q

Q

Q

�

�

 

Moreover, Qτ > 0 implies (1)u{ , ( ) .} 0Q s
τ τ
π >Q  Notice 

that for square matrix A and B, the eigenvalues of A⊗B 

are λAiλBj, where λAi and λBj are eigenvalues of A and B 

respectively. Therefore, ( )( )
( ) 0

m
D H
f s

τ

<
�

( )( )
( )

m
D H
f s⇔  

< 0, which implies ( ) ( )( ) ( ).m m

D H D H
τ

=
�  

 

Lemma 3: Let 

1 { | , 0},rn rn

B X X X
×

= ∈ >�  

{ }( 1) ( 1)
2 1 1  u{ , } | .r k n r k n

k
B B Y Y

+ − × + −

−
= ∈

R
Q J∩ �  

Then 
1 2
B B= . 

Proof: On one hand, it is obvious that 
1 2

.B B⊇  On 

the other hand, 
1
,X B∀ ∈  let 

1
0 ( 1)

( 1) ( 1) ( 1)

u{ , } 0

.

0 0

rn k n

k n rn k n k n

X
Y

−

× −

− × − × −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

R
Q J

 

Then 
1

u{ , ,}
k

X Y
−

=
R

Q J i.e.,
2
.X B∈  Therefore 

1
B ⊆  

2
.B  Finally, we get 

1 2
.B B=          � 

 

Remark 1: 1) Lemma 1 enables LMI with matrix R
⊥
 

to be equivalently reformulated as an projection form 

with matrix R. Lemma 4 implies 
( , )

.( )
r n

k k
C

⊥
=

R
J  It is 

an important step to combine with this two lemmas in the 

formulation of LMIs, which is also used in [14]. 

2) Lemma 2 provides a method to extend equivalently 

the region matrix to higher dimensional matrix. Lemma 3 

implies that “
1

P B∃ ∈  such that� ” is equivalent to 

“ ( 1) ( 1)
,

r k n r k n

P
+ − × + −

∃ ∈�
1 1

0
k k

P
− −

>
R R

J J  such that�”. 

These two lemmas enable us to lift the LMIs by variable 

substitution, which is a key step to obtain the main results. 

3. MAIN RESULTS 

 

We begin with the LMI conditions for D -stability of 

deterministic scalar matrix A. The result and the proof 

are similar with those in [5]. The only difference here is 

rest with the more general q-order LMI region. 

Theorem 1: Given 1q ≥  with q-order region D  

described in (11), the n n×  real matrix A is D -stable 

if and only if n n

P
×

∃ ∈�  such that 

0,P >  (13) 
( )( )

1( , ) u{ , 0,( )}
dq

D qM A P H P Aπ
+

⊗ <Q�  (14) 

where H(q) is the matrix of q-order region D  and 
( )
1( )

d
q Aπ
+

 is defined in (7). 

Proof: (Sufficiency): Suppose n n

P
×

∃ ∈�  such that 

(13) and (14) hold. Let λ be any eigenvalue of A and 

0v ≠  be the corresponding eigenvector. By calculation, 

we have 

( )( )
1

( )( ) *
1

*

u{ ( , ), } u{ , ( ) }

u{ , ( )} ( )

( ) ( ).

dq
D d q

dq
q

D

M A P I v H P v

H v Pv

f v Pv

π λ

π λ

λ

+

+

⊗ = ⊗ ⊗

= ⊗

= ⊗

Q Q

Q  

Since ( , ) 0
D

M A P <  and 0,P >  we have .( ) 0
D
f λ <  

That implies A is D -stable. 

Necessity: Suppose A is D -stable. We notice the 

following three facts: 1) For any n×n nonsingular matrix 

T, there holds the identity 

1

( )( ) 1
1

( )( ) * 1
( 1)1

* 1
( 1)

( , )

u{ , ( )}

u{ ( ), ( )( )}

u{ ( , ), }.

D

dq
q

dq
q dq

D q d

M T AT P

H P T AT

H T PT A I T

M A T PT I T

π

π

−

−

+

− −

++

− −

+

= ⊗

= ⊗ ⊗

= ⊗

Q

Q

Q

 (15) 

2) There always exist nonsingular matrices {Tk}k =1,2,…  

such that 1
lim ,

k k
k

T AT
−

→+∞

= Λ  where 
1 2

{ ,diag λ λΛ = …, 

λn} which has the same eigenvalues with A.  

3) H(q) can be regarded as a block matrix H(q)= 

0 ,
{ ,}

ij i j q
H

≤ ≤
 where Hij are d × d subblocks. Then we 

have 

{ }

( )( )
1

*

0 ,

*

0 ,

( , ) u{ , ( )}

(( ) )

u (( ) ) ),

dq
D n n q

i j
ij

i j q

i j
ij

i j q

M I H I

H

H U

π
+

≤ ≤

≤ ≤

Λ = ⊗ Λ

= ⊗ Λ Λ

= Λ Λ ⊗

∑

∑

Q

Q

 (16) 

1 2
u{ { ( ), ( ), , ( )} ,, }

D D D n
diag f f f Uλ λ λ=Q �  

where U is some permutation matrix. For the D -stable 

matrix A, we have 
1 2

{ ( ), ( ), ( ) 0.}
D D D n

diag f f fλ λ λ <�  

Thus ( , ) 0
D n

M IΛ <  according to (16). Besides, the 

continuity of MD implies that 
1

lim ( , )
D k k n

k

M T AT I
−

→+∞

=  

( , ).
D n

M IΛ  Consequently, there exists a sufficiently 
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large number k�  such that MD

1( , )
nk k

T AT I
−

� �

< 0. Accord-

ing to identity (15), we have ( , ) 0
D

M A P <
�  where 

* 1.
k k

P T T
− −

=
� �

�  As the real part of a complex positive 

matrix is a real positive matrix, we can choose P the real 

part of .P�  Then n n

P
×

∈�  satisfies both the LMIs (13) 

and (14).   � 

We call the matrix P in Theorem 1 the Lyapunov 

matrix. Theorem 1 provides the LMI criterion for the 

-D stability of scalar matrix. Noticing that the polynomial 

matrix ( )sA  has the same eigenvalues with numerical 

matrix JR, the theorem can be utilized to check the 

-D stability of ( )sA  as well. For further exploration of 

the lifted LMIs, the following two extensions will be 

made at the same time. 

1) Choose 1τ ≥  with a τ τ×  positive matrix Qτ and 

extend the original region matrix H(m) to ( )m

H
τ

�  by (12). 

2) Choose 1κ ≥  and replace the Lyapunov matrix P 

in Theorem 1 by 
1

u{ , }.P
κ −R

Q J  
 

After the corresponding adjustment, we have the 

following theorem: 

Theorem 2: Let 1.m ≥  Given m-order region D  

with region matrix H(m), the following statements are 

equivalent: 

1) the polynomial matrix ( )sA  is D -stable. 

2) there exists ( 1) ( 1)r n r n

P
κ κ

κ

+ − × + −
∈�  such that 

1
,u{ , } 0P

κ κ −
>

R
Q J  (17) 

( ) ( , 1, )
2u{ , ( )} 0.

m d r n

m d m
H P I

κ

τ κ τ τ κ

+ −

+ + + −
⊗ Π ⊗ <

R
Q J�  (18) 

3) there exist ( 2) ( 2)
, ,

d m r n d m n
Z

τ κ τ κ

τ κ

+ + + − × + + −

∈� Y
κ
∈  

( 1) ( 1)
,

r n nκ κ+ − × −
�

( 1) ( 1)r n r n

P
κ κ

κ

+ − × + −
∈�  such that 

( , )
1, 1e{ } 0

r n

P Y C
κ κ κ κ −

Ω + >H� , (19) 

( ) ( , 1, )
2, ,

( , )
, 2

u{ ), )}

e 0,{ ( )}

m d r n

m

r n

d m

H P

Z I C

κ

τ κ τ κ τ

τ κ τ κ

+ −

+

+ + −

Ω ⊗ Π

+ ⊗ <

Q

H

��
 (20) 

where ,τ κ  and ( )m

H
τ

�  are the same with those above 

respectively. 

Proof: As checking the -D stability of ( )sA  and JR 

are equivalent, the criterion can be the existence of 

P
rn rn×

∈�  such that P > 0 and MD ( , )
R

J P < 0, accord-

ing to Theorem 1. Further, by Lemma 2 and Lemma 3, 
( ) ( )( ) ( )m m

D H D H
τ

=
�  and an alternative criterion is the 

existence of Pκ such that (17) and ( )
( )

( , u{ ,
m R

D H
M J P

τ

κ
Q

�

 

1
)}

κ −R
J < 0 hold. And the second LMI can be reformulat-

ed as (18) using the identity (9). For 2) and 3), the 

equivalence can be directly recognized according to 

Lemma 1 and Lemma 4. � 
 

Theorem 2 gives a lifted version for checking the -D  

stability of deterministic polynomial matrix. Despite 

being far more complicated than the equivalent original 

one, the lifted LMIs can less conservatively be utilized to 

check the robust -D stability of uncertain polynomial 

matrix ( , )s αA  by the following theorem. 

Theorem 3: Let 1,m ≥ 1κ ≥  and 1.τ ≥  D  is an 

m-order region the same with it in Theorem 2. Then 

( , )s αA  is robust -D stable if there exist 
,i

P
κ

∈  
( 1) ( 1)r n r nκ κ+ − × + −

�  and common ( 1) ( 1)
,

r n n

Y
κ κ

κ

+ − × −
∈�  

( 2) ( 2)
,

d m r n d m n
Z

τ κ τ κ

τ κ

+ + + − × + + −

∈�  such that (19) and 

(20) hold for all ,( )
i
sA 2 .1,i N= �  

Proof: For any admissible ( , )s αA  with 
1

( ,α α=  

2
, , ,)

N
α α�  there exist 

,

,Z
τ κ

Y
κ
 and ,

1

N

i i

i

P P
κ κ

α

=

=∑  

satisfying the LMI conditions (19) and (20) in Theorem 2. 

Therefore the uncertain ( , )s αA  is robust D -stable. � 

 

Remark 2: 1) When τ =1 and m =1 the Theorem 2 and 

3 reduce to Theorem 2 and 3 in [14] respectively. 

Consequently, our LMIs are more general. 

2) There are two-DOF of positive integers τ and κ in 

the LMI conditions. The total number of decision 

variables of LMIs in Theorem 3 are ( 1) / 2r Nκ+ − + 
2 2 2 2( 1) / 2 ( 2)(r n N d n m r mκ τ κ τ κ+ − + + + + − + + –2) 

2 ( 1)( 1 .)n r κ κ+ + − −  Increasing the integer τ will not 

make the number of decision variables increase too fast 

as it with κ, because the first, second and the last items in 

the expression above are unrelated to τ. This feature of τ 

enables us to make a relatively gentle increase in the 

number of decision variables when checking the robust 

-D stability. Thus there is the benefit to reduce 

computational complexity compared with the LMIs of 

only one-DOF positive integer κ. 

3) Q
τ
 in Theorem 2 and 3 is used to extend region 

matrix before formulating the LMIs. It is allowed to be 

any positive matrix, we can simply choose Q
τ
 = I

τ
. 

4) By our extension approach, the qualified LMI 

conditions for checking -D stability of polynomial 

matrix in Theorem 2 are easily obtained from the original 

LMIs in Theorem 1. 
 

The next theorem reveals that feasibility of the LMIs 

of Theorem 3 for some ˆˆ( , )τ κ  implies feasibility of the 

corresponding LMIs for any ˆˆ( , ) ( ),,τ κ τ κ≥  where ( , )τ κ  
ˆˆ( , )τ κ≥  means ˆ,τ τ≥ ˆ.κ κ≥  

Theorem 4: If the LMIs of Theorem 3 are fulfilled for 

a given ˆˆ( , ) ( ),,τ κ τ κ=  then the LMIs corresponding to 

any ˆˆ( , ) ( , )τ κ τ κ≥  are also satisfied. 

Proof: It suffices to check that ( , )τ κ  fulfills the 

conditions implies ( 1, )τ κ+  and ( , 1)τ κ +  also fulfill 

the conditions. Suppose for ( , ),τ κ
1,κ

Ω > 0 and 
2, ,τ κ

Ω  

< 0 are feasible. Let 

{ }(1, ,1)
1 2 2u , 0Q I Q

τ

τ τ+
= ⊗ Π >Q , 

{ }(1, 1, )
1 2 2u ,

r n

P I P
κ

κ κ

+ −

+
= ⊗ ΠQ , 

{ }(1, 2, )
1, , 1 2 , 2u ,

m r nd

Z Z I Z
τ κ

τ κ τ κ τ κ

+ + + −

+ +
= = ⊗ ΠQ , 

{ }(1, 1, )
1 2 2u ,

r n

Y I Y
κ

κ κ

+ −

+
= ⊗ ΠQ . 

By carefully calculation combining with identity (10), 

we can obtain that 
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{ }( ) (1, , )( )
21 2u ,

m m dm

H I H
τ

ττ

+

+
= ⊗ ΠQ� � , 

{ }(1, 1, )
1, 1 2 1, 2u , 0

r n

I
κ

κ κ

+ −

+
Ω = ⊗Ω Π >Q , 

{ }
2, 1, 2, , 1

(1, 2, )
2 2, , 2 .u , 0

m r nd

I

τ κ τ κ

τ κ

τ κ

+ +

+ + + −

Ω = Ω

= ⊗Ω Π <Q
 

 

Therefore the LMIs are feasible for both ( 1, )τ κ+  and 

( , 1).τ κ +   � 

In the end, we mention that particular LMI conditions 

for stability analysis may be extended into control 

designs of fractional order systems [8], fuzzy systems 

[13,19], uncertain systems [15,20] and synchronous 

machines [21]. Yet a general synthesis process based on 

the two-DOF method is rather complicated. Such task 

has not been further investigated and is beyond this paper. 

 

4. EXAMPLES 

 

Example 1: The objective of this example is to show 

the effect and benefit of increasing τ in the LMIs. Here 

we choose Q
τ
 = I

τ
 to form our LMI criterions. Meanwhile, 

when τ =1, according to the Remark 2, our LMIs reduce 

to the existing ones in [14]. Hence the example can also 

be regarded as a comparison between the two methods. 

This will hold for Example 2 as well. Consider the 

continuous-time polynomial matrix polytope of dimen-

sion n = 2 and degree r = 2 whose N = 3 vertices are 

given by 

 

2

1
2

1.9493 0.0551 0.0237
( )

0.5804 0.1381 0.0118

s s
A s

s s

⎡ + +
= ⎢

− +⎢⎣
 

 

2

2

0.9746 0.0276 0.0118

0.9746 0.0276 0.0118

s s

s s

⎤+ +
⎥

+ + ⎥⎦
, 

2

2
2

0.2417 0.0776 0.2353
( )

1.6103 0.5094 0.1176

s s
A s

s s

⎡ + +
= ⎢

− − −⎢⎣
 

 

2

2

0.1209 0.0388 0.1176

1.6103 0.5094 0.1176

s s

s s

⎤− − −
⎥

+ + ⎥⎦
, 

3 2

0
( )

1.4267 0.2986 0.069
A s

s s

⎡
= ⎢

− − −⎣
 

2

2

0.1626 0.1607 0.069

1.5893 0.4593 0.1379

s s

s s

⎤+ +
⎥

+ + ⎥⎦
. 

 

For this system, the LMI conditions of Theorem 3 for 

1,τ = 1κ =  were found infeasible, while it admitted a 

feasible solution for both 2,τ = 1κ =  and 1,τ = 2.κ =  

Hence either one can check the robust D -stability of the 

system. The number of decision variables in LMIs for 

2,τ = 1κ =  is 62 while for 1,τ = 2κ =  is 107. There-

fore, the former LMIs have more computational effi-

ciency. Next, we consider a discrete-time polynomial 

matrix polytope with 

2 2

1
2 2

0.3 0.2 0.5 1.2 0.1
( ) ,

0.3 1.6 1.5 0.9 1.34

s s s s
A s

s s s s

⎡ ⎤+ + − − −
= ⎢ ⎥

+ + − − +⎢ ⎥⎣ ⎦
 

2 2

2
2

2 2

3
2

0.5 1.5 2.8 1.8 0.2 0.5
( ) ,

1.4 0.3 0.9 0.6 1.5

1 0.6 1.2 0.3 0.5 0.6
( ) .

1 0.1 0.3 0.3 1.2

s s s s
A s

s s s

s s s s
A s

s s s

⎡ ⎤− + + − − +
= ⎢ ⎥

+ − +⎢ ⎥⎣ ⎦

⎡ ⎤− − + − −
= ⎢ ⎥

− − + +⎢ ⎥⎣ ⎦

 

 

The LMI conditions of Theorem 3 for 2,τ = 2κ =  

were not feasible, while for both 3,τ = 2κ =  and 

1,τ = 3κ =  it admitted a feasible solution. The former 

LMIs have 171 decision variables while the latter have 

200. The eigenvalues of these polytopes, obtained by a 

straightforward sweeping, are represented in Fig. 1 (a) and 

(b). The stability of the polytopes can be observed from 

Fig. 1 that the whole eigenvalues of them lie within the 

stability regions. Thus this example shows the validity 

and computational advantage of the proposed method. 

 

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
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−8

−6
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−2
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0
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0.4

0.6

0.8

1

Re(s)

Im
(s

)

 
(b) 

Fig. 1. Example 1. Eigenvalues of the polynomial matrix 

polytopes for the continuous-time case (a) and the 

discrete-time case (b). 
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Example 2: The objective of this example is to reveal 

the relationship between conservatism and number of 

decision variables, and to show the advantage of our 

LMI conditions as well. Here we choose Q
τ
 = I

τ
 to form 

our LMI criterions. With similar procedure adapted from 

[9] and [14], a thousand continuous-time polytopes of 

polynomial matrices and a thousand discrete-time ones 

for r = 2, n = 2, N = 3 are randomly generated as follows: 

1) The polytope vertices are generated by random 

polynomial matrices of dimension n = 2 and degree r = 2. 

2) The eigenvalues of each polytope ( , )s αA  are 

computed by an exhaustive griding procedure and the 

approximative maximum of the real part (continuous- 

time case) or the approximative maximum of absolute 

values (discrete-time case) is determined. 

3) With a proper value ε, ( , )s αA  is replaced by 

( , )s ε α+A  so that the approximative maximal real part 

of eigenvalues in the interval [–0.02, –0.01] exists 

(continuous time case) or replaced by ( , )sε αA  so that 

the approximative maximal absolute value of eigenval-

ues in the interval [0.98, 0.99] exists (discrete time case). 

The computational complexity of the tests directly 

relates with the number of decision variables, denoted by 

NDV, which can be calculated according to the Remark 2. 

The robust stability tests are taken using the LMI 

conditions in the ascending order of NDV. Table 1 shows 

the number of stable polytopes identified by Theorem 3 

(labeled CS for continuous-time and DS for discrete-time 

polytopes). Test results verify that the increasing number 

of decision variables rather than κ, causes less conserva-

tive LMI criterions, see LMI test with 
1 1

( , ) (6,1)τ κ =  is 

less conservative than 
2 2

( , )τ κ =(1,2) even though κ1 < 

κ2. And our LMI conditions with two-DOF integers have 

better flexibility of tradeoff between the conservatism 

and computational complexity. 

 

Table 1. Test results for polynomial matrix polytopes. 

NDV τ κ CS DS 

42 1 1 498 638 

62 2 1 551 749 

90 3 1 566 788 

107 1 2 767 834 

126 4 1 770 836 

135 2 2 782 846 

170 5 1 782 846 

171 3 2 785 848 

200 1 3 809 852 

215 4 2 810 852 

222 6 1 810 852 

236 2 3 810 852 

267 5 2 810 852 

280 3 3 810 852 

282 7 1 810 852 

321 1 4 810 852 

327 6 2 810 852 

332 4 3 810 852 

350 8 1 810 852 

365 2 4 811 852 

392 5 3 811 852 

Example 3: The objective of this example is to show 

the benefit of suitable Q
τ
 for the LMI conditions. 

Consider again the discrete-time polynomial matrix 

polytope in Example 1. It was found in Example 1 that 

the LMI conditions of Theorem 3 for τ =2, κ =2 were not 

feasible, where Q
τ
 = I

τ
 was chosen. Now for the same 

2,τ = 2,κ =  we choose Q
τ
 =

3.7 0.3

0.3 5.5
.

⎡ ⎤
⎢ ⎥
⎣ ⎦

 And the LMIs 

with Q
τ
 can be found a feasible solution. This shows a 

suitable chosen Q
τ
 can make the LMIs perform better 

robust checking. 

 

5. CONCLUSION 

 

In this note, sufficient and necessary LMI criterion is 

derived for stability of scalar matrix in general order 

LMI region. Then based on that, and via our approach to 

extend region matrix and Lyapunov matrix, sufficient 

LMI conditions with two-DOF integers (τ, κ) and 

arbitrary chosen Q
τ
 > 0, for checking robust -D stability 

of polynomial matrix polytopes are obtained. Examples 

have shown the advantages of our result. Finally, 

Example 3 gives us an interesting revelation that less 

conservative LMI conditions can also be obtained 

without more decision variables, but with some suitable 

Q
τ
 > 0. How to find the suitable Q

τ
 > 0 for a given 

polytope will be the subject of our future research. 
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