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White Noise Estimators for Networked Systems with Packet Dropouts 

 

Chunyan Han*, Wei Wang, and Yuan Zhang 

 

Abstract: This paper studies the optimal and suboptimal deconvolution problems over a network sub-

ject to random packet losses, which are modeled by an independent identically distributed Bernoulli 

process. By the projection formula, an optimal input white noise estimator is first presented with a sto-

chastic Kalman filter. We show that this obtained deconvolution estimator is time-varying, stochastic, 

and it does not converge to a steady value. Then an alternative suboptimal input white-noise estimator 

with deterministic gains is developed under a new criterion. The estimator gain and its respective error 

covariance-matrix information are derived based on a new suboptimal state estimator. It can be shown 

that the suboptimal input white-noise estimator converges to a steady-state one under appropriate as-

sumptions. 
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1. INTRODUCTION 

 

The problem of deconvolution has attracted consider-

able attention in recent years due to its wide applications 

ranging from seismology and channel equalization to 

speech processing. The purpose of the deconvolution 

problem is to estimate the unknown input signal of a 

system using the noise corrupted measurements, where 

the measurement is detected or transmitted via wireless 

sensor networks. A motivating example is given in 

seismic exploration, where a short duration seismic pulse 

is transmitted from the surface, reflected from 

boundaries between underground earth layers, and 

received by an array of sensors on the surface [1]. The 

received signals, called seismic traces, are analyzed to 

extract information about the underground structure of 

the layers in the explored area. As is well known that the 

phenomenon of packet losses is unavoidable in the signal 

communication over wireless channels. This happens in 

resource limited wireless sensor networks where 

communication between devices are power constrained 

and therefore limited in range and reliability. The main 

effect of the packet loss is that it will degrade the 

tracking performance and convergence of the white noise 

estimator. So in this paper, we will study the design 

method of the deconvolution estimation for networked 

systems with random packet losses, and analyze its 

convergence performance. 

There exist several approaches to the deconvolution 

problem in the literature. The pioneer work of the 

deconvolution problems can be traced back to the study 

of white noise estimation with application to oil 

exploration based on the Kalman filtering method [2]. 

Latter, this method was successfully applied to the study 

of multi-sensor information fusion white noise filters 

[3,4] and self-tuning weighted measurement fusion 

deconvolution estimation [5]. A unified white noise 

estimation theory based on the modern time series 

analysis method was presented in [6], which included 

both the input white noise estimators and measurement 

white noise estimators. Alternatively, the polynomial 

systems approach is also an efficient method used to the 

optimal deconvolution estimator design in the frequency 

domain, in which the solutions are given in terms of 

spectral factorization and polynomial equations [7,8]. 

Concerning with the H∞ deconvolution problems, the 

optimal estimators can also be derived via a polynomial 

system approach [9,10] or an innovation analysis 

approach [11]. In [12], a fixed-order H∞ optimal 

deconvolution filter was designed by using the genetic 

algorithm. It can be seen that many research works have 

been obtained for the systems without packet losses. 

The phenomenon of packet losses occurs in a number 

of engineering applications [13,14]. There have been a 

vast number of solutions for the state estimation 

problems of system with random packet losses. Recently, 

the Kalman filtering for systems with intermittent 

observations was studied in [15] and [16]. In [15] and 

[16], a stochastic Kalman filter was designed based on a 

set of intermittent observations, where the stability 
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analysis of the filter with relation to the data arrival rate 

was given. In [17], the stability of Kalman filtering with 

Markovian packet losses was studied. The stability 

criteria were expressed by simple inequalities in terms of 

the largest eigenvalue of the open loop matrix and 

transition probabilities of the Markov process. In [18], an 

optimal H2 filtering in networked control systems with 

multiple packet dropout was considered, where the 

random dropout was represented by two Bernoulli 

distributed white sequences which taking the values of 0 

or 1, and the filter was derived by a convex optimization 

problem through a set of linear matrix inequalities 

(LMIs). In [19], Sun and Xie have presented a multiple 

packet dropout modeling method, and an optimal linear 

estimator was computed recursively in terms of the 

solution of a Riccati difference equation. In [20] and [21], 

the robust filtering and nonlinear H∞ filtering were 

designed for the multiple missing measurement systems 

via the LMI techniques, respectively. Up to now, many 

research works on state estimation for the systems with 

packet dropouts have been obtained. However, there 

exist few results concerned with the white noise 

estimation for systems subject to random packet losses. 

In [22], the optimal white noise filters were designed 

for the discrete time systems with packet dropouts. The 

solutions to the white noise filters were given in terms of 

a generalized Riccati equation plus a Lyapunov equation. 

No convergence analysis was given in [22]. In [23], an 

optimal deconvolution smoother was derived for systems 

with random parametric uncertainties, where the system 

uncertainties were time invariant and temporally 

correlated. The solution to the deconvolution smoother 

was given in terms of the state filter and the estimation of 

an auxiliary variable which concerned with the white 

noise input and random parametric uncertainties 

simultaneously. Convergence analysis for the derived 

smoother was provided. Note that the deconvolution 

filter designed in [22] requires solving an additional 

recursive Lyapunov equation related to the original state 

of the system, and the optimal deconvolution smoother 

designed in [23] requires solving an additional recursive 

equation concerning with the covariance of the 

introduced auxiliary variables. 

In this paper, we will investigate the optimal and 

suboptimal input white noise estimation for the discrete-

time systems with packet dropouts, which is described by 

an independent identically distributed (i.i.d) Bernoulli 

process. An optimal input white noise estimator is first 

presented based on the innovation analysis method, 

while its estimation gain and the respective error 

covariance-matrix information are obtained with a 

stochastic Kalman filter. Note that the estimator gain is 

time varying, stochastic, and it does not converge to a 

steady state. Then as a low-complexity solution, an 

alternative suboptimal input white noise estimator is 

developed under a new performance index, in which the 

estimator gain and its corresponding error covariance 

matrix are deterministic and can be derived from a new 

suboptimal state estimator. It can be shown that the 

suboptimal input white noise estimator converges to a 

steady-state white noise estimator under natural 

assumptions. Compared with the existing results in [22] 

and [23], the solutions to the deconvolution smoothers 

(both optimal and suboptimal) developed in this paper 

just require solving a stochastic Riccati equation or a 

generalized Riccati Equation. Especially for the 

suboptimal deconvolution smoother, all smother gains 

can be designed off-line, which reduces the online 

computation burden efficiently. In the case of no packet 

dropouts, the optimal and suboptimal white noise 

smoothers are reduced to those under complete 

measurement data in [2]. 

Notations: Throughout this paper, 
n

R  denotes the n-

dimensional Euclidean space, m n×

�  denotes the norm 

bounded linear space of all m×n matrices. For L∈ 

,

n n×

�  L' stands for the transpose of L. As usual, L ≥  

0( 0)L >  will mean that the symmetric matrix 
n n

L
×

∈�  is positive semi-definite (positive definite), 

respectively. Moreover, tr(.) indicates the trace operator, 

E(.) denotes the mathematical expectation operator, and 

Pr ob(.) means the occurrence probability of an event. 

 

2. PROBLEM FORMULATIONS 

 

Consider the following discrete-time system 

0
( 1) ( ) ( ), (0) ,x t x t Gw t x x+ = Φ + =  (1) 

( ) ( ) ( ),
t t

y t Hx t v tγ γ= +  (2) 

where ( ) n

x t ∈�  is the state, ( ) p
w t ∈�  is the input 

noise, ( ) m

y t ∈�  is the measurement and ( ) m

v t ∈�  is 

the measurement noise. γt is the packet arrival indicator. 

The following assumptions are made to the systems (1) 

and (2). 

Assumption 1: The initial state x0, w(t), and v(t) are 

null mean white noises with covariance matrices 

0 0 0
E[ '] ,x x P=  E[ ( ) '( )] ,

ts
w t w s Qδ=   

E[ ( ) '( )] ,
ts

v t v s Rδ=  

respectively. x0, w(t), and v(t) are mutually independent. 

Assumption 2: Measurements in (2) are time-stamped, 

and transmitted through a digital communication net-

work. γt is a scalar quantity taking on values of 0 and 1 

with Pr ob( 1) ,
t

γ ρ= = Pr ob( 0) 1 ,
t

γ ρ= = −  and the 

random processes w(t), v(t), γt for all t and the initial state 

x0 are mutually independent. γt can be observed at the 

present time t by employing the time-stamped technique. 

That is γt together with the observation y(t) are available 

in the estimator design. 

Then the estimation problems considered in this paper 

can be stated as: 

Problem 1 (Optimal white noise estimator): Given the 

observation sequences 
0

{{ ( )} }t

s
y s

=

 and 
0

{{ } },t

s s
γ

=

 find 

a linear minimum mean square error (LMMSE) white 

noise estimation ˆ ( | )w t t N+  of w(t), such that 

{
,

ˆE [ ( ) ( | )]
w v

w t w t t N− + }ˆ[ ( ) ( | )]w t w t t N ′− +  (3) 

is minimum, while the estimation gain is stochastic. Note 
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that N = 0 is the filter, N > 0 is the smoother, and N < 0 is 

the predictor. 

Problem 2 (Suboptimal white noise estimator): Given 

the observation sequences 
0

{{ ( )} },t

s
y s

=

 find a minimum 

mean square error white-noise estimation ˆ ( | ),
e

w t t N+  

such that 

, ,

ˆE {[ ( ) ( | )]
w v e

w t w t t N
γ

− +
ˆ[ ( ) ( | )] }
e

w t w t t N ′− +  (4) 

is minimum, while the estimation gain is deterministic. 

Note that N = 0 is the filter, N > 0 is the smoother, and N 

< 0 is the predictor. 

Remark 1: As for the two problems, the expectation 

in (3) is only taken over on the addition noise w and v, 

and γ is assumed to be known, while the expectation in 

(4) is taken over on w, v, and γ, simultaneously. 

Therefore the estimator developed in Problem 1 has 

smaller estimation error. However, the estimation gain 

subject to problem 1 is stochastic, and the performance 

analysis of the estimator is difficult. The estimator 

developed in Problem 2 is with deterministic gains, and 

thus the convergence of the white-noise estimator will be 

guaranteed under appropriate assumptions. The precise 

definitions to the above problems will be given below. 

Remark 2: In the optimal estimator design, the obser-

vation arrival process 
0

{ }t
τ τ
γ

=

 is exactly known to the 

destination, and the estimator is designed online. The 

scheme is a TCP-like type of networking protocol, see 

Fig. 1. However, in the suboptimal estimator design, 

only the present arrival information γt (time-stamp) is 

known to the destination. And the filter gain is independ-

ent on the arrival process 
0

{ } ,t

τ τ
γ

=

 so it can be designed 

offline. This scheme is similar to a UDP type of 

networking protocol, see Fig. 2. 

 

1t t t
x x Gw

+
= Φ +

t t t
y Hx v= + 1 0

ˆ( , ,{ } )
t

t t
f x y

τ τ
γ

=

1 | 1 1
ˆ ˆ( ,{ , } , )

t

t N t t N t
g w K y

τ τ τ
γ

− − = − +

t
γ

t t
yγ

z
τ−

1
ˆ

t
x

+

1
z
−

ˆ

t
y

1

0
{ }N

t
K

τ τ

−

− =

0, 1Nτ = −�  

Fig. 1. Overview of Problem 1. We design an optimal 

state and white noise estimator online, where the 

observation travelling over an unreliable net-

work and the arrival process 
0

{ }t
τ τ
γ

=

 are exactly 

known to the destination. 

 

1t t t
x x Gw

+
= Φ +

t t t
y Hx v= + 2

ˆ( , , , )
t t t

f x y γ ρ

2 | 1
ˆ ˆ( , , , )
t N t t t

g w yγ ρ
− −

t
γ

t t
yγ

1
ˆ

t
x

+

1
z
−

ˆ

t
y

1

0
{ }N

t
K

τ τ

−

− =  

Fig. 2. Overview of Problem 2. We design an subopti-

mal state and white noise estimator offline, where 

only present time-stamp γt and arrival rate ρ are 

known to the destination. 

3. OPTIMAL WHITE-NOISE ESTIMATOR 

 

In this section, an analytical solution to the LMMSE 

white-noise estimation will be presented by applying the 

projection formula. 

 

3.1. Design of the optimal state estimator 

In the next, we first design an optimal state estimator, 

which will be used in the latter derivation of the optimal 

white-noise estimation. As in the Kalman filter design, 

an innovation sequence need to be defined, which is 

associated with the observation (2) 

ˆ( ) ( ) ( | 1),t y t y t tη − −�  (5) 

where ˆ( | 1)y t t −  is the LMMSE estimation of y(t) given 

the observations { (0), , ( 1)}y y t −�  and the information 

0 1
{ , , }.

t
γ γ

−

�  

Indeed, the sequence { ( )}tη  is a white noise sequence 

with zero mean and covariance ( ),Q t
η

 and spans the 

same linear space as { (0), , ( 1)}.y y t −�  Then the 

optimal state estimation based on the innovation 

sequences can be defined as follows: 

Definition 1: Consider the given time instant t, the 

LMMSE state estimation ˆ( 1 | )x t t+  is defined as 

ˆ ˆ ˆ( 1| ) ( | 1) ( )[ ( ) ( | 1)]
t

x t t x t t K t y t Hx t tγ+ =Φ − +Φ − − , (6) 

where K(t) is to be determined such that 

2

,
ˆE ( 1) ( 1 | )

w v
x t x t t+ − +  (7) 

is minimized. Further, define 

,

( | 1) E [ ( | 1) ( | 1)],
w v

P t t x t t x t t′− − −� ��  (8) 

where 

ˆ( | 1) ( ) ( | 1).x t t x t x t t− − −
� �  (9) 

Remark 3: From the above definition, it can be 

observed that the state estimation ˆ( | 1)x t t −  is the 

projection of x(t) onto the linear space 

{ (0), , ( 1)} { (0), , ( 1)},y y t tη η− = −� �L L  (10) 

and the innovation sequence can be rewritten as 

ˆ( ) ( ) ( | 1).
t

t y t Hx t tη γ= − −  (11) 

Based on the projection formula, we will obtain the 

result on optimal state estimation [15]. 

Lemma 1: Consider the system (1) and (2), the 

optimal state estimation ˆ( | )x t t  is given by 

ˆ ˆ ˆ( | ) ( | 1) ( )[ ( ) ( | 1)]
t

x t t x t t K t y t Hx t tγ= − + − − , (12) 

ˆ ˆ ˆ( 1| ) ( | ), (0 | 1) 0x t t x t t x+ = Φ − = , (13) 

where K(t) is the solution to the following equation 

( ) ( ) ( | 1)
t

K t Q t P t t H
η

γ ′= −  (14) 

with 

( ) ( | 1) ,
t t

Q t HP t t H R
η

γ γ′= − +  (15) 
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( 1| ) ( | 1)

( | 1) ( ) .
t

P t t P t t

P t t H K t GQGγ

′+ = Φ − Φ

′ ′ ′ ′− − Φ +
 (16) 

 

3.2. Design of the optimal white-noise estimator 

Based on the innovation sequences (0), , ( ),t Nη η +�  

we will derive the optimal white-noise estimator ˆ ( |w t t  

).N+  

For 0,N ≤  it can be observed that w(t) is indepen-

dent of (0), , ( ).t Nη η +�  Then the estimation of w(t) 

based on (0), , ( )t Nη η +�  is 0, that is 

,

,

ˆ ( | ) E { ( ) | (0), , ( )}

E { ( )} 0.

w v

w v

w t t N w t t N

w t

η η+ = +

= =

�

 (17) 

For N > 0, the optimal input white-noise smoother 

ˆ ( | )w t t N+  is defined as follows. 

Definition 2: Consider the given time instant t, then 

for N > 0, the optimal input white-noise smoother ˆ ( |w t t  

+N) is defined as 

ˆ ˆ( | ) ( | 1)

( | ) ( ),
w

w t t N w t t N

M t t N t Nη

+ = + −

+ + +

 (18) 

where Mw ( | )t t N+  is to be determined, such that 

2

,
ˆE ( ) ( | )

w v
w t w t t N− +  (19) 

is minimized. 

Further, define the covariance matrix of the estimation 

error as 

,

ˆ( | ) E {[ ( ) ( | )]

ˆ[ ( ) ( | )] }.

w w v
P t t N w t w t t N

w t w t t N

+ − +

′− +

�
 

Remark 4: In fact, the smoother ˆ ( | )w t t N+  defined 

in Definition 2 is the projection of w(t) based on the 

linear space of (0), , ( ).t Nη η +�  The expectation in 

(19) is just taken over on the white noise w(t) and v(t), so 

there exists the packet arrival indicator γt in the smoother 

gains. 

In light of the projection formula, we can obtain the 

optimal recursive input white-noise smoother ˆ ( |w t t +N) 

as follows. 

Theorem 1: Consider the system (1) and (2), the 

optimal recursive input white-noise smoother is given by 

ˆ ˆ( | ) ( | 1) ( | ) ( ),
w

w t t N w t t N M t t N t Nη+ = + − + + +  (20) 

where the initial value ˆ ( | ) 0,w t t = 1,2, ,N = �  and the 

smoother gain ( | )
w

M t t N+  satisfies the following 

equation 

1

1

( | ) ( ) ( )
N

w t N p

i

M t t N Q t N QG t i H
η

γ

−

+

=

⎧ ⎫⎪ ⎪
′ ′ ′+ + = Ψ +⎨ ⎬
⎪ ⎪⎩ ⎭
∏  

 (21) 

with 

( ) [ ( ) ].
p n t i
t i I K t i Hγ

+
Ψ + = Φ − +  (22) 

And the covariance matrix P
w
( | )t t N+  can be calculated 

recursively as 

( | ) ( | 1) ( | )

( ) ( | )

w w w

w

P t t N P t t N M t t N

Q t N M t t N
η

+ = + − − +

′× + +
 (23) 

with the initial value ( | ) .
w
P t t Q=  

Proof: From the projection formula, we have 

ˆ ˆ( | ) ( | 1)

( | ) ( ),
w

w t t N w t t N

M t t N t Nη

+ = + −

+ + +

 (24) 

where ( | )
w

M t t N+  to be determined. Note that 

( ) ( | 1) ( ),
t N t N

t N Hx t N t N v t Nη γ γ
+ +

+ = + + − + +�  (25) 

( 1| ) ( ) ( | 1) ( ) ( ) ( ),
p t

x t t t x t t Gw t K t v tγ+ = Ψ − + − Φ� �  (26) 

where 

( ) [ ( ) ].
p n t
t I K t HγΨ = Φ −  (27) 

From (26), we have 

1

1

( | 1) ( , ) ( | 1)

( , )[ ( 1)

( 1) ( 1)],

t N

i t

i

x t N t N t N t x t t

t N i Gw i

K i v iγ

+

= +

−

+ + − = Ψ + −

+ Ψ + −

− Φ − −

∑

� �

 

 (28) 

where 

( | ) ,
n

t N t N IΨ + + =

( | ) ( 1) ( ), .
p p

t N i t N i i t NΨ + = Ψ + − Ψ < +�  

Substitute (28) into (25), yields 

1

1

( ) { ( , ) ( | 1)

( , ) [ ( 1)

( 1) ( 1)]} ( ).

t N

t N

i t

i t N

t N H t N t x t t

t N i Gw i

K i v i v t N

η γ

γ γ

+

+

= +

− +

+ = Ψ + −

+ Ψ + × −

− Φ − − + +

∑

�

 (29) 

Under Assumptions 1 and 2, and given the above 

equation, we have 

1

1

E[ ( ) ( )] ( , 1)

( ) .

t N

N

t N p

i

w t t N QG t N t H

QG t i H

η γ

γ

+

−

+

=

′ ′ ′ ′+ = Ψ + +

⎧ ⎫⎪ ⎪
′ ′ ′= Ψ +⎨ ⎬
⎪ ⎪⎩ ⎭
∏

 (30) 

Case 1: When the covariance matrix of the innovation 

( ),t Nη +  denoted by ( ),Q t N
η

+  is invertible, we have 

1
, ,

1
1

1

( | )

E [ ( ) ( )]E [ ( ) ( )]

( ) ( ),

w

w v w v

N

t N p

i

M t t N

w t t N t N t N

QG t i H Q t N
η

η η η

γ

−

−

−

+

=

+

′ ′= + + +

⎧ ⎫⎪ ⎪
′ ′ ′= Ψ + +⎨ ⎬
⎪ ⎪⎩ ⎭
∏

 

which satisfies (21). 

Case 2: When the covariance matrix ( )Q t N
η

+  is 

singular, the matrix ( | )
w

M t t N+  is chosen to minimize 
2

ˆ ( | ) ( ) ,w t t N w t+ −  such that 
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1

1

( | ) ( ) ( ) ,
N

w t N p

i

M t t N Q t N QG t i H
η

γ

−

+

=

⎧ ⎫⎪ ⎪
′ ′ ′+ + = Ψ +⎨ ⎬
⎪ ⎪⎩ ⎭
∏  

which is (21). 

Next, we start to derive the expression of ( |
w
P t t  

+N ). Recalling from (20), we have 

( | ) ( | 1) ( | ) ( ).
w

w t t N w t t N M t t N t Nη+ = + − − + +� �  

Note that ( | ) ( ),w t t N t Nη+ ⊥ +�  yields (23) with the 

initial value ( | ) .
w
P t t Q=           � 

Remark 5: In practice, the smoother developed in 

Theorem 1 is a fixed-point smoother, which is optimal 

for any packet generating process. The solution to this 

smoother is based on a stochastic Kalman filter, which 

can be obtained from Lemma 1 directly. 

Further, we can derive the optimal nonrecursive input 

white-noise smoother from Theorem 1 directly. 

Corollary 1: Consider the system (1) and (2), the 

optimal nonrecursive input white-noise smoother is 

given by 

1

ˆ ( | ) ( | ) ( ), 0,
N

w

j

w t t N M t t j t j Nη

=

+ = + + >∑  

and the covariance matrix of the estimation error is given 

as 

1

( | ) ( | ) ( ) ( | ).
N

w w w

j

P t t N Q M t t j Q t j M t t j
η

=

′+ = − + + +∑  

Remark 6: The smoother developed in Corollary 1 is 

an optimal fixed-lag smoother. However, it is need to 

remark that different from the standard white-noise 

smoother for a time-invariant system, neither the optimal 

gain nor the error covariance converges to a steady state 

value, therefore a new suboptimal white-noise smoother 

will be derived in the next section. Under appropriate 

assumptions, the suboptimal smoother will converge to a 

stationary one. 

 

4. SUBOPTIMAL WHITE-NOISE ESTIMATOR 

 

In this section, we will propose a new suboptimal 

input white-noise estimator with deterministic gains by 

minimizing the mean square estimation error where the 

statistics of the observation packet arrival random 

variable is used. 

 

4.1. Design of the suboptimal state estimator 

Before proceeding along the development of the sub-

optimal white-noise estimation, we first define the fol-

lowing state estimation, which will be used for the latter 

design of the white-noise estimator. 

Definition 3: Given the system (1) and (2), the linear 

suboptimal state estimation ˆ ( | 1)
e
x t t −  of x(t) with de-

terministic gain is defined as 

ˆ ˆ( 1| ) ( | 1)

ˆ( )[ ( ) ( | 1)],

e e

t e

x t t x t t

K t y t Hx t tγ

+ Φ −

+Φ − −

�
 (31) 

ˆ (0 | 1) 0,
e
x − =  

where K(t) is to be determined such that 

2

, ,
ˆE ( 1) ( 1 | )

w v e
x t x t t

γ
+ − +  (32) 

is minimized. Further, we define the covariance matrix 

of the estimation error 

, ,

( 1 | ) E [ ( 1 | ) ( 1 | )],
w v e e

P t t x t t x t t
γ

′+ + +� ��  (33) 

where 

ˆ( 1| ) ( 1) ( 1| ).
e e
x t t x t x t t+ = + − +�  (34) 

Remark 7: Note from the criteria index of (32) that, 

the estimation ˆ ( | 1)
e
x t t −  defined in Definition 3 is 

different from the stochastic Kalman filter developed in 

Definition 1. The expectation in (32) is taken over w, v, 

and γ simultaneously. 

In what follows, we introduce a new sequence 

ˆ( ) ( ) ( | 1),
t e

e t y t Hx t tγ= − −  (35) 

where ˆ ( | 1)
e
x t t −  is as in Definition 3. It can be shown 

that the sequence 
0

{{ ( )} }t

s
e s

=

 is mutually uncorrelated, 

which is with zero mean and covariance matrix 

( ) ( | 1) .
e

Q t HP t t H Rρ ρ′= − +  (36) 

Then one has the following result on the suboptimal state 

estimation [24]. 

Lemma 2: The suboptimal state estimation ˆ ( | )
e
x t t  

with deterministic gains is given by 

ˆ ˆ ˆ( | ) ( | 1) ( )[ ( ) ( | 1)],
e e t e
x t t x t t K t y t Hx t tγ= − + − −  (37) 

ˆ ˆ ˆ( 1| ) ( | ), (0 | 1) 0,
e e e
x t t x t t x+ = Φ − =  (38) 

where 

1( ) ( | 1) [ ( | 1) ] ,K t P t t H HP t t H Rρ ρ ρ
−

′ ′= − − +  (39) 

and ( | 1)P t t −  satisfies the following generalized Riccati 

equation 

1

( 1| ) ( | 1) ( | 1)

( ( | 1) ) ( | 1)

P t t P t t P t t H

HP t t H R HP t t

GQG

ρ

−

′ ′+ = Φ − Φ − Φ −

′ ′× − + − Φ

′+

 (40) 

with 
0

(0 | 1) .P P− =  

Remark 8: The advantage of the suboptimal filter is 

that it leads to a deterministic time-varying filter which is 

easy to be implemented and all of its calculations (the 

gain matrices) can be done off line. The deterministic 

gain allows us to analyze the convergence and mean 

square stability of the filter. If the suboptimal estimation 

method developed in this paper and the estimation 

method employed in [22] are both designed based on the 

same packet loss measurement model as (1), the 

suboptimal estimator developed in this paper has smaller 

MSEs since it explores additional information on the 

arrival sequence γt. The detailed proof can be seen from 

Lemma 2 in [24]. 
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4.2. Design of the suboptimal white-noise estimator 

Based on the innovation sequences (0), , ( ),e e t N+�  

we will introduce a new linear recursive suboptimal in-

put white-noise estimator ˆ ( | ).
e

w t t N+  

For N≤ 0, it can be observed that w(t) is independent 

of (0), , ( ),e e t N+�  since (0), , ( )e e t N+�  are the 

linear combinations of the observations (0), , (y y t +�  

N ). Then the estimation of w(t) based on (0), , (e e t� + 

N ) is 0, that is 

, ,

, ,

ˆ ( | ) E { ( ) | (0), , ( )}

E { ( )} 0.

e w v

w v

w t t N w t e e t N

w t

γ

γ

+ = +

= =

�

 (41) 

For N > 0, the suboptimal white-noise smoother ˆ ( |
e

w t t  

+N ) is defined as follows. 

Definition 4: Consider the given time t and assume 

that N > 0, a linear recursive suboptimal estimation 

ˆ ( | )
e

w t t N+  is defined as 

ˆ ˆ( | ) ( | 1)

( | ) ( ),

e e

w

w t t N w t t N

M t t N e t N

+ + −

+ + +

�
 (42) 

where ( | )
w

M t t N+  is to be determined, such that 

2

, ,
ˆE ( ) ( | )

w v e
w t w t t N

γ
− +  

is minimized. 

Further, define 

, ,

ˆ( | ) E {[ ( ) ( | )]

ˆ[ ( ) ( | )] }.

w w v e

e

P t t N w t w t t N

w t w t t N

γ
+ − +

′× − +

�
 (43) 

In the next, we will derive the suboptimal white-noise 

smoother ˆ ( | )( 0)
e

w t t N N+ >  defined in Definition 4 

by using the minimum mean squared error method. 

Theorem 2: Consider the system (1) and (2), the sub-

optimal recursive input white-noise smoother is given by 

ˆ ˆ( | ) ( | 1)

( | ) ( ),

e e

w

w t t N w t t N

M t t N e t N

+ = + −

+ + +

 (44) 

where the initial value ˆ ( | ) 0,
e

w t t =  and the smoother 

gain ( | )
w

M t t N+  is given by 

1

1

1

( | ) ( ) ( )
N

w p e

i

M t t N QG t i H Q t Nρ

−

−

=

⎧ ⎫⎪ ⎪
′ ′ ′+ = Ψ + +⎨ ⎬
⎪ ⎪⎩ ⎭
∏  

 (45) 

with 

( ) E { ( )} [ ( ) ].
p p n
t i t i I K t i H

γ
ρΨ + = Ψ + = Φ − +  (46) 

Meanwhile, the covariance matrix ( | )
w
P t t N+  can be 

calculated recursively by the following equation 

( | ) ( | 1) ( | )

( ) ( | ),

w w w

e w

P t t N P t t N M t t N

Q t N M t t N

+ = + − − +

′× + +

 (47) 

where the initial value ( | ) .
w
P t t Q=  

Proof: From Definition 4, we have 

ˆ ˆ( | ) ( | 1)

( | ) ( ),

e e

w

w t t N w t t N

M t t N e t N

+ = + −

+ + +

 (48) 

where ( | )
w

M t t N+  to be determined. Note that 

( ) ( | 1) ( ),
t N e t N

e t N Hx t N t N v t Nγ γ
+ +

+ = + + − + +�  (49) 

while 

1

1

( | 1)

( , ) ( | 1) ( , )

[ ( 1) ( 1) ( 1)]

e

t N

e

i t

i

x t N t N

t N t x t t t N i

Gw i K i v iγ

+

= +

−

+ + −

= Ψ + − + Ψ +

× − − Φ − −

∑

�

�  (50) 

with 

( , ) ,

( , ) ( 1) ( ),

( ) [ ( ) ].

n

p p

p n t i

t N t N I

t N i t N i

t i I K t i Hγ
+

Ψ + + =

Ψ + = Ψ + − Ψ

Ψ + = Φ − +

�  

Substitute (50) into (49), yields 

{

}

1

1

( ) ( , ) ( | 1)

( , )[ ( 1)

( 1) ( 1)] ( ).

t N e

t N

i

i t

t N

e t N H t N t x t t

t N i Gw i

K i v i v t N

γ

γ

γ

+

+

−

= +

+

+ = Ψ + −

+ Ψ + − − Φ

× − − + +

∑

�

 (51) 

In view of (48) and (51), we have 

, ,

ˆ ˆE {[ ( ) ( | )][ ( ) ( | )] }
w v e e

w t w t t N w t w t t N
γ

′− + − +  

1

2

1

[ ( | ) ( ) ( , 1) ]

( )

[ ( | ) ( ) ( , 1) ]

( | 1) ( , 1)

( ) ( , 1) ,

w e

e

w e

w

e

M t t N Q t N QG t N t H

Q t N

M t t N Q t N QG t N t H

P t t N QG t N t H

Q t N H t N t GQ

ρ

ρ

ρ

−

−

′ ′ ′= + + − Ψ + +

× +

′ ′ ′ ′+ + − Ψ + +

′ ′ ′+ + − − Ψ + +

× + Ψ + +

 

where 

( , 1) ( 1) ( 1),

( ) E { ( )} [ ( ) ].

p p

p p n

t N t t N t

t i t i I K t i H
γ

ρ

Ψ + + = Ψ + − Ψ +

Ψ + = Ψ + = Φ − +

�

 

It is obvious that [ ( | ) ( | )]e eE w t t N w t t N′+ +� �  will be 

minimized precisely if we choose 

1( | ) ( , 1) ( ),
w e

M t t N QG t N t H Q t Nρ
−

′ ′ ′+ = Ψ + + +  

and thus (47) is satisfied.          � 

Remark 9: In practice, the smoother developed in 

Theorem 2 is a fixed-point smoother, which is with 

deterministic gains. The solution to this smoother is 

based on a deterministic-gain state estimation, which can 

be obtained from Lemma 2 directly. In the next, we will 

present a nonrecursive white-noise smoother, that is the 

fixed-lag smoother. 

Corollary 2: Consider the system (1) and (2), the 

suboptimal nonrecursive input white-noise smoother is 

given by 
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1

ˆ ( | ) ( | ) ( ),
N

e w

j

w t t N M t t j e t j
=

+ = + +∑  

and the covariance matrix of the estimation error satisfies 

the following equation 

1

( | ) ( | ) ( ) ( | ).
N

w w e w

j

P t t N Q M t t j Q t j M t t j

=

′+ = − + + +∑  

Remark 10: We will show in the next subsection that 

the estimation gains and the covariance of the estimation 

error converge to their respective steady-state values 

under appropriate assumptions. Thus this new white-

noise estimation possesses better property of conver-

gence than the optimal white-noise estimation developed 

in Section 3. 

 

4.3. Stationary white-noise estimator 

Note from Theorem 2 that the solution to the subopti-

mal white-noise smoother ˆ ( | )( 0)ew t t N N+ >  is deter-

mined by the state estimation gain of ˆ ( | ).
e
x t t  If the 

state estimation ˆ ( | )
e
x t t  keeps convergent, the white-

noise smoother gain of ˆ ( | )ew t t N+  becomes constant. 

And thus the suboptimal input white-noise smoother 

converges to the steady-state value. In what follows, we 

first analyze the convergence of the suboptimal state 

estimation. 

Lemma 3: If 
1

2( , )A GQ  is controllable, (A, H) is 

detectable, then there exists a [0,1),ρ ∈  such that the 

Riccati difference equation (40) for ( | 1)P t t −  converges 

to a unique algebraic Riccati equation for ρ ρ>  and 

0
0,P∀ ≥  

1( ) .P P PH HPH R HP GQGρ
−

′ ′ ′ ′ ′= Φ Φ − Φ + Φ +  (52) 

And the corresponding filter and predictor become as 

ˆ ˆ ˆ( | ) ( | 1) [ ( ) ( | 1)]
e e t e
x t t x t t K y t Hx t tγ= − + − − , (53) 

ˆ ˆ ˆ( 1| ) ( | ), (0 | 1) 0
e e e
x t t x t t x+ = Φ − = , (54) 

where 

1
[ ] .K PH HPH Rρ ρ ρ

−

′ ′= +  (55) 

In light of the result of Lemma 3, we will obtain the 

stationary white-noise smoother as follows. 

Theorem 3: If 
1

2( , )A GQ  is controllable, (A, C) is 

detectable, then there exists a [0,1)ρ ∈  such that for 

,ρ ρ> ˆ ( | )
e

w t t N+  converges to the constant-gain 

smoother 

ˆ ˆ( | ) ( | 1) ( ) ( ),
e e w

w t t N w t t N M N e t N+ = + − + +  (56) 

where 

1 1( ) ( ) [ ]N
w pM N QG H HPH Rρ ρ ρ

− −

′ ′ ′ ′= Ψ +  (57) 

with 

[ ].
p n

I KHρΨ = Φ −   

And the covariance matrices ( | )
w
P t t N+  converges to 

the constant matrix ( ),
w
P N  which satisfies 

( ) ( 1) ( )[ ] ( ),
w w w w
P N P N M N HPH R M Nρ ρ′ ′= − − +  

(0) .
w
P Q=  (58) 

 

5. AN ILLUSTRATIVE EXAMPLE 

 

In this section, we present a simple numerical example 

to illustrate the developed theoretical results. Consider a 

dynamic system described in (1) and (2) with the 

following parameters 

[ ]
0.9 0.1 2

, , 4 2 ,
0.2 0.7 3

G H
−⎡ ⎤ ⎡ ⎤

Φ = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

where w(t) and v(t) are white noises with zero means and 

covariance matrices Q = 1 and R = 1, respectively. The 

initial value x0 and its covariance matrix are set to be 

0 0

1 1 0
, .

1 0 1
x P

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

In this example, it is assumed that γt is a prior known to 

the optimal estimator design, based on which the optimal 

state estimator ˆ( | )x t t  can be designed online by using 

Lemma 1. And the optimal input white noise smoother 

ˆ ( | )w t t N+  can be obtained via Theorem 1. For the 

suboptimal estimation design, it is assumed that only the 

present-time value γt is known to the destination. The 

arrival probability is set to Pr ob{ 1} 0.9.
t

γ = =  Then 

from Lemma 2, the suboptimal state filter gain can be 

designed offline which is independent to 
0

{ } .t

τ τ
γ

=

 

Given this state estimator, the suboptimal white-noise 

smoother ˆ ( | )
e

w t t N+  can be derived by using 

Theorem 2. 

In this simulation, we set N = 3. Based on one path of 

γt, the optimal 3-step smoother ˆ ( | 3)w t t +  is plotted in 

Fig. 3. The tracking performance of suboptimal 3-step 

smoother ˆ ( | 3)
e

w t t +  is given in Fig. 4. The perform-

ance comparison is also given in this simulation. In Fig. 

5, the sum of mean square errors of optimal and subopti-

mal white noise smoother are plotted. It is apparent that 

the optimal white noise smoother gives better results. 

The main reason is that the history path of γt is exactly 

known to the estimator. However, the drawback of the 

optimal estimator is that the arrival process 1

0
{ }t

τ τ
γ

−

=
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Fig. 3. The optimal 3-steps smoother of w(t). 
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must be stored and can only be designed online. The 

suboptimal estimator only need the present arrival 

information γt, and the filter gain is independent to 

0
{ }t

τ τ
γ

=

 and can be designed offline. Due to the packet 

loss, the sum of the mean square errors exist some 

obvious increases, see the locality labeled by 1 in Fig. 5. 

The proposed suboptimal estimator is also compared 

to the one in [22] with the same parameters. Fig. 6 gives 

the root mean square errors, while the estimation error 

variances are given in Fig. 7. It shows that the estimation 

error variance is less than the one proposed in Ref. [22], 

and the ratio is about 85.6% at the final step with ρ = 0.9. 

The estimation error variance (final step) versus observa-

tion arrival rate ρ is also given in Fig. 8. From Fig. 8, we 

can conclude that with the same parameters the 

suboptimal white noise estimators proposed in this paper 

have a better estimation accuracy when ρ < 1, and have 

the same estimation performance when ρ = 1.  
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Fig. 7. Estimation error variances with ρ = 0.9. 
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Fig. 8. Estimation error variances (final step) versus 

observation arrival rate ρ. 

 

6. CONCLUSIONS 

 

In this paper, we have studied the optimal and subop-

timal input white noise estimation for networked systems 

with random packet losses. An optimal input white-noise 

estimator, with time-varying and stochastic gains has 

been presented via innovation analysis method and sto-

chastic Kalman filtering result. Also, a suboptimal input 

white-noise estimator with deterministic gains has been 

proposed under a new performance index. The estimator 

gains were obtained with a new suboptimal state estima-

tor. It has been shown that the suboptimal white-noise 

estimator converges to a steady-state one under natural 

assumptions. 
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