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Abstract: This paper is concerned with the problem of reliable H∞ filter design for a class of mixed-

delay Markovian jump systems with stochastic nonlinearities and multiplicative noises. The mixed de-

lays comprise both discrete time-varying delay and distributed delay. The stochastic nonlinearities in 

the form of statistical means cover several well-studied nonlinear functions. And the multiplicative dis-

turbances are in the form of a scalar Gaussian white noise with unit variance. Furthermore, the failures 

of sensors are quantified by a variable varying in a given interval. A filter is designed to guarantee that 

the dynamics of the estimation error is asymptotically mean-square stable. Sufficient conditions for the 

existence of such a filter are obtained by using a new Lyapunov-Krasovskii functional and delay-

partitioning method. Then a linear matrix inequality (LMI) approach for designing such a reliable H∞ 

filter is presented. Finally, the effectiveness of the proposed approach is demonstrated by a numerical 

example. 
 

Keywords: Delay partitioning, H∞ filter, Markovian jump, multiplicative noise, reliable filtering, 

stochastic nonlinearity. 

 

1. INTRODUCTION 

 
Filtering problem has long been an important research 

topic for its theoretical and practical significance in 
signal processing, communication and control systems. 
The filtering problem can be briefly described as the 
design of an estimator from the measured output to 
estimate the state of the given system. In the last decade, 
filtering problems for various systems have attracted 
considered research interests and many important results 
have been reported in the literature [1-8]. Among these 
results, the H∞ filter minimizes the H∞ norm of the 
transfer function between the noise and the estimation 
error. Thus, the filter H∞ is always used when the energy 
of the system noise are unknown. Therefore, H∞ filtering 
approach has gained amount of research attention [9-15]. 

Markovian jump systems have a strong practical 
background, since the dynamics of systems may undergo 

sharp changes in their structure and parameters caused 
by phenomena such as component failures of repairs 
changing subsystem interconnections and environmental 
disturbance. We can model these as systems with 
Markovian jump parameters. Markovian jump systems 
have attracted great attention, for their extensive 
applications in manufacturing systems, power systems, 
economics systems, communication systems, and 
networked control systems. Recently, many works about 
filtering problem of Markovian jump systems have been 
reported [16-24]. 

Recently, the control and filtering problems for 

systems with multiplicative noises have received much 

attention since many plants may be modeled by systems 

with multiplicative noises, and some characteristics of 

nonlinear system can be approximated by models with 

multiplicative noises rather than by linearized models 

[22], and the H∞ output-feedback control as well as 

passive control of discrete-time systems with state-

multiplicative noises has been investigated in [23]. 

Therefore it is necessary to investigate the H∞ filtering 

for systems with multiplicative noises. 

On the other hand, it is inevitable that there exist time 

delays in dynamic systems due to measurement, 

transmission and transport lags, computational delays or 

unexpected inertia of system components, which have 

been known as main sources to degrade the performance 

of the control system [11]. In the last decade, significant 

progress has been made on the analysis and synthesis 

issues for systems with various types of delays [24-40]. 

However, to the best of the author’s knowledge, the 

research on reliable H∞ filtering for mixed delay systems 

with stochastic nonlinearities and multiplicative noises is 

still an open problem that deserves further investigation. 
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In this paper, we focus on the reliable filtering 

problem against sensor failures for a class of mixed-

delay Markovian jump systems with stochastic 

nonlinearites and multiplicative noises. The objective is 

to design a reliable H∞ filter such that, in the presence of 

mixed delays, stochastic nonlinearities, multiplicative 

noises and Markovian jump parameters, the filtering 

error dynamics is asymptotically mean-square stable and 

also satisfies a prescribed H∞ disturbance attenuation 

index. (I) Comparing with [10,12,15], stochastic 

nonlinearities, multiplicative noises, time-varying delays 

and possible sensor failures are considered for 

Markovian jumping systems, therefore the model in this 

paper is more general. (II) To obtain the sufficient 

conditions for the existence of a filter for such systems, a 

new Lyapunov-Krasovskii functional has been proposed 

and the delay-partitioning method has been employed. 

 

Notation: The notion used through the paper is fairly 

standard. +

ℵ stands for the set of nonnegative integers; 
n

ℜ and n m×

ℜ  denote, respectively, the n dimensional 

Euclidean space and the set of all n×m real matrices. I
�
 

is the n -dimensional identity matrix. The notation 

( 0)P > ≥  means that P is real symmetric and positive 

definite (semi-definite). In symmetric block matrices or 

complex matrix expressions, we use an asterisk (*)to 

represent a term that is induced by symmetry and 

{...}diag  stands for a block-diagonal matrix. Matrices, 

if their dimensions are not explicitly stated, are assumed 

to be compatible for algebraic operations. Moreover, we 

may fix a probability space ( , , )pΩ �  where, p, the 

probability measure, has total mass 1. E{x} stands for the 

expectation of stochastic variable x. 
2
[0, )L +∞ is the 

space of square integrable vectors.  

 

2. PROBLEM FOMULATION 

 

Consider the following mixed-delay Markovian jump 

system with stochastic nonlinearities and multiplicative 

noises: 

1

1 2

( 1) ( ) ( ) ( ) ( ) ( ),

( ) ( ( )) ( ) ( )

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ), 0,

k v k

d k l k m

m

k

k k

k

x k A r x k A r v k x k

A r x k d k A r x k m

B r k f k

y k C r x k C r k

z k C r x k

x k k k

µ

ω

ω

φ

∞

=

+ = +

 + − + −



+ +
 = +
 =


= −∞ < ≤

∑

 

 (1) 

where ( )
n

x k ∈ℜ  is the state vector; ( )
r

y k ∈ℜ is the 

signal to be estimated; ( )
r

z k ∈ℜ is the output; ( )kω

q
∈ℜ  is the disturbance input, which belongs to 

2
[0,L

);+∞  d(k) denotes the time-varying delay with lower 

and upper bounds ( ) ,d d k d≤ ≤ ;k
+

∈ℵ ,d d  are 

known positive integers, d can always be written by 

d mτ=  where τ and m are integers; ( )kφ is the initial 

state of the system; and ( ),
k

A r ( ),
v k

A r ( ),
d k

A r ( ),
l

A k

( ),
k

B r
1
( ),
k

C r
2
( ),
k

C r ( )
k

C r  are matrix functions of the 

random jumping process rk is a Markov chain taking 

values in a finite state space {1,..., }Nϑ =  with 

transition probability matrix { }ij N Np π
×

=  given by 

1
{ | } ,r k k ijp r r π

+
=  , ,i j ϑ∀ ∈  0 1( , )ij i jπ ϑ≤ ≤ ∈  is the  

transition rate from i  t0 j and 
1

1, .
N

ijj
iπ ϑ

=

= ∀ ∈∑  v(k) 

is a scalar Wiener process (Brownian Motion) defined on 

a complete probability space ( , , )pΩ �  with  

{ ( )} 0,E v k =
2

{ ( )} 1.E v k =  

And the constants 0( 1,2,..)
m

mµ ≥ =  satisfy the fol-

lowing convergence conditions: 

1 1

: .
m m

m m

u mµ µ

+∞ +∞

= =

= ≤ < +∞∑ ∑  (2) 

The function f (k) describes the well-known stochastic 

nonlinearities that consist of x(k), x(k – d(k)), and

1
( ),

m
m

x k mµ
+∞

=
−∑  which is bounded in a statistical 

sense as follows: 

( )

*

1

*

*

1 1

{ ( )} 0,

{ ( ) ( )} ( ) ( )( ( ) ( )

( ( )) ( ( ))

( ) ( )),

q
T T T

l k l k l

i

T
l

T

m l mm m

E f k

E f k f k r r x k A x k

x k d k B x k d k

x k m C x k m

ρ ρ

µ µ

=

+∞ +∞

= =

=

=

+ − −

+ − −

∑

∑ ∑

 (3) 

where ( 1,..., )
l
l qρ =  are known column vectors, and 

* * *, , ( 1,..., )l l lA B C l q= are known positive-definite 

matrices with appropriate dimensions. 

 

Remark 1: Mixed delays are arousing increasing 

interest and have been intensively studied. However, 

almost all of the existing literature is concerned with 

either the discrete-delay systems [9,18,25,26] or the 

distributed-delay systems [27]. To the best of authors’ 

knowledge, papers on mixed delay systems in the 

discrete-time setting are scarce, especially for the H
�

 

filtering problem. In this paper, both discrete delay 

( ( ))x k d k−  and distributed delay 
1

( )
m

m

x k mµ
+∞

=
−∑  

have been considered simultaneously for the problem of 

reliable H∞ filtering. 

When the sensors experience failures, the sensor 

failure model, which is used to describe the measured 

signal sent from sensors, will be considered as 

( ) ( ),
f

y k My k=  (4) 

where the sensor fault matrix 
1

( ,..., )pM diag m m=

satisfies: 

1

1

0 { ,..., }

{ ,..., } 1,

p

p

M diag m m M

M diag m m

≤ = ≤

≤ = ≤

 (5) 
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there, ( 1,..., )
i

m i p= quantify the failure of the sensors. 

For simplicity, we introduce the following notation 

0 01 0

11

{ ,... } :
2

,..., ,
2 2

p

pp

M M
M diag m m

m mm m
diag

+
= =

+ +
=  

 

 (6) 

1

1 1

ˆ ˆ ˆ{ ,... } :
2

,..., .
2 2

p

p p

M M
M diag m m

m mm m
diag

−
= =

− −
=  

 

 (7) 

Then, M can be rewritten as follows: 

0 0 1
{ ,..., },

p
M M M diag θ θ= + ∆ = +  (8) 

where ˆ| | ( 1,..., ).
i i

m i pθ ≤ =  

Consider the filter of the following structure: 

ˆ ˆ( 1) ( ) ( ) ( ) ( ),

ˆˆ( ) ( ) ( ),

f
f k f k

f k

x k A r x k B r y k

z k C r x k

 + = +


=

 (9) 

where ( ),f kA r ( ),f kB r ( )f kC r  are parameters to be 

determined. By defining ˆ( ) [ ( ) ( )] ,
T T T

k x k x kη =  we 

obtain the following filtering error system: 

1

ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( )

ˆ ( ) ( ( ))

ˆ ( ) ( )

ˆ ˆ( ) ( ) ( ),

ˆ( ) ( ) ( ),

k v k

d k

m k m

m

k

k

k A r k A r v k k

A r k d k

A r k m

B r k If k

e k C r k

η η η

η

µ η

ω

η

+∞

=

 + = +


+ −



+ −

 + +
 =

∑  (10) 

where ˆ( ) ( ) ( )e k z k z k= −  is the estimated error, and 

1

( ) 0
ˆ( ) ,

( ) ( ) ( )

k

r
f k k f k

A r
A r

B r MC r A r

 
=  
 

 

( ) 0
ˆ ( ) ,

0 0

v k

v r

A r
A r

 
=  
 

( ) 0
ˆ ( ) ,

0 0

d k

d r

A r
A r

 
=  
 

 

( ) 0
ˆ ( ) ,

0 0

l k

m r

A r
A r

 
=  
  2

( )
ˆ( ) ,

( ) ( )

k

r
f k k

B r
B r

B r MC r

 
=  
 

 

ˆ [ 0] ,
T

I I=
ˆ ( ) ( ) .k f kC C r C r = −   

The parameters Af, Bf, Cf of the reliable filter (9) will be 

determined to make the filtering error dynamics 

asymptotically mean-square stable and satisfy a 

prescribed H∞ disturbance attenuation index. 

 

3. MAIN RESULTS 

 

The following Lemmas are essential in establishing 

our main results. 

Lemma 1 (Schur Complement): Given constant matri-

ces 
1
,S

2
S  and 

3
,S  where 

1 1
,

T
S S=

2 2
.

T
S S=  Then 

1

1 3 2 3
0

T
S S S S

−

+ <  if and only if 

1 3

2

0,
*

T
S S

S

 
< 

− 
  or  

2 3

1

0.
S S

S

− 
< 

 
 

Lemma 2 [38]: Let n n

G
×

∈ℜ  be a positive semi-

definite matrix, n

i
x ∈ℜ and constant αi

 > 0( 1,2,...).i =  

If the series concerned is convergent, then  

1 1 1

.

T

T

i i i i i i i i

i i i

x G x x G xα α α α

+∞ +∞ +∞

= = =

 
≤ 

 
∑ ∑ ∑  (11) 

In the following theorem, we will derive a sufficient 

condition such that system (10) is asymptotically mean 

square stable. 

Theorem 1: Given a scalar γ > 0 and the filter 

parameters Af, Bf, Cf . The filtering error system (10) is 

asymptotically mean-square stable with its H
�

 stable if 

there exist positve matrices Pi, Q1, Q2, S1, S2, R, matrices 

M1, M2, M3, positive scalars ( 1,..., )
l
l qδ =  satisfying 

the following inequality for any i ϑ∈  

1 1 1 2

1

2

3

* 0 0
0, 2,3,

* * 0

* * *

i t i

i

M M

S
t

S

λ λΠ Π 
 −  < =
 −
 

Π  

 (12) 

1 1 2 2

1

2

ˆ ˆ ˆ

* 0 0
0,
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* * *

T T T
l li ij j li lij

ij jj

I P IS IS

P

S

S

ϑ

ϑ
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π

∈

∈
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∑

∑  (13) 

1,..., ,l q=  

where 

2 2 1 1 2 2

3 3 1

1 2 2

3 3

1 2

2
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1 2 2
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T
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γ
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( ) ( )1, 6,

4, 4, 2

3 4 5,

2

*

1 1 2 2

* *

ˆ ˆ( ) ( ) ( )

ˆˆ ˆ ˆ( ) ( ) ,

i i

i i

i

T T

i ij j P ij j Pj j

T T T
P P l P
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l P l P P
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S X S X A IX
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ϑ ϑ
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∈ ∈
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∑ ∑

 

{

}

3 1 2
, , , ,

, , , ,

i ij j ij jj j
diag P P S S

I

ϑ ϑ
π π

∈ ∈
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−Λ −Λ −Λ −

∑ ∑
 

1
,λ τ=

2
,d mλ τ= −   

3
1,d mλ τ= − +  

1

1

1

0
,

0

Q
Q

Q
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=  −    

2

2

2

0
,

0

Q
Q

Q
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3

3

3

0
,

0

Q
Q

Q

− 
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0
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0

R

R R

µ

µ
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P n n mn n h

X I
+ +

=  

3 2 ,2 2 2 2 ,4[0 0 ],
P n mn n n n n h

X I
+ +

=  

4 2 ,2 6 2 2 ,[0 0 ],
P n mn n n n h

X I
+

=

 4, 1, 2
,

i iP P P
X X X= −  

5, 2 ,2 6
ˆ[ 0 ],

iP i n mn n h
X C

+ +
=

 6, 2 ,2 6
ˆ[ 0 ],

iP vi n mn n h
X A

+ +
=  

1

2 2 ,8

2 ,2 2 2 ,6

0
,

0 0

mn mn n h

Q
mn n mn mn n h

I
X

I

+

+

 
=  
 

 

2

2 2 ,2 6

2 ,2 4 2 2 ,2

0
,

0 0

n n mn n h

Q
n mn n n mn n h

I
X

I

+ +

+ +

 
=  
 

 

3

2 2 ,2 6

2 ,2 4 2 2 ,2

0
,

0 0

n n mn n h

Q
n mn n n n n h

I
X

I

+ +

+ +

 
=  
 

 

2 2 ,2 6

2 ,2 6 2 2 ,

0
,

0 0

n n mn n h

R

n mn n n n h

I
X

I

+ +

+

 
=  
 

 

1 2 2 2 ,2 4[ 0 ],
M n n n mn n h

X I I
+ +

= −  

2 2 ,2 2 2 2 ,4[0 0 ],
M n mn n n n n h

X I I
+

= −  

3 2 ,2 2 2 2 2 ,2[0 0 ],
M n mn n n n n n h

X I I
+ +

= −  

,2 8[0 I ],
h mn n h

X
ω +
=  

1/ 2 1/ 2
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q
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Proof: Define the following Lyapunov-Krasovskii 

functional candidate 
5

1
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V k V k
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1
( ) ( ) ( ) ( ),

T
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2
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k
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∑ ∑
 

1

5 1
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+∞ −
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=∑ ∑  
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( ) ( 1) ( ),
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η η τ η τ
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For each ,
k
r i ϑ= ∈  calculating the difference of ( )V k

along system (10) and taking the mathematical expecta-

tion, then 
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4, 4, 4, 4,

2 2

3 3

4

4

1 2

*
1 2

1

*
1 2

1

*
1 2

{ ( )}

{ ( )( ( )
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α τ α

α

ς α α α α

α α

=

− − −

= − = −

− −

= −

× − Ψ Ψ − Ψ Ψ

− Ψ Ψ

∑

∑ ∑

∑

5

1

{ ( )} { ( ) ( )

( ) ( )}.

T

T

m

E V k E k m R k m

k m R k m

µη η

η η

+∞

=

∆ ≤ − −

− − × −∑
 

According to Lemma 3. 

1

1 1

( ) ( )

1
( ( )) ( ),

T

m

m

T

m m

m m

k m R k m

k m R k m

µ η η

µ η µ η
µ

+∞

=

+∞ +∞

= =

− − −

≤ − −

∑

∑ ∑

 

therefore 

5
{ ( )} { ( )( ) ( )}T T

R R
E V k E k X RX kς ς∆ ≤  (14) 

with 

1

( ) [ ( ) ( ) ( ( )) ( )

( ( )) ( )] .

T T T T

T T T

m

m

k k k m k d k k d

k m k

ς η η η

µ η ω

+∞

=

= ϒ − − −

−∑
 

By the definition of ( ),αΨ  for any matrices M1, M2 and 

M3,  

1

1
2 ( ) [ ( ) ( ) ( )] 0,

kT

k
k M k k

α τ

ς η η τ α
−

= −

− − − Ψ =∑  

1

2 ( )
2 ( ) [ ( ) ( ( )) ( )]

kT

k d k
k M k m k d k

α

ς η τ η α
−

= −

− − − − Ψ∑
= 0,  
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( )

32 ( ) [ ( ( )) ( ) ( )]
k d kT

k d
k M k d k k d

α

ς η η α
−

= −

− − − − Ψ∑ = 0.  

From (12) 

1 2
ˆ ˆ( ( ( ) )

( 1,..., ).

T T
li li ij jj

l

tr I I P S d m S

l q

ϑ
ρ ρ π τ τ

δ

∈

+ + −

≤ =

∑
 

To analyze the H∞ performance of the filtering error 

system (10), consider the following index: 

2

0

2

0

2

0

{ ( ( ) ( ) ( ) ( ))}

{ ( ( ) ( ) ( ) ( )

( 1) ( ))} ( 1)

{ ( ( ) ( ) ( ) ( ) ( ))}.

N T T

N k

N T T

k

N T T

k

J E e k e k k k

E e k e k k k

V k V k V N

E e k e k k k V k

γ ω ω

γ ω ω

γ ω ω

=

=

=

= −

= −

+ + − − +

≤ − + ∆

∑

∑

∑

  

 (15) 

Then 

1, 1,

4, 4, 4, 4, 5, 5,

6, 6, 2 2

3 3

2

0

1 2

*

1

*

1

{ ( ( ) ( ) ( ) ( ) ( ))}

( )
{ ( ){ (

( )

ˆ ˆ )}}

ˆ ˆ

i i

i i i i i i

i i

N T T

k

T T
i p ij j Pj

T T T
P P P P P P

q
T T T
p ij j P P l li Pj

l

q
T T
P l li P

l

E e k e k k k V k

d k m
E k X P X

d m

X S X d m X S X X X

X P X X IA I X

X IB I X

ϑ

ϑ

γ ω ω

τ
ς π

τ

τ τ

π ψ

ψ

=

∈

∈

=

=

− + ∆

−
≤ Π +

−

+ + − +

+ +

+

∑

∑

∑ ∑

∑ 4 4

1, 1,

4, 4, 4, 4, 5, 5,

6, 6, 2 2

3

*

1

1 1

1 1 1 2 2 2

1 2

*

1

*

ˆ ˆ

( ) )

( )
(

( )

ˆ ˆ )}}

ˆ ˆ

i i

i i i i i i

i i

q
T T
P l li P

l

T T

T
i p ij j Pj

T T T
P P P P P P

q
T T T
p ij j P P l li Pj

l

T T
P l li

l

X IC I X

M S M d m M S M

d k m
X P X

d m

X S X d m X S X X X

X P X X IA I X

X IB I

ϑ

ϑ

ψ

τ τ

τ
π

τ

τ τ

π ψ

ψ

=

− −

∈

∈

=

+

+ + −

−
+ Π +

−

+ + − +

+ +

+

∑

∑

∑ ∑

3 4 4

*

1 1

1 1

1 1 1 3 2 3

ˆ ˆ

( ) )} ( )}.

q q
T T

P P l li P

l

T T

X X IC I X

M S M d m M S M k

ψ

τ τ ς

= =

− −

+

+ + −

∑ ∑

 (16) 

According to Lemma 2, it follows from (13) that  

{ }2

0
( ( ) ( ) ( ) ( ) ( )) 0,

N T T

k
E e k e k k k V kγ ω ω

=

− + ∆ <∑  

which implies JN < 0. When ( ) 0,kω ≡  by (13) and 

Lemma 2 

{ ( )} 0.E V k∆ <  

As discussed in [25], inequality (12) holds. This 

completes the proof. 

To solve the reliable H∞ filtering problem by the LMI 

technique, the stability conditions (13) in Theorem 1 

have to be inverted into LMI forms. Using the numerical 

convex optimization algorithm [41] to solve the modified 

LMI conditions, a reliable H∞ filter can be obtained. In 

the following conditions, we will try to find a possible 

way for the solution of (13). 

 

Remark 2: The asymptotically stability conditions for 

the filtering error system (10) with a prescribed H∞ 

performance level have been obtained in Theorem 1 via 

the delay-partitioning method. The condition can be 

checked by solving a set of LMIs. As reported that delay-

partitioning approach is effective in reducing the possible 

conservatism, at the cost of increasing the computation 

burden, therefore, the partitioning number m should be 

properly chosen. 

 

Theorem 2: Given a scalar 0γ >  and the filter 

parameters ,fA ,fB fC  The filtering error system (10) 

is asymptotically mean-square stable with its H∞ stable if 

there exist positive matrices ,
i
P

1
,Q

2
,Q

1
,S

2
,S ,R  

matrices M1, M2, M3, Θi, positive scalars ( 1,..., )
l
l qδ =  

satisfying the following inequality for any i ϑ∈  

1 1 1 2

1

2

3

ˆ

* 0 0
0, 2,3,

* * 0

ˆ* * *

i t i

ti

i

M M

S
t

S

λ λ Π Π
 

− Ξ = < = −
 
 Π 

 (17) 

1

2

1 2

,

ˆ ˆ ˆ

* 0 0
0,

* * 0

* * *

T T T
l li i li i li i

p i

li
S

S

I I Iδ ρ λ ρ λ ρ − Θ Θ Θ
 

Θ 
Ξ = < Θ 

 Θ 

 (18) 

1,..., ,l q=   

where 

,

,

T
p i ij j i ij

P
ϑ
π

∈

Θ = −Θ −Θ∑  

1, 1 ,

T

S i i i
SΘ = −Θ −Θ  

2 , 2 ,

T

S i i i
SΘ = −Θ −Θ  

1, 6, 4, 4,2 1 2
ˆ ( ) ( ) ( ) ( )

i i i i

T T T T

i i P i P i P i P
X X X Xλ λΠ = Θ Θ Θ Θ



      
2 3 4 5,

* * *ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ,
i

T T T T

l P l P l P P
A IX B IX C IX X 


 

1 23 , , , ,
ˆ { , , , , , , }.i p i p i S i S idiag IΠ = Θ Θ Θ Θ −Λ −Λ −Λ −  

Proof: Consider that  

( )
1

1

1 1

1

2 2

,

( ) ,

( ) ,

T T
ij j i i i ij j ij j

T T
i i i i

T T
i i i i

P P

S S

S S

ϑ ϑ
π π

−

∈ ∈

−

−

−Θ −Θ ≥ Θ Θ

−Θ −Θ ≥ Θ Θ

−Θ −Θ ≥ Θ Θ

∑ ∑

 

then 

1 1 1 2

1

2

3

ˆ

* 0 0
0, 2,3,

* * 0

* * *

i t i

i

M M

S
t

S

λ λ Π Π
 

−  < =
 −
 

Π  
�

 (19) 
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where  

3

1 1

1 1

1 2

{ ( ) , ( ) ,

( ) , ( ) , , , , }.

i

T T
i ij j i i ij j ij j

T T
i i i i

diag P P

S S I

ϑ ϑ
π π

− −

∈ ∈

− −

Π =

−Θ Θ −Θ Θ

−Θ Θ −Θ Θ −Λ −Λ −Λ −

∑ ∑

�

 

And define 

{ , , , ,

, , , , }.

T
i ij j ij

T
ij j ij

diag I I I P

P I I I I

ϑ

ϑ

π

π

−

∈

−

∈

Ψ = Θ

Θ

∑

∑
 

Pre- and Post-multiply (19) by Ψi and Ψi

T respectively, 

it is direct to drive inequality (13). By the same way, it is 

easy to obtain that (17) can imply (12). The proof is 

completed. 

 

Remark 3: By a variable Θi, we can eliminate the 

coupling between the Lyapunov matrices and the 

filtering error system matrices. Furthermore, this variable 

does not require any structural constraint such as 

symmetry, and provide potentially less conservative 

results.  

 

Theorem 3: Given a scalar γ > 0 and the filter 

parameters ,fA ,fB fC  The filtering error system (10) 

is asymptotically mean-square stable with its H∞ stable if 

there exist positive matrices ,
i
P

1
,Q

2
,Q

1
,S

2
,S ,R  

matrices, M1, M2, M3, Θi, positive scalars ( 1,..., )
l
l qδ =  

satisfying the following inequality for any i ϑ∈  

1 1 1 2

1

2

3

ˆ

* 0 0
0, 2,3,

* * 0

ˆ* * *

i t i

ti

i

M M

S
t

S

λ λ Π Π
 

− Ξ = < = −
 

′ Π 

 (20) 

1

2

1 2

,

ˆ ˆ ˆ

* 0 0
0,

* * 0

* * *

T T T
l li i li i li i

p i

li
S

S

I I Iδ ρ λ ρ λ ρ − Θ Θ Θ
 

Θ 
Ξ = < Θ 

 Θ 

 (21) 

1,...,l q=  

hold, where 

( )

1 23 , , , ,

,

1

ˆ { , , , , , , },

,

.

i p i p i S i S i

T
p i j i i

j ij ij jj j

diag I

P
ϑ ϑ
π π

−

∈ ∈

′Π = Θ Θ Θ Θ −Λ −Λ −Λ −

Θ = Λ −Θ −Θ

Λ = ∑ ∑

 

Proof: For any ,i ϑ∈  
ti

Ξ  in (17) can be rewritten as 

1( )
| , 2,3

j ij ij jj j
ti ij tij P

t

ϑ ϑ
ϑ π π
π

−

∈ ∈

∈ Λ =
Ξ = Ξ =

∑ ∑∑  (22) 

Then 0,
ti

Ξ < 2,3.t =  By the same way, 0
li

Ξ <

from (21). Therefore, the filtering error system (10) is 

asymptotically mean-square stable with an H∞ 

disturbance attenuation level γ. The proof is completed.  

In the following part, the problem of reliable H∞ filter 

design will be solved.  

 

Theorem 4: Given a scalar γ > 0 and the filter 

parameters Af, Bf, Cf The filtering error system (10) is 

asymptotically mean-square stable with its H∞ stable if 

there exist positive matrices 
1
,
i

P
2
,
i

P
3
,
i

P
1
,Q

2
,Q

11
,S

12
,S

13
,S

21
,S

22
,S

23
,S  R, matrices M1, 2

,M
3
,M

1
,
i

Θ  

2
,
i

Θ
3
,
i

Θ  positive scalars ( 1,..., )
l
l qδ =  satisfying the 

following inequality for any i ϑ∈  

1 1 1 2

1

2

3

* 0 0
0, 2,3,

* * 0

* * *

i t i

ti

i

M M

S
t

S

λ λ Π Π
 

− Ξ = < =
 −
 

Π  

�

�

�

 (23) 

3 1 3 2 3

4

5

6

* 0 0
0,

* * 0

* * *

l i i i

i

li

i

i

δ λ λ− Σ Σ Σ 
 Σ Ξ = <
 Σ
 

Σ  

�  1,...,l q=  (24) 

hold, where 

2 7 7 1 8 2 8 9 10 11 12
,

T T T T T T T T

i i i i i i i i i
λ λ Π = Σ Σ Σ Σ Σ Σ Σ Σ 

�

3 4 4 5 6
{ , , , , , , , },

T T T T

i i i i i
diag IΠ = Σ Σ Σ Σ −Λ −Λ −Λ −�  

11 12

1

13

,
*

S S

S

 
Σ =  

 
  

21 22

2

23

,
*

S S

S

 
Σ =  

 
 

1 2

3

,
*

i i

i

i

P P
P

P

 
=  
 

  
3 1 3

,

T T

i li i li i
ρ ρ Σ = Θ Θ   

1 1 1 2 2 2

4

3 3 3

,
*

T T
j i i j i i

i T
j i i

 Λ −Θ −Θ Λ −Θ −Θ
 Σ =
 Λ −Θ −Θ 

 

11 1 1 12 2 2

5

13 3 3

,
*

T T

i i i i

i
T

i i

S S

S

 −Θ −Θ −Θ −Θ
Σ =  

−Θ −Θ  
 

21 1 1 22 2 2

6

23 3 3

,
*

T T

i i i i

i
T

i i

S S

S

 −Θ −Θ −Θ −Θ
Σ =  

−Θ −Θ  
 

1 1 ,2 1

7

3 1 ,2 3

ˆˆ 0

ˆˆ 0

T T

i i i i i n mn i di

i T T

i i i i i n mn i di

A B MC A A

A B MC A A

Θ + Θ
Σ = 

Θ + Θ

 

 
,3 1 ,3 1 1

,3 3 ,3 3 1

ˆ0 0
,

ˆ0 0

T T

n n i li n n i i i i

T T

n n i li n n i i i i

A B B MC

A B B MC

Θ Θ +


Θ Θ + 

 

1 1 1 2 ,2

8

3 3 1 2 ,2

ˆˆ 0

ˆˆ 0

T T T

i i i i i i i n mn

i T T T

i i i i i i i n mn

A B MC A

A B MC A

Θ −Θ + −Θ
Σ = 

Θ −Θ + −Θ

 

 
1 ,3 1 ,3 1 1

3 ,3 1 ,3 3 1

ˆ0 0
,

ˆ0 0

T T T

i di n n i li n n i i i i

T T T

i di n n i li n n i i i i

A A B B MC

A A B B MC

Θ Θ Θ +


Θ Θ Θ + 

 

1/ 2
1 ,2 7

9

1/ 2
,2 7

... 0

... ... ... ,

... 0

li n mn n h

i

q li n mn n h

A

A

δ

δ

∗

+ +

∗

+ +

 
 

Σ =  
 
  
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1/ 2
,2 2 1 ,5

10

1/ 2
,2 2 ,5

0 ... 0

... ... ... ... ,

0 ... 0

n mn n li n n h

i

n mn n q li n n h

B

B

δ

δ

∗

+ +

∗

+ +

 
 

Σ =  
 
  

 

1/ 2
,2 6 1 ,

11

1/ 2
,2 6 ,

0 ... 0

... ... ... ... ,

0 ... 0

n mn n li n n h

i

n mn n q li n n h

C

C

δ

δ

∗

+ +

∗

+ +

 
 

Σ =  
 
  

 

12 ,2 6
ˆ 0 ,

i i i n mn n h
C C

+ +
 Σ = −   

( )
1

,fj ij ij fjj j
P

ϑ ϑ
π π

−

∈ ∈

Λ = ∑ ∑   1,2,3.f =  

And the parameters of the desired filter are given as 

2
ˆ ,

T
fi i iA A

−

= Θ   
2

ˆ ,
T

fi i iB B
−

= Θ   ˆ .fi iC C=  (25) 

Proof: Partition ,
i

Θ ,
i
P

1
,S

2
,S  as 

1 2

3

,
*

i i

i

i

Θ Θ 
Θ =  Θ 

  
1 2

3

,
*

i i

i

i

P P
P

P

 
=  
 

 

11 12

1

13

,
*

S S
S

S

 
=  
 

  
21 22

2

23

.
*

S S
S

S

 
=  
 

 

Substituting (25), (26) into (20) and (21), it is easy to 

obtain LMIs (23) and (24). This proof is completed. 

In Theorems 1-4, the asymptotically stability 

conditions of the filtering error system (10) and an H
�

 

filter based on the method are obtained with known 

sensor failure paramter and disturbance lever γ.  

 

Remark 4: As an important topic, the stability of 

nonlinearity stochastic systems has been widely 

investigated [17,24,28,34,36,37,39,40]. However, there 

are few works about the mixed time-delay systems with 

Markovian jump. In this regard, for the mixed time-delay 

systems with Markovian jump considered in this paper, 

people can further reduce the possible conservatism of 

the main results by making an effort to construct more 

general Lyapunov functionals, which leaves an 

interesting research issue for further investigation. 

 

4. NUMERICAL EXAMPLE 

 

In this section, a numerical example is used to 

demonstrate the effectiveness of the proposed reliable H∞ 

filter for a class of discrete-time mixed delay systems 

with nonlinearities and stochastic noises. Consider 

system (1) and the reliable filter (9) with the parameters 

as follows: 

1 3

0.5 0.1
,

0 0.2
A A

− 
= =  − 

 
2 4

0.4 0.1
,

0 0.2
A A

− 
= =  − 

 

1 2 3 4

0.1 0
,

0 0.1
d d d d

A A A A
 

= = = =  
 

 

1 2 3 4

0.01 0
,

0 0.01
l l l l

A A A A
− 

= = = =  − 
 

[ ]

[ ]

[ ]

1 2 3 4

1 2 3 4

11 12 13 14

0.1 0.1 ,

0.1 0.1 ,

0.1 0.1 ,

T

T

B B B B

C C C C

C C C C

= = = =

= = = =

= = = =

 

21 22 23 24
0.01,C C C C= = = =  

(3 )
3 ,

m

m
µ

− +

=   
1 ( 1)

( ) 1.5 ,
2

k

d k
+ −

= +  

[ ]1 2 3 4
0.003 0.003 ,

T
ρ ρ ρ ρ= = = =  

1 2 3 4 1 2 3 4

1 2 3 4

0.01 0
,

0 0.01

A A A A B B B B

C C C C

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

= = = = = = =

 
= = = = =  

 

 

and the transition probability matrix as shown in Fig. 1 is 

given by 

0.1 0.1 0.4 0.4

0.2 0.1 0.3 0.4
.

0.1 0.2 0.4 0.3

0.3 0.2 0.1 0.4

ϑ

 
 
 =
 
 
  

 

Then the following condition satisfying (2) holds. 

1 1

1 1
.

54 36
m m

m m

mµ µ µ

+∞ +∞

= =

= = < = < +∞∑ ∑  

And it is easy to verify that  

1.5,d =   2.5.d =  

And vi(k) ( 1,..., 4)i =  represent the mutually uncorrelated 

white noise sequences with unity covariances. The 

sensor fault matrix M is assumed to satisfy 0.6 M≤ ≤ 0.8. 

Then we can obtain that 
0

0.7,M =
ˆ 0.1.M =  And let 

m = 1, ( ) exp( /10) ( ),k k n kω = − × ( )n k  is uniformly 

distributed over [ 0.5,0.5].−  

With the above parameters and by using Matlab LMI 

Toolbox, we can solve LMIs (20) and (21), and obtain 

the filter parameters 

0.2740 0.1941
,

0.0010 0.1401
fA

− − 
=  − 

  
0.8156

,
0.3146

fB
− 

=  − 
 

[ ]0.8957 0.0054 ,fC =  

and γ* = 0.2925. With these parameters, according to 

Theorem 4, the filter error system (10) is asymptotically 

mean-square stable. The simulation results are shown in 

Figs. 2 and 3. Fig. 2 shows estimation of z(k) and Fig. 3 

shows the estimated error e(k) which verify that the 

expected system performance requirements are achieved 

well.  

 

Remark 5: It is obvious that, as m becomes larger, it 

will greatly decrease the conservatism of the conditions 

in main result, however, this will increase the 

computation burden, so how to choose proportional 

partitioning number m leaves for a further study. 
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Fig. 1. The transition of Markovian chain p. 

 

 

Fig. 2. Output z(k), and estimated output ˆ( ).z k  

 

 

Fig. 3. The estimated error e(k)  

 

5. CONCLUSION 

 

In this paper, the problem of the reliable H∞ filtering 

for a class of mixed-delay Markovian jump systems with 

stochastic nonlinearities and multiplicative noises has 

been investigated. A new Lyapunov-Krasovskii function-

al and delay-partitioning technique have been used to 

design the filter, such that the filtering error system is 

asymptotically mean-square stable. And the filter 

parameters can be obtained by solving certain LMIs. An 

illustrative example has been used to show the 

effectiveness of the proposed method. 
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