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Abstract: In this paper, a sufficient linear matrix inequality (LMI) condition is presented for robust 
stability analysis of continuous-time linear time-invariant (LTI) systems in polytopic domains. The un-
derlying idea behind the proposed approach is to introduce a family of complex functions which map 
the closed right-hand side of the complex plane into the inside of the closed unit circle centered at the 
origin. Then, the mapping properties are used to assure that all the eigenvalues of a system are located 
in the open left-hand side of the complex plane. Examples show the validity of the proposed condition. 
 
Keywords: Complex functions, linear matrix inequality, linear time-invariant systems, relaxation, 
robust stability. 
 

1. INTRODUCTION 

 
Robust stability analysis of uncertain linear time-

invariant systems has been a subject of recurring interest 
in the last decades, see, for example [1-18] and the 
references therein. Undoubtedly, Lyapunov stability 
theory is one of the most popular approaches to deal with 
those problems. Among them, the simplest way is to look 
for a quadratic Lyapunov function (QLF) [3], which 
leads overly conservative results in general because a 
constant Lyapunov matrix should be found for all 
uncertainty set. 

To reduce the conservativeness, lots of efforts have 
been made in the direction of generalizing the Lyapunov 
functions, see e.g. [4] which proposes affine parameter-
dependent QLFs (PD-QLFs) for LTI systems with affine 
uncertainties, and [5-10] which employ linear PD-QLFs 
for LTI systems with polytopic uncertainties. Recently, 
several important results [11-18,38-43] on robust 
stability for uncertain LTI systems have been proposed 
through the development of sophisticated convergent 
linear matrix inequality relaxations, sequences of LMI 
conditions which, as the sequences proceed, tend to 
necessary and sufficient conditions at the expense of 

increasing complexities. As a natural generalization of 
linear PD-QLFs, most of them are based on finding 
polynomial PD-QLFs depending polynomially on the 
uncertain parameters. Specifically, several convergent 
LMI conditions for the existence of polynomial PD-
QLFs or homogeneous polynomial PD-QLFs have been 
proposed in [11] based on a systematic way to transform 
polynomially parameter-dependent LMIs (PD-LMIs) 
into finite-dimensional ones, [12] and [13] based on the 
complete square matrix representation of homogeneous 
matrix forms, and [14-16] by means of the matrix 
version of Pólya's theorem, introduced in [17], while a 
particular polynomial PD-QLF, whose parameter-
dependent Lyapunov matrix is a polynomial function of 
the uncertain system matrices has been introduced in 
[18,38-40]. In addition, the use of matrix-valued sum-of-
squares decompositions [19] and [20] can provide robust 
stability results for a large class of uncertainties. 

In this paper, we pursue another possibility to assess 
robust stability of continuous-time LTI systems with 
polytopic uncertainties. The starting idea is to look for a 
class of Lyapunov functionals to assess the robust 
stability. The use of Lyapunov functionals for stability 
analysis of time-delay systems has been largely reported 
in the literature to date [21-27]. However, to the best of 
authors’ knowledge, there are no results on the 
application of Lyapunov functionals for robust stability 
analysis yet. Specifically, the core idea of this paper 
stems from [26] and [27], where stability analysis of 
time-delay LTI systems is considered in a quadratic 
separation framework [28]. The philosophy behind 
results in [26] and [27] is to employ a Taylor series 
approximation of the delay operator and to consider the 
Taylor remainder a new uncertainty type approximation. 
Inspired by the idea in [26] and [27], we employ a class 
of complex functions which map the closed right-hand 
side of the complex plane into the inside of the closed 
unit circle centered at the origin. Then, the robust 
stability can be analyzed by checking whether the 
functions map all the eigenvalues of an uncertain system 
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matrix into the numbers located outside of the closed unit 
circle for the whole uncertainty domain. By means of 
Finsler's lemma [29], the test is cast as a sufficient robust 
stability condition which amounts to solving LMIs. As 
mentioned before, this approach can be interpreted as 
searching for a class of Lyapunov functionals. Examples 
are given to demonstrate the validity of the proposed 
approach. Finally, the distinguished features and merits 
of the proposed approach are summarized as follows: (1) 
the developed method offers a different insight into the 
robust stability analysis of continuous-time LTI systems. 
Specifically, we use a family of complex functions and 
its mapping properties to check the Hurwitz stability. 
This technique can be viewed as a generalization of the 
traditional PD-QLF approach in that, with slight 
modifications of the proposed conditions, we can 
contemplate both the PD-QLF approaches and the 
proposed one based on Lyapunov functionals in a unified 
framework; (2) our robust stability condition can produce 
less conservative results in comparison with the 
approaches using the common QLF and PD-QLFs, as 
demonstrated in examples later. In addition, it is 
expected that the approach can be effectively combined 
with some other relaxation techniques (for instance, 
homogeneous polynomial PD-LMI techniques [16]) to 
further reduce the conservatism; (3) the results of this 
paper are potentially relevant to some applications in 
systems and control area. For example, our work admits 
interesting extensions to simultaneously handle both 
uncertainties and time-delay in a unified fashion. In 
addition, present research seems to eventually be 
extended to cope with the robust controller synthesis 
problems. The directions discussed above will be the 
subject of future research.  
Notation: AT and A*: transpose and transpose conju-

gate of A, respectively; A > 0 (A < 0 and A≥ 0): symmetric 
positive definite (respectively, negative definite and 
positive semi-definite) matrix A; A B⊗ : Kronecker's 
product of matrices A and B; He{A}: a shorthand notion 
for A+A*; A

⊥
: matrices whose columns span the right 

null space of matrix A; In and 0n×m: n×n identity matrix 
and n×m zero matrix, respectively; 0n: null vector of size 
n;� : complex plane; 

0
: \ 0

n n

n
=� � ; 

0
: { :Re( ) 0}λ λ

≥
= ∈ ≥� � ; 

0
: { :Re( ) 0}λ λ

<
= ∈ <� � ; 

0
: { : 0}λ λ

≥
= ∈ ≥� � ; 

0
: { : 0}λ λ

<
= ∈ <� � ; 

�  and 
0

� : sets of positive integer and non-negative 
integer, respectively.  

 
2. STABILITY ANALYSIS 

 
First of all, let us consider the continuous-time LTI 

system 

( ) ( ),x t Ax t=�  (1) 

where n n

A
×

∈�  and ( ) n

x t ∈�  is the state. Define 

complex functions 

0

1

1

( , ) :

! 1
( , ) : ( ) ,

!( )

k
i

k k

i

e

k
e k

i

λτ

λτ

δ λ τ

δ λ τ λτ

λτ

−

−

−

=

⎧ =
⎪

⎧ ⎫⎨ ⎪ ⎪
= − − ∈⎨ ⎬⎪

− ⎪ ⎪⎩ ⎭⎩
∑ �

 (2) 

with λ∈�  and 
0
.τ

≥
∈�  The following lemmas play 

important roles in the development of the main results. 
Lemma 1: Let 

0
τ

>
∈�  be given. If 

0
,λ

≥
∈�  then 

*( , ) ( , ) 1
k k

δ λ τ δ λ τ ≤  holds for all 
0
.k ∈�  

Proof: The proof follows similar lines to the proof of 
Lemma 1 in [27], and thus is omitted here for the sake of 
space.  � 
Lemma 2: Let 

0
τ

>
∈�  and λ∈�  be given. If 

*( , ) ( , ) 1
k k

δ λ τ δ λ τ >  

holds for some
0

k ∈� , then
0

λ
<

∈� .  

Proof: The proof is completed by contraposition of 
Lemma 1.  � 
Lemma 3: Let 

0
τ

>
∈�  and λ∈�  be given. If 

* *

0

( ) {1 ( , ) ( , )} 0
k

i

i i i

i

a λ λ δ λ τ δ λ τ

=

− <∑  (3) 

holds for some 
0

k ∈�  and 0,
i
a >  then 

0
.λ

<
∈�  

Proof: If (3) is fulfilled, then since *( ) 0,i

i
a λ λ >  it is 

guaranteed that *

1 ( , ) ( , ) 0
i i

δ λ τ δ λ τ− <  holds for some 
{0,1, , }.i k∈ …  By Lemma 2, this ensures 

0
.λ

<
∈�  � 

To provide an interpretation in view of Lyapunov 
functionals, we will need the following result.  
Lemma 4: Let 

0
τ

≥
∈�  be given. System (1) is 

asymptotically stable if and only if there exists a 
symmetric matrix X n n×

∈�  such that X > 0 and ( ( ))V x t�  
0,<

0
( ) ,nx t∀ ∈� [ , )t τ∈ ∞  hold along the solution to (1), 

where 

( ( )) : ( ) ( )
t

T

t
V x t x Xx d

τ

θ θ θ
−

= ∫ . 

Proof: The proof easily follows from the fact that A is 
Hurwitz stable iff e

Aτ is Schur stable and using the 
discrete-time Lyapunov theory. � 
 

Remark 1: Suppose λ∈�  and n

v∈�  satisfy 
,Av vλ=  i.e., λ and v are, respectively, an eigenvalue 

and the corresponding eigenvector of A. If ( ( )) 0,V x t <
�  

0
( ) ,nx t∀ ∈� [ , )t τ∈ ∞  holds along (1), then we have 

0

( ( )) ( ) ( ) ( ) ( )

( ) ( ) ( )

0, ( ) .

T

T T

T A A

n

V x t x t Xx t x t Xx t

x t X e Xe x t

x t

τ τ

τ τ

− −

= − − −

= −

< ∀ ∈

�

�

 

Setting x(t) = v in the above inequality leads to 
*

* * *

0 0
(1 ) (1 ( , ) ( , )) 0.v Xv e e v Xv

λ τ λτ
δ λ τ δ λ τ

− −

− = − <  

Since *

0,v Xv >  this implies *

0 0
1 ( , ) ( , ) 0,δ λ τ δ λ τ− <  

which, together with Lemma 2, implies 
0
.λ

<
∈�  In 
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this respective, the existence test of Lyapunov functional 
( ( ))V x t  in Lemma 4 corresponds to checking 1−  

*

0e e
λ τ λτ− −

<  and hence the asymptotic stability of (1), 
while the conventional Lyapunov inequality T

A P PA+  
0<  with 0P >  corresponds to testing *

0,λ λ+ <  
which also guarantees 

0
.λ

<
∈�  

Remark 2: The discrete-time counterpart of the 
Lyapunov functional approach has already been 
investigated by some researchers. For instance, a class of 
Lyapunov functionals that consist of an augmented state 
vector has proven to be effective in reducing the 
conservatism of the quadratic Lyapunov function 
approach for discrete-time nonlinear systems [36-38]. On 
the other hand, its continuous-time version has been also 
pursued in [18,39,40] for LTI systems. They employed a 
class of quadratic Lyapunov functions associated with 
higher-order time-derivatives of the state.  

As the next step, let us assume that A is invertible, i.e., 
the number 0 is not an eigenvalue of A, and define 

0

1

0

( , ) :

! 1
( , ) : ( ) ,

!( )

A

k
k A i

k k

i

A e

k
A A e A k

i

τ

τ

τ

τ τ

τ

−

−

− −

=

⎧Δ =
⎪

⎧ ⎫⎨ ⎪ ⎪
Δ = − − ∈⎨ ⎬⎪

− ⎪ ⎪⎩ ⎭⎩
∑ �

 

 (4) 
with 

0
.τ

≥
∈�  By L’ Hospital’s rule, it is easy to see 

that  

1 0
0 0 0

lim ( , ) lim ( , ) lim ( , )
k k n
A A A I

τ τ τ

τ τ τ
−

→ → →

Δ = Δ = = Δ =�  

holds. Therefore, we can define signals ( ),
i
x t {0,1,i∈  

, }k…  that satisfy  

( ) : ( , ) ( ),
i i i
x t A x tτ τ− = Δ ( , ) [ , ) {0,1, , }t i kτ∀ ∈ ∞ × …  (5) 

and consider the following functionals:  

( ( )) : ( ) ( ) ,
t

T

i i i i i
t

V x t x X x d
τ

θ θ θ
−

= ∫  {0,1, , },i k∈ …  (6) 

where n n

i
X

×

∈�  are positive definite matrices to be 
determined.  
Lemma 5: Let 

0
τ

>
∈�  be given. System (1) is 

asymptotically stable if and only if there exists symme-
tric matrices Xi

n n×

∈�  such that Xi > 0 and 
0

( ( ))k

i i
V x t

=

∑ �  
0<  holds along 

0
( ) ,n
i
x t ∈� ( , ) [ , ) {0,1, , }t i kτ∈ ∞ × …  

that satisfy (5). 
Proof: The proof of the necessity part straightforward-

ly follows from Lemma 4. To prove sufficiency, let λ and 
v denote an eigenvalue and the corresponding eigenvec-
tor of A, respectively, i.e., .Av vλ=  We can write 

0
( ( )) 0,

k

ii
V x t

=

<∑ �

0
( ) n

i
x t∀ ∈�  as follows: 

0 0

0

( ( )) ( ) { ( , ) ( , )} ( )

0, ( ) .

k k
T T

i i i i i i i

i i

n

i

V x t x t X A X A x t

x t

τ τ

= =

= −Δ Δ

< ∀ ∈

∑ ∑�

�

 

Setting ( ) ,i

i
x t vλ= {0,1, , }i k∀ ∈ …  in the above inequal-

ity yields 

* * *

0

( ) ( ){1 ( , ) ( , )} 0.
k

k

i i i

i

v X vλ λ δ λ τ δ λ τ

=

− <∑  

Since * *( ) 0,k

i
v X vλ λ >  by Lemma 3, 

0
λ

<
∈�  holds, 

and hence, (1) is asymptotically stable. � 
 

Remark 3: The condition of Lemma 4 is recovered by 
setting k = 0 in Lemma 5. 
 

Based on Lemma 3 or 5, we are now ready to state the 
main theorem in this work, a necessary and sufficient 
LMI condition for asymptotic stability of (1). 
Theorem 1: Let 

0
τ

>
∈�  be given. System (1) is 

asymptotically stable if and only if there exist symmetric 
matrices ,

n n

i
X

×

∈�  a matrix ( 2)
,

k n kn
Z

+ ×
∈�  and a 

positive integer k ∈�  such that the following LMIs 
hold: 

1
0,

k
X

+
>  

1 1
( ) He{ ( )( )} 0,

k k k n
X Z A I

+ +
+ ⊗ <Q C T  (7) 

where 

( 1) ( 1)
1 0 1

( 1)
1

( 1)
1

1 1 1

( 1) ( 2)

1
1 1

1

1

1

: diag( , , , )

: [ 0 ]

: [0 ]

diag( , / 2, , /( 2))

1 0
( ) :

0 1

k n k n

k k

k k

k k k

k k

k k k

k k k

k k

T

k n

k k

k n

k n
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I
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×
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+
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+

+

+
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= ∈

= + +
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⊗⎡ ⎤
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�

�

…

�

L

R

T L R

T
Q

L

T

L

( 2) ( 2)

( 1)
( ) : .

k n k n

kn k n

k k k n
C A A I

+ × +

× +

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪ ∈
⎪
⎪

= ⊗ − ⊗ ∈⎪⎩

�

�L R

 (8) 

Proof: (Sufficiency) Let λ and v denote an eigenvalue 
and the corresponding eigenvector of A, respectively, i.e., 
Av = λv. Moreover, let use assume that LMIs in (7) hold 
and define vector-valued complex functions 

2
( )

k
d λ

+
∈  

2k+
�  and 1

1
( ) k

k
l λ

+

+
∈�  as 

1

2 0 1 1

2

( ) : [ ( , ) ( , ) ( , )]

,

k T

k k

k

d λ δ λ τ λδ λ τ λ δ λ τ
+

+ +

+

=

∈

�
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1

1
( ) : [1 ] ,k T k

k
l λ λ λ

+

+
= ∈� �  

where ( , )
k

δ λ τ  is defined in (2). Then, by direct calcu-
lations and using the relations 

1

11

1 2 1

( , )
[1 / ] ,

( , )
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k
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k

k

k k k

k

d l

λ δ λ τ
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−

−−
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⎡ ⎤
= ⎢ ⎥
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it is easy to show that  

1 2 1
( )( ( ) ) ( )

k n k k
I d v l vλ λ

+ + +
⊗ ⊗ = ⊗T  

and 

1 2 1

1

( )( )( ( ) ) ( )( ( ) )

( )( )

0

k k n k k k

k

kn

A I d v A l v

l Av v

λ λ

λ λ

+ + +

×

⊗ ⊗ = ⊗

= −

=

C T C

 

hold. Therefore, it follows from (7) that 
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*

2 1 1

2

*

2 1 2

* *

1 1 1 1 1 1

* * *

0

( ( ) ) [ ( ) He{ ( )( )}]

( ( ) )

( ( ) ) ( )( ( ) )

( ) ( ) ( ) ( )

( ) {1 ( , ) ( , )}

0.

k k k k n

k

k k k

k k k k k k

k
i

i i i

i

d v X Z A I

d v

d v X d v

l X l d X d

v X v

λ

λ

λ λ

λ λ λ λ

λ λ δ λ τ δ λ τ

+ + +

+

+ + +

+ + + + + +

=

⊗ + ⊗

× ⊗

= ⊗ ⊗

= −

= −

<

∑

Q C T

Q

 

Since * *( ) 0,i

i
v X vλ λ >  the asymptotic stability of (1) 

is confirmed by Lemma 3. 
(Necessity): Let us assume that (1) is asymptotically 

stable. This guarantees that A is invertible and, according 
to Lemma 4, there exists a symmetric matrix ˆ

n n

X
×

∈�  
such that ˆ 0X >  and ˆX – ˆ 0

T
A A

e Xe
τ τ− −

<  hold. For 
future reference, let 

2
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k
A

+
D  denote 

( 2) 2
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k L k R k
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+ ×

+ + +
= ∈�D D D  
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( ) : !/( ) ,ig i i τ= −  and ( , )
k
A τΔ is defined in (4). Then, 

by direct calculation, it can be seen that 

2 1 2 0
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A X A X

+ + + =
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τ τ
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⎡ − Δ Δ
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− Δ⎢⎣
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i
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τ ⎤− Δ
⎥
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 (9) 

Let 
0

ˆ ,X X=
1 2 1k n

X X X Iε
−

= = = =�  with suffi-
ciently small 0ε >  and 2( ) ,

k n
X g k Iρ

−

=  where ρ  
is a positive real number. Then, it is straightforward to 
show that 

2 1 2
( ) ( ) ( )T
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A X A

+ + +
D Q D  

2

0
ˆ( ) ( ( ) )

k n
X g i Iρ

−

≅ Ω +Ω  

2ˆ ˆ ( ) ( )
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T
A A T k T

k k
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k

X e Xe g k A A

Xe
τ
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− − −

−

⎡ − + −
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⎢ − −⎣

I I
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ˆ

,
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T
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k

n

e X

X I

τ

ρ
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⎥
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where 
1

0
: (1/ !)( ) .
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k i
e i A

τ

τ
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=
= − −∑I  Noticing that 

2 1 2
lim ( ) ( ) ( )
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k k k
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A X A
+ + +
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T T
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Xe X I
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− − −

−

⎡ ⎤− −
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one can deduce the existence of sufficiently large real 
number 

0
ρ

>
∈�  and integer k̂ ∈�  satisfying 

2 1 2
( ) ( ) ( ) 0T

k k k
A X A

+ + +
<D Q D  

for all ˆ.k k≥  Finally, it can be seen by simple algebraic 
manipulations that 

2 1
( ) { ( )( )} ,

k k k n
A A I

+ + ⊥
= ⊗D C T  and 

hence, the conclusion of the theorem is provided by 
Finsler’s lemma [29]. � 
 

Remark 4: Let us suppose that LMIs in (7) hold and 
( 2)k n kn

Z
+ ×

∈�  has a block partitioned matrix form with 
2k +  row partitions and k column partitions. By direct 

calculation, it can be seen that the block (1,1) of LMI 

1 1
( ) He{ ( )( )} 0

k k k n
X Z A I

+ +
+ ⊗ <Q C T  in (7) ensures 

11
He{ } 0,Z A <  where 

11

n n

Z
×

∈�  is block (1,1) of Z, 
which guarantees that A is invertible. On the other hand, 
it follows from the condition 

1 1
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X Z A I

+ +
+ ⊗ <Q C T  

in (7) that 

, 2 1 1

, 2

( ) [ ( ) He{ ( )( )}]

( )

T T

L k k k k n

L k

x t X Z A I

x t

+ + +

+

+ ⊗

×

D Q C T

D

 

0

0

( ( )) 0, ( ) ,
k

n

i i

i

V x t x t

=

= < ∀ ∈∑ � �  

where ( )
i
x t  and ( ( ))

i
V x t  are defined in (5) and (6), 

respectively. By Lemma 5, this implies that (1) is 
asymptotically stable. In this respect, the feasibility test 
of LMIs in Theorem 1 can be alternatively interpreted as 
checking the existence of a Lyapunov functional 

0
( ( )) : ( ( ))k

i i
V x t V x t

=

= ∑
�  such that ( ( )) / 0dV x t dt <�  along 

0
( ) ,n
i
x t ∈� ( , ) [ , ) {0,1, , }.t i kτ∈ ∞ × …  
 

Theorem 2: Let 
0

τ
>

∈�  be given. If the LMI condi-
tion of Theorem 1 is fulfilled for a given positive integer 

ˆ ,k k= ∈�  then those corresponding to any ˆk k>  are 
also satisfied. 
Proof: It suffices to check that if the LMI condition of 

Theorem 1 is fulfilled for ˆ ,k k= ∈�  then that corres-
ponding to ˆ 1k k= +  is also satisfied. To prove this, 
suppose that there exist symmetric matrices n n

i
X

×

∈�  
and a matrix Z ( 2)k n kn+ ×

∈�  such that (7) holds for k = ˆ.k  
Since ˆ ˆ ˆ2 1

( ) { ( )( )}
nk k k

A A I
⊥+ +

= ⊗D C T  pre-multiplying 

ˆ ˆ ˆ1 1
( ) He{ ( )( )} 0

nk k k
X Z A I

+ +
+ ⊗ <Q C T  by ˆ 2

( )T
k

A
+

D  and 
post-multiplying by the transpose yield 

ˆ ˆ ˆ 02 1 2
( ) ( ) ( ) ( ) 0,T k

i i ik k k
A X A X

=+ + +
= ∑ Ω <D Q D  
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where ( )
i

Ω ⋅  is defined in (9). Now, let us notice that  

2

ˆ 1

ˆ2 1

ˆ ˆ ˆ1 1 1

ˆ 1

ˆ( ( 1) )

ˆ( 1) ( )
,

nk

T k T T

k k k

nk

g k I

g k A A

I

ρ

ρ

−

+

− +

+ + +

+

Ω +

⎡ ⎤+ − −
⎢ ⎥=
⎢ ⎥− −⎣ ⎦

I I I

I

 

where ( ) : !/( )ig i i τ= − , 

ˆ

ˆ 01
: (1/ !)( )

A k i

ik
e i A

τ

τ
−

=+
= −∑ −I , 

and ρ  is a positive real number. Therefore, it is clear 
that there exists a sufficiently small 

0
ρ

>
∈�  such that 

2

ˆ ˆ ˆ ˆ2 1 2 1

ˆ ˆ ˆ3 2 3

ˆ( ) ( ) ( ) ( ( 1) )

( ) ( ) ( ) 0

T

nk k k k

T

k k k

A X A g k I

A X A

ρ
−

+ + + +

+ + +

+Ω +

= <

D Q D

D Q D

 

holds with 2

ˆ ˆ2 1

ˆ: diag( , ( 1) )
nk k

X X g k Iρ
−

+ +
= + . We apply 

then Finsler’s lemma [29] with  

ˆ ˆ 23 1
( ) { ( )( )}

k nk k
A A I

+ ⊥+ +
= ⊗D C T  

to complete the proof.  � 
 

3. ROBUST STABILITY ANALYSIS 

 
Let us consider the continuous-time uncertain LTI 

system 

( ) ( ) ( ),x t A x tα=�  (10) 

where ( ) n

x t ∈�  is the state and matrix ( ) n n

A α
×

∈�  
is not precisely known, but constant in time and assumed 
to belong to the polytopic type uncertain domain, i.e.,  

1
( ) { : ; },N

i i i
A Aα α α

=

∈ = ∑ ∈A A P  

where 
1 2

: [ ]
T

N
α α α α= �  is the polytope coordinate 

and P  is the unit simplex given by 

1
: { : 1, 0, 1, 2, , }

N N

i i i
i Nα α α

=

= ∈ ∑ = ≥ =� …P . 

Remark 5: As stated in [16], the mathematical de-
scription of the convex polytopic domain of the system 
matrix is one of the most widely adopted representation 
of system uncertainty due to its simplicity, generality, 
and easy handling, mainly in the context of the Lyapu-
nov-based method; by means of the Lyapunov theory, it 
provides a systematic framework to formulate several 
analysis and control design problems in terms of convex 
LMI optimization procedures. Moreover, as pointed out 
in [34,35], it is one of the most general ways of capturing 
the structured uncertainty that may affect the system pa-
rameters. For instance, it includes the well-known inter-
val parametric uncertainty; if some elements of A is un-
known but assumed to be within some known intervals, 
this situation can easily be accommodated by a proper 
choice of the set of extreme matrices of A. 

As a straightforward corollary to Theorem 1, we have 
the following necessary and sufficient condition for 
robust asymptotic stability of (10). 

Corollary 1: Let 
0

τ
>

∈� be given. Uncertain system 
(10) is asymptotically stable if and only if there exist 
parameter-dependent symmetric matrices Xi ( ) ,n n

α
×

∈�  
a parameter-dependent matrix ( 2)( ) ,k n kn

Z α
+ ×

∈�  and a 
positive integer k∈�  such that the following parameter-
dependent LMIs (PD-LMIs) hold for all α ∈P :  

1

1 1

( ) 0,

( ( )) He{ ( ) ( ( ))( )} 0,

k

k k k n

X

X Z A I

α

α α α

+

+ +

>

+ ⊗ <Q C T
 

where 

1 0 1

( 1) ( 1)

( ) : diag( ( ), ( ), , ( ))

,

k k

k n k n

X X X Xα α α α
+

+ × +

=

∈

…

�

 

and ( ),⋅Q ( ),
k
⋅C  and 

1k+
T  are defined in (8). 

Proof: It follows immediately from Theorem 1. � 
The following theorem states that, with a proper 

choice of 
0
,τ

>
∈�  the argument of Corollary 1 remains 

valid even when parameter-dependent matrices Xi (α) are 
replaced by constant matrices Xi. 
 

Theorem 3: Uncertain system (10) is asymptotically 
stable if and only if there exist symmetric matrices Xi 

,

n n×

∈�  a parameter-dependent matrix Z(α) ( 2)
,

k n kn+ ×
∈�  

a positive real number 
0
,τ

>
∈�  and a positive integer 

k∈�  such that the following PD-LMIs hold for all 
α ∈P : 

1

1 1

0,

( ) He{ ( ) ( ( ))( )} 0

k

k k k n

X

X Z A Iα α

+

+ +

⎧ >⎪
⎨

+ ⊗ <⎪⎩Q C T
 (11) 

and 
1
,

k
X

+
( ),⋅Q ( ),

k
⋅C  and 

1k+
T  are defined in (8). 

Proof: The proof of the sufficiency part straightfor-
wardly follows from Corollary 1. To prove necessity, 
suppose that (10) is asymptotically stable. Then, by 
Lyapunov theory, there exists a parameter-dependent 
symmetric matrix ( ) n n

P α
×

∈�  such that Lyapunov 
equation ( ) 0,P α >  

( ) ( ) ( ) ( )T

n
A P P A Iα α α α+ = −  

holds for all α ,∈P  whose solution is given analytically 
by 

( ) ( )

0
( ) .

T
A A

P e e d
α θ α θ

α θ

∞

= ∫
 

By resorting to the same reasoning adopted within the 
proof of Theorem 4 in [18], we conclude that there exists 
a sufficiently large τ̂ ∈� >0 independent of α such that 

P(α) can be approximated by 
ˆ ( ) ( )

ˆ
0

( ) : ,
T

A A
P e e d

τ
α θ α θ

τ
α θ= ∫  

which solves  

ˆ ˆ ˆ

( ) 0, ( ) ( ) ( ) ( ) 0T
P A P P A
τ τ τ
α α α α α> + <  

for all ,α ∈P  from which it follows that 

ˆ ( ) ( )
ˆ ˆ

0
( ) ( ) ( ) ( ) ( )

T
T A Ad

A P P A e e d
d

τ
α θ α θ

τ τ
α α α α θ

θ

+ = ∫
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ˆ ˆ( ) ( )T
A A

n
e e I

α τ α τ

= −  

0, ,α< ∀ ∈P  

and equivalently, ˆ ˆ( ) ( )
0

T
A A

n
I e e

α τ α τ− −

− <  holds for all 

α .∈P  The remainder of the proof is then simple 
repetition of the necessity part of Theorem 1, and thus is 
omitted here for the sake of space. � 

 
Remark 6: It is worth pointing out that the PD-LMI 

condition of Theorem 3 is only sufficient when k and τ 
are small, but as k and τ tend to infinity, it converges to a 
necessary and sufficient condition.  
Remark 7: In this work, we provide a generic 

framework that can represent the stability conditions 
using QLF, PD-QLFs, and the developed Lyapunov 
functionals in a unified fashion. For instance, recalling the 
definitions of 

2
( ),

k
d λ

+ 1
( ),

k
l λ
+

 and relation 
1 2

( )
k k

d λ
+ +

T  

1
( )

k
l λ
+

=  in the proof of Theorem 1, one can easily 
prove that condition (11) with 

1
0

k
X

+
>  replaced by 

k
P > 0, where ,

kn kn

k
P

×

∈�  and 
1

( )
k

X
+

Q  replaced by  

1

( 2) ( 2)
1

0 1
( )

1 0

( )

T

k nT

k n k

k n

k n k n k n

k n

k n

I
I P

I

I
I

I

+

+ × +

+

⊗ ⎛ ⎞⎡ ⎤ ⎡ ⎤
⊗ ⊗⎜ ⎟⎢ ⎥ ⎢ ⎥⊗ ⎣ ⎦⎣ ⎦ ⎝ ⎠

⊗⎡ ⎤
× ⊗ ∈⎢ ⎥⊗⎣ ⎦

�

L
T

R

L
T

R

 

corresponds to (but is not the same as) Lemma 6 in [18], 
which is based on a special class of PD-QLFs using the 
higher-order time-derivatives of the state. 

 
The conditions of Theorem 3 and Corollary 1 are 

numerically intractable (infinite-dimensional) PD-LMIs, 
which are known to be an NP-hard problem [33]. To 
obtain finite-dimensional LMIs, particular choices for 
Xi (α) and Z(α) can be imposed in Theorem 3 and 
Corollary 1. For instance, by imposing linear depend-
ence in α on Xi (α) and Z(α) in Corollary 1, we arrive at 
the following sufficient LMI condition. 
Theorem 4: Let k∈�  and τ

0>
∈�  be given. Uncer-

tain system (10) is asymptotically stable if there exist 
symmetric matrices 

,

n n

l i
X

×

∈�  and matrices 
i

Z ∈  
( 2)k n kn+ ×

�  such that the following LMIs hold for all 
{1,2, , 1}i N∈ −…  and { 1, 2, , }j i i N∈ + + … : 

1,

1, 1

1, 1,

1 1

0,

( ) He{ ( )( )} 0,

( ) ( )

He{ ( )( ) ( )( )}

0,

k i

k i i k i k n

k i k j

i k j k n j k i k n

X

X Z A I

X X

Z A I Z A I

+

+ +

+ +

+ +

>

+ ⊗ <

+

+ ⊗ + ⊗

≤

Q C T

Q Q

C T C T

 

where ( 1) ( 1)
1, 0, 1, ,: diag( , , , )

k n k n

k i i i k i
X X X X

+ × +

+
= ∈… � , 

and ( ),⋅Q ( ),
k
⋅C  and 

1k+
T  are defined in (8). 

Proof: The proof can be worked out in similar lines to 
the sufficiency part of Theorem 1 and by using the LMI 

relaxation technique developed in [8]. Thus, it is omitted 
here for the sake of space. � 
 

Remark 8: The complexity of the LMI problem can 
be estimated by the total number ND of decision variables 
and the total number NL of rows of the LMI problem. For 
Theorem 4, 

2( 1) ( 1) / 2 ( 2) ,

(2 3) ( 2) ( 1) / 2.

D

L

N n n N k k kn N

N k nN k nN N

= + + + +

= + + + −

 

Remark 9: Future work will proceed along the fol-
lowing avenues: 

1) Providing a formal procedure or tuning guidelines 
to determine parameter τ that produces less conservative 
results. 

2) If the LMI condition of Theorem 4 is fulfilled for a 
given positive integer ˆ ,k k= ∈�  then do they always 
admit a feasible solution for any ˆk k> ? 

3) Does the conservativeness of Theorem 4 asymptoti-
cally vanish as k tends to infinity? 

4) If not, then how can we obtain a convergent LMI 
relaxation by using the similar ideas?  

5) How can the proposed approach be improved in 
such a way so that the computational complexity can be 
reduced? 
 

4. EXAMPLES 

 
All numerical examples in the sequel were treated 

with the help of MATLAB R2008a running on a PC with 
Intel Core i7-3770 3.4GHz CPU, 24GB RAM. The LMI 
problems were solved with SeDuMi 1.3 [31] combined 
with the user-friendly interface 1.04 [32]. 
 

Example 1: In order to illustrate the results of this 
paper, as well as in [12], we consider the problem of 
computing the robust parametric margin ρ defined as 

: sup{ : ( , ) isHurwitz

for all ( , ) [0, ]},

Aρ η α η

α η η

= ∈

∈ ×

�

P
 

where
1

( , ) : ( ),N

i i i
A Aα η α η

=

= ∑
0

( ) : ,
i i

A A Aη η= + and 

, {0,1, , }
i

A i N∈ …  are given as 
 

0

2.4 0.6 1.7 3.1

0.7 2.1 2.6 3.6
,

0.5 2.4 5 1.6

0.6 2.9 2 0.6

A

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 

1

1.1 0.6 0.3 0.1

0.8 0.2 1.1 2.8
,

1.9 0.8 1.1 2.8

2.4 3.1 3.7 0.1

A

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− − − −⎢ ⎥⎣ ⎦

 

2

0.9 3.4 1.7 1.5

3.4 1.4 1.3 1.4
,

1.1 2 1.5 3.4

0.4 0.5 2.3 1.5

A

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
−⎢ ⎥⎣ ⎦
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3

1 1.4 0.7 0.7

2.1 0.6 0.1 2.1
.

0.4 1.4 1.3 0.7

1.5 0.9 0.4 0.5

A

− − − −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

The stability bounds given by a bisection process 
together with several previous conditions and Theorem 4 
in this paper are listed in Table 1, where the exact bound 
was found by means of gridding of the parameter space. 
The results reveal that Theorem 4 of this paper can offer 
less conservative results than the quadratic stability and 
PD-LF approaches (Theorem 4 in [6], Lemma 1 in [8], 
Theorem 1 in [9]). It is also observed from the results of 
Table 1 that for k > 3 in this example, the LMI condition 
of Theorem 4 becomes more conservative due to high 
computational burden. The results imply that the compu-
tational complexity can be an issue for large scale prob-
lems (large k, n, and N); for instance, as k increases, so 
does the problem size of Theorem 4 as well, and this can 

 

result in more frequent failure in achieving a feasible 
solution due to quicker saturation of the memory. How-
ever, the computational burden required for small-scale 
systems is still reasonable, and by a suitable choice of k, 
the system analyst can achieve a good compromise be-
tween computational complexity and conservatism. 
Finally, Figs. 1 and 2 illustrate the stability bounds 
obtained by using Theorem 4 and Theorem 4 with 

 

Table 1. Example 1: Stability bounds of several ap-
proaches. 

Method ρ 

Exact bound 2.2238 

Quadratic stability [3] 1.0191 

Theorem 4 in [6] 1.4973 

Lemma 1 in [8] 1.4720 

Theorem 1 in [9] 1.8784 

Corollary 4.4 in [11] with k = 1 1.1228 

Corollary 4.4 in [11] with k = 2 2.2238 

Theorem 1 in [12] with m = 2 2.2237 

Theorem 4 in [16] with (g, d ) = (1,0) 1.8632 

Theorem 4 in [16] with (g, d ) = (2,0) 2.2238 

Theorem 8 in [18] with k = 2 2.2238 

Theorem 4 with k = 2. 

Maximum bound in interval τ∈ (0, 0.4] 
1.8951 

Theorem 4 with k = 3. 

Maximum bound in interval τ∈ (0, 0.4] 
2.2127 

Theorem 4 with k = 4. 

Maximum bound in interval τ∈ (0, 0.4] 
2.0957 

Theorem 4 with k = 2 and Xl,i = Xl. 

Maximum bound in interval τ∈ (0, 0.4] 
1.0079 

Theorem 4 with k = 3 and Xl,i = Xl. 

Maximum bound in interval τ∈ (0, 0.4] 
2.0322 

Theorem 4 with k = 4 and Xl,i = Xl. 

Maximum bound in interval τ∈ (0, 0.4] 
2.0946 

Theorem 4 with k = 5 and Xl,i = Xl. 

Maximum bound in interval τ∈ (0, 0.4] 
2.0948 

Theorem 4 with k = 6 and Xl,i = Xl. 

Maximum bound in interval τ∈ (0, 0.4] 
2.0650 

Theorem 4 with k = 2, Xl,i = Xl, and Zi = Z. 

Maximum bound in interval τ∈ (0, 0.4] 
1.0079 

Theorem 4 with k = 3, Xl,i = Xl, and Zi = Z. 

Maximum bound in interval τ∈ (0, 0.4] 
1.4740 

Theorem 4 with k = 4, Xl,i = Xl, and Zi = Z. 

Maximum bound in interval τ∈ (0, 0.4] 
1.7705 

Theorem 4 with k = 5, Xl,i = Xl, and Zi = Z. 

Maximum bound in interval τ∈ (0, 0.4] 
1.8328 

Theorem 4 with k = 6, Xl,i = Xl, and Zi = Z. 

Maximum bound in interval τ∈ (0, 0.4] 
1.8233 

 

 
Fig. 1. Example 1. Stability bound ρ obtained by using 

Theorem 4 for k∈{1,2,3} and different values of 
τ∈ (0, 0.4]. 

 

 
Fig. 2. Example 1. Stability bound ρ obtained by using 

Theorem 4 with Xl,i = Xl for k∈{1,2,3} and 
different values of τ∈ (0, 0.4]. 

 

 
Fig. 3. Example 1. Stability bound ρ obtained by using 

Theorem 4 with Xl,i = Xl and Zi = Z for 
k∈{1,2,3} and different values of τ∈ (0, 0.4]. 
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,

,
l i l

X X=  respectively, for different pairs of ( , )k τ ∈  
{1,2,3} (0,0.4],×  and the results of Theorem 4 with 

,

,
l i l

X X=
i

Z Z=  for ( , ) {1,2,3,4} (0,0.4]k τ ∈ ×  are 
plotted in Fig. 3. The results show that the proposed 
condition outperforms some previous ones, but not less 
conservative than those in [11,12,16,18]. 
 

Example 2: This example compares Theorem 4 with 
existing approaches in terms of numerical complexity. 
Let us consider the same system as in Example 1 again. 
Table 2 lists the numerical complexity of several 
approaches in terms of ND, the total number of decision 
variables, NL the total number of rows of the associated 
LMI problem, the average computational time (in 
seconds) spent by each test to provide a feasible solution 
with η=1, and the average time for each test was obtained 
by taking the average of ten measures. From the table, it 
can be seen that Theorem 4 is computationally more 
demanding than previous conditions except for Corollary 
4.4 in [11].  
 

5. CONCLUSION 

 
In this paper, we have suggested a systematical way to 

assure the robust stability via Lyapunov functionals. The 
approach can be interpreted as using mapping properties 
of a family of complex functions which map the closed 
right-hand side of the complex plane into the inside of 
the closed unit circle centered at the origin, which 
originally proposed in [26] and [27] for LTI time-delay 
systems. Using this, a sufficient LMI condition has been 
presented for robust stability analysis of continuous-time 
LTI systems subject to polytopic uncertainties. Finally 
examples have shown its validity. 
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