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Abstract: Output-constrained backstepping dynamic surface control (DSC) is proposed for the pur-

pose of output constraint and precise output positioning of a strict feedback single-input, single-output 

dynamic system in the presence of deadzone and uncertainty. A symmetric barrier Lyapunov function 

(BLF) is employed to meet the output constraint requirement using DSC as an alternative method of 

backstepping control that is adopted mainly to deal with the BLF’s constraint control. However, using 

the ordinary DSC method with the BLF limits the selection of the control gain whereas this limitation 

does not exist in the backstepping structure. To remove this limitation, we propose a partial backstep-

ping DSC method in which backstepping control is added only in the first recursive DSC design step. 

For precise positioning, an inverse deadzone method and adaptive fuzzy system are introduced to han-

dle unknown deadzone and unmodeled nonlinear functions. We show that the semiglobal boundedness 

of the overall closed-loop signals is guaranteed, the tracking error converges within the prescribed re-

gion, and precise positioning performance is ensured. The proposed control scheme is experimentally 

evaluated using a robot manipulator. 

 

Keywords: Adaptive fuzzy system, backstepping dynamic surface control, deadzone, output 

constrained strict feedback dynamic system, robot manipulator, symmetric barrier Lyapunov function. 

 

1. INTRODUCTION 

 

In recent decades, constraints in control design have 

become important in advanced industrial robotic system 

and micro-devices. Many control system have constraints 

on their outputs, inputs, or states in the form of the 

physical stoppage, saturation, performance and safety 

specifications. During operation, violation of the 

constraints leads to performance degradation, hazards or 

system damage. The design of barrier Lyapunov function 

(BLF) in the Lyapunov theorem has been proposed 

recently for handling constraints in Brunovsky-type 

systems [1], strict feedback nonlinear systems [2], output 

feedback nonlinear systems [3], electrostatic micro-

actuators [4], vessel systems [5], partial state constraints 

[6], switching control [7], and time-varying constraints 

[8]. Most of these approaches [2-8] used a backstepping 

control that provides a systematic procedure for 

designing a stabilizing controller for a nonlinear system 

by following a step-by-step recursive algorithm [9,10]. 

Another advantage of backstepping control is that it 

guarantees global or regional regulation and tracking 

properties, and also avoids the cancellation of useful 

nonlinearities, unlike the feedback linearization 

technique. However, to apply the backstepping method, a 

nonlinear dynamic model should be known exactly or 

linearly parameterized with respect to the known 

nonlinear function. In real situation, it is difficult to 

satisfy this requirement because most nonlinear systems 

have uncertainties. Another problem is the explosion of 

complexity that has greatly increased the number of 

controller terms for complex nonlinear systems owing to 

repeated differentiations of the virtual control functions. 

This problem leads to a considerable computational 

burden in real hardware implementations such as 

complex robotic systems. Although the backstepping 

method is theoretically tractable, the increasing 

complexity of real applications is an insurmountable 

obstacle that prevents its application to a multiple-state 

control system. 

DSC [11,12] was developed for nonlinear systems to 

overcome the proliferation of terms associated with 

backstepping control technique by applying a first-order 

filter to the synthetic input at each step of the 

backstepping design procedure. Several adaptive DSC 

methods combined with fuzzy or neural networks have 

been developed [13-18]. To date, most of the constraint 

problems to which a BLF is applied have been 

approached by using only the backstepping control 

scheme. Here, we introduce DSC in conjunction with the 

BLF to address the output constraint issue among several 

constraint problems [2]. However, we confront an 

unexpected problem: the application of the conventional 
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DSC design to output constraint control limits the 

selection of the controller design parameters related to 

the BLF. As we show below, the stability of the closed 

loop system and the tracking performance may 

deteriorate depending on the selection of the values for 

the controller gain in a conventional DSC constraint 

design that uses the BLF.  

Hence, we suggest a convenient, effective method, the 

so-called ‘backstepping DSC’, that exploits the 

advantages of backstepping control in the BLF and DSC 

schemes. In the first design step of the DSC, we 

introduce partial backstepping control because the 

repeated differential control is generally not severe in the 

first design of backstepping control. The remaining 

controller design steps proceed by the normal DSC 

procedures. 

In industrial applications, non-smooth nonlinearities 

such as friction and deadzone are encountered in most 

dynamic systems. The characteristics of these nonline-

arities are usually poorly known, and time-varying, and 

they often limit system performance. Deadzone 

nonlinearity in the actuators also causes in the control 

system. We introduced the inverse deadzone method [19] 

to compensate for the undesirable effect of deadzone. We 

compensate for nonlinear uncertainty in the dynamic 

system by using adaptive fuzzy approximation.  

Fuzzy technology is well known as an efficient tool 

for treating complex nonlinear processes on the basis of 

human experience or expert opinion [20]. Fuzzy logic 

has the characteristics of linguistic information and 

offers high-level logic control. Adaptive fuzzy controls 

have been applied successfully in many nonlinear control 

systems, and they guarantee improved performance and 

system stability in the Lyapunov sense [21-23]. 

In summarizing, the main contributions of this paper 

are i) developing a DSC-based output-constrained 

control system, partially, with the aid of backstepping 

control, thus ii) relaxing the limitations on choosing the 

control gain of the DSC caused by the output constraints 

and providing a more stable, simpler controller than that 

in a conventional DSC scheme; iii) demonstrating 

precise positioning by compensating for deadzone, and 

unknown dynamics using an inverse deadzone observer 

and adaptive fuzzy system; iv) ensuring the output 

constraint and the boundedness of closed-loop signals; 

and v) experimentally verifying the constraint problem 

using the BLF, (all of the earlier constrained control 

systems were verified only by simulations [1-8]). 

 

2. PROBLEM FORMULATION 

 

2.1. Description of the non-smooth nonlinear plant 

Consider a single-input, single-output (SISO) nonlinear 

system in the presence of deadzone and friction whose 

dynamic equation is described by  
 

1

1

( ) ( ) , (1 1),

( ) ( ) ,

,

i i i i i i fi di

n n n n n fn dn

x f x g x x F F i n

x f x g x w F F

y x

+
= + − + ≤ ≤ −

= + − +

=

�

�  (1) 

where 
1

[ , , ] , ( 1, , )T i

i i
x x x R i n= ∈ =… …  represents the 

states; ( ) , ( 1, , )i

i i
f x R i n∈ = …  are unknown smooth 

nonlinear functions; ( ) , ( 1, , )i

i i
g x R i n∈ = …  are known 

smooth functions of x; ,

i
fiF R∈ ( 1, , )i n= …  are non-

linear frictions; and ,i
di

F R∈ ( 1, , )i n= …  are bounded 

disturbances. The output is required to remain in the set 

1
,

c
y k≤  where 

1c
k  is a positive constant.  

Assumption 1: For any 
1

0,
c
k >  there exist positive 

constants Yl0, Yh0, A0, Y1 and Y2 satisfying 
0 0

max{ , }
l h
Y Y  

0 1c
A k≤ <  such that the desired trajectory yd and its 

time derivatives satisfy 
0 0

,
l d h
Y y Y− ≤ ≤

1
,

d
y Y<�

d
y��  

2
Y<  for all 0.t ≥  

Assumption 2: The signs of the control gain functions, 

( ) ,n
i

g R⋅ ∈  are positive without loss of generality and 

there exist positive constants 
min max

0
i i

g g< ≤  such 

that 
min maxi i i

g g g≤ ≤  for 
1 1

.

c
x k<  

The control objective for a nonlinear dynamic system 

is to determine a state feedback control system such that 

the system output x1 can track a desired trajectory yd 

while ensuring that all closed-loop signals are bounded 

and that the output constraint is not violated.  

 

2.2. Barrier Lyapunov function 

Definition 1 [2]: A BLF is a scalar function V(x), 

defined with respect to the system ( )x f x=�  on an open 

region D  containing the origin. It is continuous, and 

positive definite; it has continuous first-order partial 

derivatives at every point of ,D  has the property V(x) 

→∞  as x approaches the boundary of ,D  and satisfies 

( ( ))V x t b t≤ ∀  along the solution of ( )x f x=�  for x(0) 

∈D  and some positive constant b. 

We use a BLF candidate having the following form 

[1,2]: 

2

1

1 2 2

1 1

1
log ,

2

b

b

k
V

k S
=

−

 (2) 

where 
1 1 0b c

k k A= −  denotes the constraint on S1, that is, 

1 1
.

b
S k<  This BLF goes to infinity at 

1 1
.

b
S k=  The 

BLF candidate is a valid Lyapunov function because V1 

is positive definite and C1 is continuous in the set 

1 1
.

b
S k<  

Lemma 1 [2]: For any positive constant kbl, let 

1 1 1 1 1
: { : }

b b
S R k S k RΣ = ∈ − < < ⊂  and 

1
:

l
RΝ = ×Σ ⊂  

1l
R

+  be open sets. Consider the system 

( , ),tθ ϕ θ=
�  (3) 

where 
1

: [ ]
T

Sθ ζ= ∈Ν is the state, and the function 
1

:
l

R Rϕ
+

+
×Ν →  satisfies the conditions that φ is 

locally Lipschitz on S1 and φ is locally integrable on t. 

Suppose that there exists functions :
l

U R R
+

→  and 

1 1
: ,V R

+
Σ →  which are continuously differentiable and 

positive definite in their respective domains, such that 

1 1
( )V S →∞  as 

1 1
,

b
S k→  (4) 

1 2
( ) ( ) ( ),Uγ ζ ζ γ ζ≤ ≤  (5) 
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where γ1 and γ2 are class K∞ functions. Let ( ) :V θ =  

1 1
( ) ( ),V S U ζ+  and let S1(0) belong to the set 

1
S ∈  

1 1
( , ).

b b
k k−  If the inequality 

1

V
V CVϕ µ

θ

∂
= ≤ − +
∂

�  (6) 

holds in the set ,Nθ ∈  and C, µ are positive constants, 

then S1 remains in the open set 
1 1 1

( , )
b b

S k k∈ − t∀ ∈  

[0, ),∞  and µ remains bounded. 

Lemma 2: [3] For any positive constant kb1, the 

following inequality holds for all S1 in the interval 

1 1
:

b
S k<  

2 2

1 1

2 2 2 2

1 1 1 1

log .b

b b

k S

k S k S
≤

− −

 (7) 

 

2.3. Deadzone nonlinearity 

The mathematical model for deadzone nonlinearity w 

is described by  

( ( ) ) ( )

( ) ( ) 0 ( )

( ( ) ) ( ) ,

r r r

l r

l l l

m u t d for u t d

w t D u for d u t d

m u t d for u t d

− ≥


= = < <
 − ≤

 (8) 

where mr and ml denote the slope of the deadzone, and dr, 

dl represent the deadzone width parameters. The 

following practical assumptions regarding the deadzone 

are given for the control problem.  

The inverse deadzone technique is a useful method of 

compensating for deadzone effects [19]. After ud(t) is set 

as the signal from the controller to achieve the control 

objective for the plant without deadzone, the control 

signal u(t) is generated according to the certainty 

equivalence deadzone inverse  

1
ˆ( )

( ) ( )
ˆ

d mr

d

r
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m

−
+

= = +
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(1 ),
ˆ
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l
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q
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+
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where ˆ ,
r

m ˆ ,
l

m
ˆ
mr

d  and ˆ
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d  are the estimated values 

of mr, ml, mrdr, and mldl, respectively, and 
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0 ( ) 0.

d

d

if u t
q

if u t

≥
= 

<
 (10) 

The resulting error between w and ud is given by 
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r
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 +
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ε

 +
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where εd (t) is known as the bounded function for all u(t) 

[19]. 

 

2.4. Function approximation using the fuzzy system 

The basic configuration of the fuzzy system consists 

of the fuzzifier, fuzzy rule base, fuzzy inference engine, 

and defuzzifier. The fuzzy inference engine maps an 

input linguistic vector 

1
[ , , ]

T n

n
x x x R= ∈…  to an output 

linguistic scalar variable .y R∈  The fuzzy rule base 

consists of a collection of fuzzy IF-THEN rules. The lth 

IF-THEN rules is described by 

( )
1 1: IF is and and is ,

then is , 1,2, , ,

l l l

n n

l

R x F x F

y y l M=

�

�

 (12) 

where , 1, ,
l

i
F i n= …  are fuzzy sets, l

y  is the fuzzy 

singleton for the output of the ith rule, and M is the 

number of rules in the fuzzy rule base. The output of the 

fuzzy systems with a center-average defuzzifier, product 

inference, and single1ton fuzzifier is expressed as 

( )
( )

1 1

1 1

( )

( ) ,

( )

l
i

l
i
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il i F
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il i F

y x
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where ( )l
i

i
F

xµ  is the degree of membership of xi in Fi

l. 

(13) can be rewritten as 

( ) ( ),T

o
y x W xχ=  (14) 

where 1
[ , , ]

M T

o
W y y= �  is an adjustable parameter 

vector grouping all consequence parameters, and ( )xχ  
1

[ , , ]
M T

χ χ= … is a set of fuzzy basis function defined as 

( )
1

1 1
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( ) .
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i
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n

ii Fl
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x

x

x

µ

χ
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=
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∏
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It has been proven that a fuzzy logic system can 

uniformly approximate any nonlinear continuous func-

tion to an arbitrary degree of accuracy if enough rules are 

provided [20]. Thus, the fuzzy logic system performs 

universal approximation in the sense that, given any real 

continuous function f (·): Rn→R on a sufficiently large 

compact set Ωy R⊂  and arbitrary εm 0> , there exists a 

fuzzy logic system y(x) in the form of (14) such that  

sup ( ) ( ) .
x m

f x y x ε
∈Ω

− ≤  (16) 

Then the function f (x) can be expressed as  

* *( ) ( ) , ,T n

o
f x W x x Rχ ε= + ∀ ∈Ω ⊂  (17) 

where |ε*| ≤ εm, ε* is the error of the fuzzy approximation 

and Wo
* is chosen as the value of Wo that minimizes the 

fuzzy approximation error ε*, i.e., 

{ }* arg min sup ( ) ( ) .
M

o

T

o x o
W R

W f x W xχ
∈Ω

∈

= −  (18) 

Because Wo
* is unknown, it will be replaced by Wo, 

which is the estimation of Wo
*. An adaptation law will be 

necessary to update the parameter Wo online to minimize 

the reference tracking error asymptotically. The optimal 

fuzzy output function can be rewritten as 

* ( ) ( ) ( ),T T T

o o o
W x W x W xχ χ χ= +

�  (19) 

where *
.

o o o
W W W= −
�  
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3. DESIGN OF CONTROL SYSTEM 

 

In this section, the virtual control functions, adaptive 

laws and control law will be derived via the recursive 

DSC design procedures.  

Assumption 3: The desired trajectory vectors are 

continuous and available; [ , , ]
T

d d d
y y y� �� ,

d
∈Ω  and Ωd 

is a known compact set, i.e., 2{[ , , ] :T

d d d d d
y y y yΩ = � �� + 

2 2 3}d d yy y Rδ+ ≤ ⊂� ��  where 0
y

δ >  is a constant. 
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0
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compact set Ωy 1 1 0
{ : , (0)}

c c d
y R y k k A y= ∈ ≤ + + ⊂ R 

can be made as large as desired [3]. The fuzzy 

approximation is valid provided that the input variable of 

the fuzzy system, y, remains within the fixed Ωy. The 

compact set Ωsi is defined as  
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where 0
i

η >  and δi > 0, for 2, , ,i n= …  are constants. 

The state feedback control system is designed step-by-

step using a DSC technique.  

Step 1: We define the tracking error as the first error 

space as follows:  

1 1
.

d
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The time derivative of (21) becomes  
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where the sign of the superscript prime denotes a known 

nominal value of each function; 
1 1 1

( )
u

F f x= ∆ +  

1 1 1
( )g x x∆

1 1
,f dF F− + ( )∆ ⋅  represents a perturbed value, 

*

1 1 1
,

o o o
W W W= −
�  *

1 1 1 1
,

T

u o
F W ε= Θ +  and it is assumed 

that 
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1
ρ  is a positive constant. We present 

the hyperbolic tangent function that satisfies the 

following relation similar to [24]: 
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where 
1

κ  is a positive constant, and 
1

ρ̂  is the estimate 

of 
1

ρ . We choose a virtual control law and adaptive law 

as follows: 
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where c1 > 1 is a design constant. We introduce the 

filtering virtual control z2 and let α1 pass through a first-

order filter with a time constant τ2 as follows: 

2 2 2 1
,z zτ α+ =�   

2 1
(0) (0).z α=  (25) 

We set the output error of this filter as follows: 
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The time derivative of (26) becomes 
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is a continuous function and has a maximum M2 on the 

compact set Ωd×Ωs1 defined in Assumption 3 and (20). 
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We define the following Lyapunov function candidate to 

ensure that 
1 1b
S k<  with 

1 1 0b c
k k A= −  so as not to 

drive y out of the interval 
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where 
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ˆ .ρ ρ ρ= −�  The time derivative of (31) con-

sidering the above results becomes 
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We define the second virtual error and the adaptive laws 

as follows: 
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We consider (33)-(35) with (24), (26), and (30) and use 

Young’s inequalities, 
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We then obtain the following expression: 

2

1 1
21max 1 1 1 2

1 1 12 2 2 2

1 1 1 1
2

w o

b b

Wg S g S S
V c S

k S k S

η ′ ′ ′
≤ − − + −  − − 

�

�  

2

1 1

2

ρ
η ρ′

−

�
2 21max

2 22 2

2 2 1 1

1 1 1

2 4
b

g
M

k S
λ

τ γ

 ′
− − −  − 

 (39) 

2
* *2

1 1 1 1

2 2

w o
W

ρ
η η ρ′ ′

+ +
2

1
2

γ
κ+ + . 

Remark 1: However, in (39), unlike the output con-

strained control system based on backstepping control 

[2,3], the selection range of design constant c1 and time 

constant τ2 in our DSC are limited to c1 ≥
2

1max 1 1
/(

b
g S k′  

2

1
)S−  and 2 2 2

2 2 2 1max 1 1
1/ / 2 / 4( )

b
M g k Sτ γ ′≥ + −  in order 

to guarantee closed-loop stability. In the experimental 

example, we will show that a smaller design constant c1 

usually causes severe degradation of the control 

performance or instability, so the range from which c1 is 

chosen should be limited. Furthermore, the controller 

structure of the DSC-based output-constrained system 

becomes more complex than that of the backstepping-

control-based system. This problem is difficult to avoid 

under a conventional DSC design procedure. To solve it, 

we propose a hybrid control concept, in which a 

backstepping structure is introduced only in the first 

design step because the repeated differentiation, which is 

the main problem in backstepping control, is not serious 

at the first design step in most control systems. 

Therefore, we redefine the following Lyapunov 

function candidate with the definition 
2 2 1

S x α= −  

instead of 
2 2 2

S x z= −  in (33): 

2

21

1 1 1 12 2

1 11 1

1 1 1
log

2 2 2

Tb

o o

wb

k
V W W

k S ρ

ρ
η η

= + +

−

� � � . (40) 

The time derivative of (34) becomes  

2
2

1 1 1 12 1 1 2

1 1 1 2 2

1 1

2
* *2

1 1 1 1

1

2 2

.
2 2

w o

b

w o

Wg S S
V c S

k S

W

ρ

ρ

η η ρ

η η ρ
κ

′ ′′
≤ − + − −

−

′ ′

+ + +

�
�

�

 (41) 

In the first step, therefore, the limitation on the design 

parameter c1 is simplified to c1> 0, as in conventional 

DSC systems and the time constant needs not be 

considered. The design procedure in the first step is the 

same as that of backstepping control based on an output -

constrained system. 

Step2: We consider the equation 

2 2 2 2 2 3 2 2
( ) ( ) f dx f x g x x F F′ ′= + − +� , (42) 

where 
2 1 2

[ , ] .
T

x x x=  The time derivative of S2 is written 

as  

*

2 2 2 2 2 3 2 2 2 2 1

2 2 2 2 3 2 2 2 2 2 2

2 1

( ) ( ) ( )

( ) ( ) ( ) ( )

,

T

o

T T

o o

S f x g x x W x

f x g x x W x W x

χ ε α

χ χ

ρ α

′ ′= + + + −

′ ′≤ + + +

+ −

� �

�

�

 (43) 

where 
2 2 2 2 2 3 2 2

( ) ( ) ,u f dF f x g x x F F= ∆ +∆ − + ( )∆ ⋅  repre- 

sents a perturbed value, *

2 2 2
,

o o o
W W W= −
�  and F

u2= 
*

2 2 2
.

T

o
W εΘ +  It is assumed that 

2 2
,ε ρ≤  and ρ2 is a 

positive constant. We consider the following hyperbolic 

tangent function relation: 

2 2

2 2 2 2 2 2

2

ˆ
ˆ ˆ0 tanh 0.2785

S
S S

ρ
ρ ρ κ κ

κ

 
′≤ − ≤ = 

 
, (44) 

where κ2 > 0 is a design constant. We choose a virtual 

control α2 and an adaptive law as follows: 

1 1

2 2 2 22 2 2

1 12 2

2 2

2 2 2 2 1

2

1
( )

( )

ˆ
ˆ( ) tanh ,

b

T

o o

g S
c S f x

k Sg x

S
W x

α

ρ
χ ρ α

κ

′
′− − −= ′ −

 
− − +  

  
�

 (45) 

where c2 > 0 is a design constant and 
2

ρ̂  is the 

estimated value of ρ2. We introduce a new filtering 
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virtual control z3 and let α2 pass through a first-order 

filter with a time constant τ3 as follows: 

3 3 3 2
,z zτ α+ =�   

3 2
(0) (0).z α=  (46) 

By setting 
3 3 2

,zλ α= −  we obtain 

3

3

3

z

λ

τ
= −� . (47) 

From (46), it follows that 

3 3 2

3

3 1 2 2 2 2

3

ˆ( , , , , , , , ),
o d d d

z

S S W y y y

λ α

λ
ξ χ ρ

τ

= −

= − +

� ��

� ��
 (48) 

where 

3 1 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2

2

2

( , , , , , , )

ˆ
ˆ

o d d d

o

o

d d

d d

S S W y y y

S
x S W

x S W

y y
y y

ξ χ

α α α
χ

χ

α α α
ρ

ρ

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

∂ ∂ ∂
+ + +
∂ ∂ ∂

� ��

� �� �

� � ��

�

 (49) 

is a continuous function and has a maximum M3 on the 

compact set Ωd×Ωs2 defined in Assumption 3 and (20). 

Using 2 2 3

3 3 3 3

3

1
,

2 2

γ
λ ξ λ ξ

γ
≤ +

3
0,γ >  we can find that  

2 2

2 23 3 3

3 3 3 3 3 3

3 3 3

2

2 23 3

3 3

3 3

1

2 2

1
.

2 2
M

λ λ γ
λ λ λ ξ λ ξ

τ τ γ

λ γ
λ

τ γ

≤ − + ≤ − + +

≤ − + +

�

 (50) 

We define the Lyapunov function candidate as follows: 

2 2 2

2 2 2 2 2 3

2 2

1 1 1 1

2 2 2 2

T

o o

w

V S W W

ρ

ρ λ
η η

= + + +
� � � . (51) 

Differentiating (51) with respect to time with (46) and 

(50), we obtain 

( )

2 2 2 2 2 2 2 3 3

2 2

2 2 2 2 2 3 2 2 2 2 2 2

2 2 2 2 3 3

2 2

2 2 2 2 2 3 2 2 2

2 2

2 2

2

2 2 2

2

1 1

( ) ( ) ( )

1 1

( ) ( ) ( )

ˆ
ˆ tanh

1 ˆ( )

T

o o

w

T

o

T

o o

w

T

o

T

o o

w

V S S W W

S f x g x x W x z S

W W

S f x g x x W x

S
z

W S x W

ρ

ρ

ρ ρ λ λ
η η

χ ρ

ρ ρ λ λ
η η

χ

ρ
ρ

κ

χ
η

= + + +

′ ′≤ + + − +

+ + +


′ ′≤ + +



 
+ −   

  

+ −

� �� �� � � � �

�

� � �� � � �

�

��
2 2 2 2

2

1
ˆS

ρ

ρ ρ
η

  
+ −       

��

 

2 2 3

3 3 2

3 3

1 1
.

2 2
M

γ
λ κ

τ γ

 
′− − + + 

 
 (52) 

We define the second virtual error and the adaptive laws 

as follows: 

3 3 3
S x z= − , (53) 

2 2 2 2 2 2 2
( )

o w w o
W S x Wη χ η ′= −� , (54) 

2 2 2 2 2
ˆ ˆS

ρ ρ
ρ η η ρ′= −
� . (55) 

We consider (53)-(55) with (44), (45), and (50) and use 

Young’s inequalities of 

2

2 3

2 3 2 2max 2
4

g S g S
λ

λ
 

′ ′≤ +  
 

 (56) 

and 

2 2
*

2 2 2 2

2 2 2
2 2

w o w o
T

w o o

W W

W W

η η

η

′ ′

′− ≤ − +

�

� , (57) 

2 *2

2 2 2 2

2 2 2
ˆ

2 2

ρ ρ

ρ

η ρ η ρ
η ρ ρ

′ ′
′− ≤ − +

�
� . (58) 

Equation (52) can then be written as follows: 

2

2 2
2 1 1 2

2 2 2max 2 2 2 32 2

1 1

( )
2

w o

b

Wg S S
V c g S g S S

k S

η ′′
′ ′≤ − − − + −

−

�

�

    

2
*2 *2

2 22 2 2 2

2 22max 3

3 3 2

3 3

2 2 2

1 1
.

2 4 2

w o
W

g
M

ρ ρ
ηη ρ η ρ

γ
λ κ

τ γ

′′ ′
− + +

′ 
′− − − + + 

 

�

 (59) 

Step i: A similar design procedures is employed 

recursively at each step, 3, , 1.i n= −…  We consider the 

equation 

1

*

1

( ) ( ) ( )

( ) ( ) ( ) ,

i i i i i i fi ui i

T
i i i i i oi i i

x f x g x x F F x

f x g x x W xχ ε

+

+

′ ′= + − +

′ ′= + + +

�

 (60) 

where 
3

[ , , ]
T

i i
x x x= …  and ,

i i
ε ρ≤  and ρi is a positive 

constant. The time derivative of Si is  

*

1

1

( ) ( ) ( )

( ) ( ) ( ) ( )

,

T

i i i i i i oi i i i i

T T

i i i i i oi i i oi i i

i i

S f x g x x W x z

f x g x x W x W x

z

χ ε

χ χ

ρ

+

+

′ ′= + + + −

′ ′≤ + + +

+ −

� �

�

�

 (61) 

where ( ) ( ) ,ui i i i i i fi diF f x g x x F F= ∆ + ∆ − + ( )∆ ⋅  repre-

sents a perturbed value, *
,

oi oi oi
W W W= −
� *T

ui oi i
F W χ= + 

εi, and it is assumed that 
i i

ε ρ≤  and ρi is a positive 

constant. We consider the following hyperbolic tangent 

function relation: 

ˆ
ˆ ˆ0 tanh 0.2785

i i

i i i i i i

i

S
S S

ρ
ρ ρ κ κ

κ

 
′≤ − ≤ = 

 
, (62) 

where 0
i

κ >  is a design constant. We choose a virtual 

control αi as follows: 
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1 1 1

1
( ) ( ) ( )

( )
T

i i i i i i i i oi oi i

i i

c S g x S f x W x
g x

α χ
− − −

= ′ ′− − − −′

          
ˆ

ˆ tanh ,i i

i i

i

S
z

ρ
ρ

κ

 
− +  

  
�  (63) 

where ci > 0 is a design constant, and ˆ
i

ρ  is the estimated 

value of ρi. We introduce a new filtering virtual control 

1i
z
+

 and let αi pass through a first-order filter with a 

time constant τi as follows: 

1 1 1

1

,

(0) (0).

i i i i

i i

z z

z

τ α

α

+ + +

+

+ =

=

�

 (64) 

By setting 
1 1

,
i i i

zλ α
+ +

= −  we obtain 

1

1

1

i

i

i

z

λ

τ

+

+

+

= −� . (65) 

From (64), it follows that 

1

1 1 1 1 1

1

1 1

( , , ,

ˆ ˆ, , , , , , , , , , ),

i

i i i i i o

i

oi i i d d d

z S S W

W y y y

λ
λ α ξ

τ

χ χ ρ ρ

+

+ + +

+

= − = − +
� �� …

� ��… … …

 (66) 

where 

1 1 1 1 1
ˆ ˆ( , , , , , , , , , , , , , )

i i o oi i i d d d
S S W W y y yξ χ χ ρ ρ

+
� ��… … … …

ˆ
ˆ

i i i i i

i i oi i i

i i oi i i

i i

d d

d d

x S W
x S W

y y
y y

α α α α α
χ ρ

χ ρ

α α

∂ ∂ ∂ ∂ ∂
= + + + +
∂ ∂ ∂ ∂ ∂

∂ ∂
+ +
∂ ∂

�� �� �

� ��

�

 (67) 

is a continuous function and has a maximum Mi +1 on the 

compact set Ωd×Ωsi defined in Assumption 3 and (20). 

Using 2 2 2 2

1 1 1 1 1 1 1 1 1
/ 2 / 2 /

i i i i i i i i i
Mλ ξ λ ξ γ γ λ γ

+ + + + + + + + +
≤ + ≤

1
/ 2,

i
γ

+
+

1
0,

i
γ

+
>  we find that 

2

1

1 1 1 1

1

2

2 21 1

1 1

1 1

1
.

2 2

i

i i i i

i

i i

i i

i i

M

λ
λ λ λ ξ

τ

λ γ
λ

τ γ

+

+ + + +

+

+ +

+ +

+ +

≤ − +

≤ − + +

�

 (68) 

We define the Lyapunov function candidate as follows: 

2 2 2

1

1 1 1 1

2 2 2 2

T

i i oi oi i i

wi i

V S W W

ρ

ρ λ
η η

+
= + + +

� � � . (69) 

Differentiating (69) with respect to time with (61), (62), 

(63) and (68), we obtain 

1 1

1

1 1

( ) ( ) ( )

ˆ
ˆ tanh

T

i i i oi oi i i i i

wi i

T

i i i i i i oi i i

i i

i i

i

V S S W W

S f x g x x W x

S
z

ρ

ρ ρ λ λ
η η

χ

ρ
ρ

κ

+ +

+

= + + +


′ ′≤ + +



 
+ −   

  

� �� �� � � � �

�

 

2 2 1

1 1

1 1

1 1ˆ ˆ( )

1 1
.

2 2

T

oi i i oi i i i

wi i

i

i i i

i i

W S x W S

M

ρ

χ ρ ρ
η η

γ
λ κ

τ γ

+

+ +

+ +

  
+ − + −       

 
′− − + + 

 

� �� �

 (70) 

We define the second virtual error and the adaptive 

laws as follows: 

1 1 1i i i
S x z

+ + +
= − , (71) 

( )
oi wi i i i wi oi

W S x Wη χ η ′= −� , (72) 

ˆ ˆ
i i i i i

S
ρ ρ

ρ η η ρ′= −
� . (73) 

We consider (71)-(73) and use Young’s inequalities of 

2

2 1

1
,

4

i

i i i imax i
g S g S

λ
λ

+

+

 
′ ′≤ +  

 
  (74) 

and 

2 2
*

2 2

wi oi wi oi
T

wi oi oi

W W

W W

η η

η

′ ′

′− ≤ − +

�

� , (75) 

2 *2

ˆ

2 2

i i i i

i i i

ρ ρ

ρ

η ρ η ρ
η ρ ρ

′ ′
′− ≤ − +

�
� . (76) 

Equation (70) can then be written as follows: 

2

max 1 1

2 2
*2 *2

2 2max 1

1 1

1 1

( )

2 2 2 2

1 1
.

2 4 2

i i i i i i i i i i

wi oi wi oii i i i

i i

i i i

i i

V c g S g S S g S S

W W

g
M

ρ ρ
η ηη ρ η ρ

γ
λ κ

τ γ

− +

+

+ +

+ +

′ ′ ′≤ − − − +

′ ′′ ′
− − + +

′ 
′− − − + + 

 

�

�
�

 (77) 

 

Step n: The final control law will be derived in this 

step. We consider the following equation: 

*

( ) ( )

( ) ( ) ( ) .

n n n n n un

T

n n n n on n n n

x f x g x w F

f x g x w W xχ ε

′ ′= + +

′ ′= + + +

�

 (78) 

We consider the nth error surface as follows: 

n n n
S x z= − . (79) 

The time derivative of (79) can then be written as  

( ) ( ) ( ) ( )T T

n n n n n d on n n on n nS f x g x u W x W xχ χ′ ′≤ + + +� �
  

ˆ( )
ˆ ( )

ˆ

ˆ( )
( ) (1 ) ,

ˆ

d mr

n n n n mr r

r

d ml

n n ml l n

l

u t d
z g x d m q

m

u t d
g x d m q

m

ρ

ρ

 +
′+ − + +  

 

 +
′+ + − −  

 

� ��

� ��

 (80) 

where ,
n dn d n

Fε ε ρ+ + ≤
n

ρ is a positive constant, and 
ˆ
n

ρ  is the estimated value of .

n
ρ  We specify the control 

law and adaptive laws as follows: 

( 1 1 1

1
( ) ( )

( )
d n n n n n n n

n n

u c S g x S f x
g x

− − −

′ ′= − − −
′
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)ˆ( ) ,T

on n n dn n
W x zχ ρ− − + �  (81) 

on
W� = ( ) ,

wn n n n wn on
S x Wη χ η ′−  (82) 

ˆ
n

ρ
� = ˆ ,

n n n n
Sη η ρ′−  (83) 

ˆ
r

m
� =

ˆ( )
ˆ ,

ˆ

d mr

mr n n mr r

r

u t d
S g q m

m
η η

+
′ ′−  (84) 

ˆ
l

m
� =

ˆ( )
ˆ(1 ) ,

ˆ

d ml

ml n n ml l

l

u t d
S g q m

m
η η

+
′ ′− −  (85) 

ˆ
mr

d
�

= ˆ( ) ,
dr n n n dr mr
S g x dη η′ ′−  (86) 

ˆ
ml

d = ˆ( ) ,
dl n n n dl ml
S g x dη η′ −  (87) 

where c
n
 > 0 and η(·) > 0 are design constants. We define 

the Lyapunov function candidate as follows: 

2 2 2

2 2 2

1 1 1 1

2 2 2 2

1 1 1
.

2 2 2

T

n n on on n r

wn n mr

l mr ml

ml dr dl

V S W W m

m d d

ρ
η η η

η η η

= + + +

+ + +

� � � �

� ��

 (88) 

The time derivative of (88) can be written as follows: 

( )ˆ( ) ( ) ( )T

n n n n n n d on n n n n
V S f x g x u W x zχ ρ′ ′= + + + −� �  

1 1
ˆ( )T

on n n n on n n n

wn dn

W S x W Sχ ρ ρ
η η

   
+ − + −   

   

�� � �  

ˆ( ) 1
ˆ( )

ˆ

ˆ( ) 1
ˆ( ) (1 )

ˆ

1 ˆ( )

1 ˆ( ) (1 ) .

d mr

r n n n r

r mr

d ml

l n n n l

l ml

mr n n n mr

dr

ml n n n ml

dl

u t d
m g x S q m

m

u t d
m g x S q m

m

d g x S q d

d g x S q d

η

η

η

η

 +
′+ −  

 

 +
′+ − −  

 

 
′+ − 

 

 
′+ − − 

 

��

��

��

��

 (89) 

We consider (77)-(85) and the following relations 

2 2
*

2 2

wn on wn on
T

wn on on

W W

W W

η η

η

′ ′

′− ≤ − +

�

� , (90) 

2 *2
( ) ( )

( )
ˆ

2 2

η η
η

⋅ ⋅

⋅

′ ′Ξ Ξ
′− ΞΞ ≤ − +

�

� . (91) 

Equation (85) can then be rearranged as follows: 

2
2

2

1 1 1
( )

2 2

wn on i i

n n n n n n n

W
V c S g x S S

ρ
η η ρ

− − −

′ ′
′≤ − − − −

�
�

�  

2
*

2 2 2 2

2 2 2 2 2

wn on
mr r ml l dr mr dl ml

Wm m d d ηη η η η
′′ ′ ′ ′

− − − − +

� �� �

    

*2 *2 *2 *2 *2

.
2 2 2 2 2

i i mr r ml l dr mr dl ml
m m d dρ

η ρ η η η η′ ′ ′ ′ ′
+ + + + +  

 (92) 

4. STABILITY ANALYSIS 

  

Theorem 1: Under Assumptions 1-3, we consider a 

closed-loop output-constrained strict feedback system 

consisting of the plant (1), the virtual control function 

(63), the adaptive laws (72), (73), and (84)-(87), and the 

control law (81). If the initial conditions are such that 

0 1 1
(0) : { : },n

s n b
S S R S k∈Ω = ∈ <  where 

1 2
[ , ,S S S=  

, ] ,
T

n
S…  and for any initial bounded compact set 0

,
y

Ω  

to which y(0) also belongs, then the following properties 

hold:  

i) The output y(t) remains in the set Ωy; that is, the 

output constraint is never violated. 

ii) The closed-loop signals are semiglobally uniformly 

ultimately bounded overall. 

iii) The output tracking error is smaller than the 

prescribed error bound and the size of the tracking can be 

arbitrarily decreased by the appropriate selection of the 

design parameters. 

Proof: i) We define the following Lyapunov function 

candidate: 

2

21

2 2

1 21 1

1

2 2

1

1 1 2

2 2 2 2

1 1
log

2 2

1 1 1 1 1

2 2 2

1 1 1 1
.

2 2 2 2

n n

b

i i

i ib

n n n
T

oi oi i

wii i ii

r l mr ml

mr ml dr dl

k
V V S

k S

W W

m m d d

ρ

ρ λ
η η

η η η η

= =

−

+

= = =

= = +

−

+ + +

+ + + +

∑ ∑

∑ ∑ ∑� � �

� �� �

 (93) 

By using the time derivative of V and some manipula-

tions, (93) can be rearranged as: 

2

2 21 1

1 12 2

1 1 1

( )
n

i b

i b

c S
V V k S

k S
=

= ≤ − −

−

∑� �  

( )
1

2 2

max

2 1
2

Tn n

wi oi oi

i i i n n

i i

W W
c g S c s

η
−

= =

′
′− − − −∑ ∑

� �

 

2 2 2 2 2

1
2 2 2 2 2

n
i i mr r ml l br mr bl ml

i

m m d dρ
η ρ η η η η

=

′ ′ ′ ′ ′
− − − − −∑

� �� � �
 

2
*

1
2 2max

1 1

1 12 1

1 1

2 4 2

n n
wi oi

i

i i

i ii i

Wg
M

η
λ

τ γ

−

+ +

+ += =

′′ 
− − − + 

 
∑ ∑

   

*2 *2 *2 *2 *2

1
2 2 2 2 2

n
i i mr r ml l dr mr dl ml

i

m m d dρ
η ρ η η η η

=

′ ′ ′ ′ ′
+ + + + +∑  

1

1

1

2

.
2

n

i

i

i

γ
κ κ

−

+

=

 
′+ + + 

 
∑  (94) 

From Lemma 2, 
22

11

2 2 2 2

1 1 1 1

log b

b b

kS

k S k S
− ≤ −

− −

 in the set 

1 1
.

b
z k<  Hence, (94) can be represented as follows: 

( )
2 1

2 2 2 21

1 1 1 max2 2

21 1

( ) log
n

b

b i i i n n

ib

k
V c k S c g S c s

k S

−

=

′≤ − − − − −

−
∑�  



Seong-Ik Han and Jang-Myung Lee 

 

692 

  

2 2 2

1 1

2 2

2 2 2 2

,
2 2

Tn n
i iwi oi oi mr r ml l

i i

dr mr dl ml

W W m m

d d

ρ
η ρη η η

η η
µ

= =

′′ ′ ′
− − − −

′ ′
− − +

∑ ∑
� � � � �

� �

 (95) 

where 

2
* *2 *2 *2

1 1

*2 *2 1

1

1

2

2 2 2 2

,
2 2 2

n n
wi oim i i mr r ml l

i i

n

dr mr dl ml i

i

i

W m m

d d

ρ
η η ρ η η

µ

η η γ
κ κ

= =

−

+

=

′ ′ ′ ′
= + + +

′ ′  
′+ + + + + 

 

∑ ∑

∑

 

* *
,

oi oim
W W≤  

and the positive definite matrix Q is described as  

2 2

1 1 1

2 2max

( ) 0 0

0 0
.

0

0 0

b

n

c k S

c g

c

 −
 

′− =
 
 
  

Q

�

�

� � �

�

 

We select 2

min 1 1 1 max
min[2 ( ),2(1/ / 2

i i i i
C M gλ τ γ

+ + +
′= − −Q  

/4) ,
wi

η ′ ,
iρ

η ′ ,piη ′ ,
si

η ′ , ,
mr ml

η η′ ′ , ],
dr dl

η η′ ′
1
,c ,

i
c ,

n
c  and 

i
τ  such that 2 2

1 1 1
( ) ,

b
c k S C− ≥

max
, (2

i i
c g C i′> + ≤ ≤  

1),n − ,
n
c C≥  and 2

1 1 1 min
(1/ / 2 / 4

i i i i
M gτ γ

+ + +
′≥ + + C), 

(2 1).i n≤ ≤ −   

Then, we can obtain 

,V CV µ≤ − +�  (96) 

in the set 
1 1

.

b
z k<  In the relation ( , )tθ ϕ θ=

�  in 

Lemma 1, [ , , , , , , ] .
T T T T

o r l mr ml
S W m m d dθ ρ=

� � �� � �  ( , )tϕ θ  

satisfies the conditions of Lemma 1 for θ ∈Ω =  

1 1
{ , , , , , , : }.T T T

o r l mr ml b
S W m m d d S kρ <

� � �� � �  From 
1
(0)S = 

0
(0) (0), (0)

d
y y y k− ≤  and 

0 0
(0)

d
k A y+ +  in the 

definition of Ωy

0 and Ωy, it is shown that 
1 1
(0)

b
S k<  

and Ω is an invariant set. Thus, 
1 1

,
b

S k< 0t∀ >  from 

Lemma 1 and (96) and we can show that 
1

( ) ( )y t S t≤  

1 0 1
( ) ,

d b c
y t k A k+ < + = 0.t∀ >  Hence, we conclude 

that ( ) , 0.
y

y t t∈Ω ∀ >  

ii) If V p=  and / ,C pµ=  then 0.V ≤�  That is, if 

(0) ,V p≤  then ( ) , 0.V t p t≤ ∀ ≥  This implies that 

( )V t p≤  is an invariant. Multiplying (96) by Ct
e  yields 

( )Ct Ctd
Ve e

dt
µ≤ . (97) 

Integrating (97) over [0, t] yields  

0 (0) Ct
V V e

C C

µ µ
−

 
≤ ≤ − + 

 
. (98) 

Therefore, this means that all the error signals are 

semiglobally, uniformly ultimately bounded. 

iii) From (93) and (98), we can further represent the 

Lyapunov function as 

2

1

2 2

1 1

1
log (0)

2

Ctb

b

k
V e

C Ck S

µ µ
−

 
= − + 

−  
. (99) 

Then, exponential computing of (99) yields 

( )2
2 ( (0) / ) /

1

2 2
1 1

e

Ct
V C e C

b

b

k

k S

µ µ
−

− +

=

−

. (100) 

Multiplying both sides of (100) by 2 2

1 1
( )

b
k S− > 0 and 

applying algebraic manipulations lead to the inequality: 

( )2 ( (0) / ) /2
1 1( ) 1 e

Ct
V C e C

b
S t k

µ µ
−

− − +

≤ − . (101) 

As ,t →∞  2 2 /

1 1
1 e ,

C

b
S k

µ−

≤ −  thus, 

2 2 /

1
1 e

C

d b
y y k µ−

− ≤ −  as .t →∞  (102) 

Therefore, the output tracking error is smaller than the 

prescribed error bound, and the size of y –yd can be 

arbitrarily regulated to small values by controlling the 

design parameters.            � 

 

5. EXPERIMENTAL EVALUATION 

 

In this section, the application of the proposed output-

constrained control scheme is described and experimen-

tally evaluated. A single manipulator of the Scorbot 

robot system in the presence of deadzone and friction in 

the joints is chosen for the experimental evaluation. A 

photograph and detailed description of the Scorbot robot 

control system are presented in [25]. We consider only 

the second upper arm as the control application among 

the four links of the Scorbot robot manipulator. The 

dynamic equation for the second single link is 

( ) ( ),fJq G q F D τ+ + =��  

,
t

NK iτ =  

,
m m b

di
L R i K q V

dt
+ + =�  (103) 

0 1 2
,fF z z qσ σ σ= + + ��  

0
,

( )

q
z q z

h q

σ

= −

�
��

�
  

where 2
/ 3;J mL=  q is the angular position of the link; 

( ) cosq;G q mL=  the mass of the link 3.59kg;m =  the 

length of the link 0.41m;L =
2

9.806m / s ;g =  the 

inductance of the motor 0.6292
m

L mH=  the resistance 

of the motor 0.8294 ;
m

R = Ω  the torque constant 
t

K =  

0.0182Nm /A;  the back emf constant 0.0182
b

K =  

Vsec/rad;  the gear ratio of reduction gear 64;n =  the 

bristle stiffness 
0

2300Nm/rad;σ =  the pre-sliding 

damping 
1

10Nm/rad/sec;σ = ( ) 1/[ ( )
c s c

h q F F F= + −�  
2exp( ( / ) ];

s
q q− � �  the Coulomb friction torque 0.61

c
F =  

Nm; the stiction level 0.68
s

F = Nm; the viscous friction 

coefficient 0.63
v

F = Nm; and the Stribeck velocity 

0.00063
s

q =� rad/sec.  The assumed initial values of the 
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deadzone parameters are 1,
r

m = 1,
l

m = 0.35
r

d =  and 

0.35.
l

d = −  We define the state variables as 
1

,x q=  

2
x q= �  and 

3
.x i=  

Then, the state equations are written as  

1 2
,x x=�  

2 1 3

2 1 2 3 2

1 1
cos

( ) ,

t
f

u

NK u
x mL x F x

J J J J

f x g x F

∆
= − − + +

′= + +

�
 (104) 

3 3 2

3 2 3 3 3

1

( , ) ,

m b

d

m m m

d u

R K
x x x u

L L L

f x x g u F

= − +

′= + +

�

 

where (1 ) ;
d

u Aq B q ε
∆
= + − +

ˆ( )
;

ˆ

d mr

mr r

r

u t d
A d m

m

+

= +
� �  

ˆ( )
;

ˆ

d ml

ml l

l

u t d
B d m

m

+

= +
� �

2 1 1
( ) cos / /f x mL x J u J

∆
= − +  

2
;f+∆

3 2 3 3 2
( , ) / / ;

m m b m
f x x R L x K L x= −

2
/u fF F J= − ;

2
/ ;

t
g NK J=

3
1/ ;

m
g L= ,

d
u V=  and 

3 3
.

u
F f= ∆  The 

fuzzy membership functions for F
u2 are chosen as 

1
1

1

11
1

3 2

1

2

1

3 2

1

1
,

1 exp[( 1 10 ) ]

exp[ 0.1( ) ],

1
,

1 exp[( 1 10 ) ]

l

F

jF

F

S

S m

S

µ

µ

µ

−

−

=

+ − ×

= − −

=

+ + ×

 (105) 

where 3 31 10 ( 1) 0.2 10 ,jm j
− −

= − × + − × ×  for 2, ,j = …  

10. The second membership functions corresponding to 

F
u3 are the same as the first membership functions except 

that the input variable is 
1
S�  instead of S1. The desired 

trajectory of the manipulator is ( ) sin( ),
d
y t b R tω= + ×  

where 0.004rad 0.004 rad,b− ≤ ≤ 0.005 radR =  and 

1.8849 rad/secω =  subject to the output constraint. 

1
0.014 rad.x <  Because 

0
0.009 rad,

d
y A≤ =  we have 

1
0.014rad 0.009rad 0.005rad.

b
k = − =  The initial con-

ditions are
1
(0) 0x =  and 

2
(0) 0.x =  The design param-

eters of the controller are 
1

500,c =
2

20,c =
3

100,c =  

2 3
0.1,τ τ= =

2 3
0.2,

w w
η η= =

2 3
0.001,

w w
η η′ ′= =

mr
η =  

0.5,
ml

η = 0.01,
mr ml

η η′ ′= = 0.25,
dr dl

η η= =  and 
dr

η ′  

0.01.
dl

η ′= =  

We designed four controllers to evaluate the perform-

ance of the proposed control system: 

1) a quadratic Lyapunov function (QLF) based 

nominal DSC system (QLF-DSC), 2) a BLF-based 

backstepping DSC system (BLF-BDSC), 3) a BLF-based 

DSC system with deadzone compensation (BLF-DSC-D), 

and 4) a BLF-based BDSC system with adaptive fuzzy 

compensation of deadzones and uncertainty (FBLF-

BDSC-D). The designed controllers were generated 

using a computer and implemented in the Matlab RTI 

system using an MF624 Humusoft board [26]. The 

control signal was transferred to the DC servo motor of 

the Scorbot robot through the servo drive. The output 

position of the link angle was measured by a rotary 

encoder. The selected sample frequency was 1 kHz. 

The experimentally observed responses of QLF-DSC, 

BLF-BDSC, and BLF-BDSC-D to the command input 

with 0.004b = ±  are shown in Fig. 1. In Fig. 1(a) and 

(b), the QLF-DSC system exhibits higher over- and 

undershoot in the transient stage, and the constraint 

1
0.005 0.005S− ≤ ≤  is violated. Fig. 1(c) shows that the 

tracking errors of the BLF-BDSC and BDSC-D systems 

remain within the range of the constraint, 
1 1b
S k≤ =  

0.005. The tracking errors for BLF-BDSC-D are smaller 

than those of BLF-BDSC; thus, the deadzone nonlineari-

ty is effectively compensated by the inverse deadzone 

compensator.  

 

 
(a) Position tracking outputs of QLF-DSC system. 

 
(b) Position tracking errors of QLF-DSC system. 

 
(c) Position tracking errors of BLF-BDSC and BLF-

BDSC-D systems. 

Fig. 1. Output tracking performance for output-con-

strained QLF-DSC, BLF-BDSC and BLF-

BDSC-D systems. 
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In Fig. 2(a), as mentioned in Remark 1, the tracking 

performance of the BLF-DSC-D system is very sensitive 

to the decrease in the control gains c1 and even becomes 

unstable at a certain gain value. On the other hand, in Fig. 

2(b), the transient performance of the proposed BLF-

BDSC-D system is more stable than that of the nominal 

DSC-based control system. Finally, Fig. 3(a) illustrates 

the tracking response of BLF-BDSC-D and FBLF-

BDSC-D. Fig. 3(b) and Table 1 show that the magnitude 

of the position tracking error of the proposed FBLF- 

BDSC-D system is much smaller than that of the other 

control systems owing to compensation for the nonlinear 

deadzone, friction and uncertainty by the adaptive fuzzy 

 

 
(b) Position tracking error for the command input at b = 

–0.004 rad. 

 
(c) Control inputs. 

 
(d) 2 2 2

1 1 1
/( )

b
S k S− for the command input of FBLF-

BDSC-D system at b = 0.002 rad. 

 
(e) 2 2

1 1b
k S−  for the command input of FBLF-BDSC -D 

system at b = 0.002 rad. 

Fig. 3. Output tracking performance for output- 

constrained BLF-BDSC-D and FBLF-BDSC-D 

systems. 

 

 
(a) Position tracking response for the command input at

b = –0.004 rad. 

 
(a) Position tracking errors of BLF-DSC-D. 

 
(b) Position tracking errors of BLF-BDSC-D. 

Fig. 2. The transient response variations according to

the selection of control gain c1. 
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Table 1. The RMS position tracking errors. 

 BDSC BDSC-D FBLF-BDSC-D

rad 
6.60×10-4 2.53×10-4 2.09×10-4 

100 % 38 % 31 % 

 

system. The control inputs are given in Fig. 3(c). Figs. 

3(d) and (e) confirm experimentally that 
2 2 2

1 1 1
/ ( )

b
S k S−  

and 2 2

1 1b
k S−  always have positive values. The experi-

mental results for several bias command values, –0.004 

rad 0.004 rad,b≤ ≤  and the adaptive estimated results 

of the deadzone and uncertainties are not presented 

because of space limitations. 

 

6. CONCLUSION 

 

In this paper, a backstepping DSC control scheme was 

developed to provide greatly enhanced position tracking 

performance and to guarantee output constraint of a strict 

feedback SISO nonlinear dynamic system in the presence 

of deadzone and uncertainty. The backstepping control 

was partially combined with a recursive DSC design 

procedure to improve the stability of the closed loop of a 

conventional DSC-based output-constraint system. The 

deadzone and uncertainties in each recursive step of the 

backstepping design were compensated by the inverse 

deadzone method and adaptive fuzzy system. Using the 

Lyapunov stability theorem, we proved that all closed-

loop signals are bounded and the tracking error 

converges within a prescribed level. As a design example, 

a Scorbot robot manipulator in the presence of joint 

friction and deadzone was chosen. We obtained 

favorable position tracking performance as well as output 

constraint from the proposed control scheme by effective 

compensation for deadzone, friction, and uncertainty.  
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