
International Journal of Control, Automation, and Systems (2014) 12(2):241-250 
DOI 10.1007/s12555-012-0377-6 

 

ISSN:1598-6446  eISSN:2005-4092
http://www.springer.com/12555
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Abstract: For Networked Control Systems (NCSs), the conventional Dynamic Matrix Control (DMC) 

may not applicable due to the unknown transmission delay. The uncertain time delay was usually con-

verted to constant time delay by using registers. This paper addresses the stability problem for single-

input-single-output (SISO) linear NCSs with uncertain time delay via DMC controller. A novel DMC 

controller which is effective for such NCSs has been proposed. Applying Jury’s dominant coefficient 

lemma, the sufficient stability and stabilization conditions are presented. Finally, numerical examples 

are given to demonstrate the theoretical results. 
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1. INTRODUCTION 

 

Feedback control systems with network are usually 

called NCSs, which have attracted lots of attentions these 

years. NCSs have been widely used in large scale 

distributed control systems, remote control, intelligent 

transportation and satellite control systems. 

Although with benefits of easily transporting and 

storage, there also exist some control issues need to be 

addressed, including the problems of network time delay, 

packet dropout, and limit of bandwidth. Lots of studies 

have been performed to solve these problems. Nilsson 

analyzed the NCSs in discrete-time domain and modeled 

time delays as constant, independent random or Markov 

chain [1]. Zhang studied modeling and robust stabiliza-

tion of NCSs with time-varying delays and packet-

dropout [2,3]. Bekiaris-Liberis et al. considered a class 

of general systems in strict feedback form with delayed 

integrators, and designed a predictor feedback stabilization 

controller [4]. They also designed a Lyapunov-based 

adaptive controller to achieve global stability for the case 

where the delays are of unknown length [5]. Bresch-

Pietri et al. presented the adaptive control design for an 

ODE system with unknown delay value and system 

parameters [6]. Nicola Elia showed that the coarsest 

(least dense) logarithmic quantizer could quadratically 

stabilizes a single input linear discrete time invariant 

system, and could be computed by solving a special 

linear quadratic regulator (LQR) problem [7]. Fu studied 

a number of quantized feedback design problems for 

linear systems and considered the case where quantizers 

are static (memoryless). A conclusion that the classical 

sector bound approach was non-conservative for 

designing problems was derived in his work [8]. By 

exploring some geometric properties of the logarithmic 

quantizer and using the fact that the logarithmic 

quantizer is sector bounded and non-decreasing, Zhou 

presented a new approach to the stability analysis of 

quantized feedback control system based on Tsypkin-

type Lyapunov functions [9]. 

Model predictive control (MPC) is also well known as 

moving horizon control. It is a very popular technique 

for the control of slow dynamic systems, such as 

chemical process control in paper industries, 

desulfurization and denitrification [10-12]. As one of the 

most widely used methods in MPC, DMC was first 

presented by Cutler and Ramaker [13]. Nowadays, 

traditional DMC is not applicable because of new 

problems such as robust stability and network induced 

time delay. Badgwell presented some robust stability 

conditions for MPC algorithms, based on Jury’s 

dominant coefficient lemma [14]. In order to apply these 

results to DMC algorithm, Dai used the families of finite 

impulse response models to describe the uncertainty of 

the controlled system and derived the robust stability 

conditions of closed loop systems [15]. A new condition 

of robust stability for a set of stable, linear time-invariant 

plants controlled by using a simplified model predictive 

control algorithm (SMPC) is presented by Webber and 

Gupta [16]. Meanwhile, with the development of 

network, distributed MPC has attracted lots of attention 

and noticeable works include [17-24]. A fault detection 

and compensation scheme based on likelihood ratios 

(LRs) for networked predictive control systems with 

random network-induced time delays and clock 

asynchronism was presented in [22]. Random packet 

dropouts which deteriorate overall system’s stability and 
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performance was investigated in [23]. A hybrid control 

strategy is presented based on DMC and feedback 

linearization methods for designing a predictive control-

ler of five bar linkage manipulator as a MIMO system 

(two inputs and two outputs) was presented in [24]. In 

these studies, much attention was paid to obtain improved 

or optimal performance in a distributed networked 

environment. Although significant improvement in 

control performance over completely decentralized MPC 

controllers was provided, networked induced time delays 

are not considered or are transformed to maximum time 

delay, which increased the conservativeness. 

As illustrated above, the stability problem of DMC 

algorithm with uncertain time delay has not been fully 

solved so far, which decreases the possibility of applying 

DMC in practical control industries. To fill this gap, we 

study the stability of networked DMC systems while the 

uncertain time delay is directly considered. 

This paper is organized as follows: Section 2 reviews 

some preliminary knowledge about finite impulse 

response (FIR) model, finite step response (FSR) model 

and SISO DMC algorithm. In section 3 we propose the 

main result of this study. The control system structure is 

presented based on the network and two sufficient 

stability conditions are obtained while uncertain time 

delay is directly handled. Numerical examples are given 

in Section 4 to demonstrate the theoretical results, and 

Section 5 concludes the paper. 

Notation: We use standard notations throughout the 

paper. A
T means the transpose of matrix A. Z+, R and Rn 

stand for the positive integer field, real number field and 

n-dimensional Euclidean space, respectively. [ ]M NA
×

 

means matrix A with M×N-dimension. |·| means absolute 

value. For a function f (x) : R→R, Fmax =
x

Max ( f (x)) 

means the maximum of the function f (x) is Fmax, e.g., 

0 0 max
,  . . ( ) ( )x R s t f x F f x∃ ∈ = ≥  for any x∈R. 

 

2. PRELIMINARIES 

 

2.1. FIR model and FSR model family 

Before discussing the control design method, we re-

view finite impulse response (FIR) and finite step re-

sponse (FSR) model firstly [14]. 

A linear open-loop stable SISO plant can be described 

either by an FIR model 

1

( ) ( ) ( )
N

i

i

y k h u k i d k

=

= − +∑  

or an FSR model 

1

1

( ) ( ) ( ) ( )
N

i N

i

y k a u k i a u k N d k

−

=

= Δ − + − +∑  

with N coefficients. At any time interval k, y(k) and u(k) 

are the output and input, respectively. ( ) ( )u k u kΔ = −  

( 1)u k −  and d(k) accounts for unmeasured disturbances 

or model errors. hi denotes the impulse response while ai 

denotes the step response. The two representations can 

be transformed into each other since 

1

1

.,
i

i j i i i

j

a h h a a
−

=

= = −∑  

Hence, when an FIR model is used to predict future 

values of the output, we have 

1

( ) ( ) ( ).
N

i

i

y k j h u k j i d k

=

+ = + − +∑�  (1) 

Meanwhile, if an FSR model is adopt, we can obtain 

1

1

( ) ( )

( ) ( ),

N

i

i

N

y k j a u k j i

a u k j N d k

−

=

+ = Δ + −

+ + − +

∑�

 (2) 

where 

1

( ) ( ) ( )
N

i

i

d k y k h u k i

=

= − −∑  

or 

1

1

( ) ( ) ( ) ( ).
N

i N

i

d k y k a u k i a u k N

−

=

= − Δ − − −∑  (3) 

Based on (1), ( )y k j+�  can be split into three parts as 

follows: 

1

1

( ) ( ) ( ) ( ),

( ) ( ),

( ) ( ),

f P

j

f i

i

N

p i

i j

y k j y k j y k j d k

y k j h u k j i

y k j h u k j i

=

= +

+ = + + + +

+ = + −

+ = + −

∑

∑

� � �

�

�

 (4) 

where fy�  and 
p

y�  denotes the future and the past con-

tribution, respectively. 

 

2.2. SISO DMC algorithm based on FIR model 

In order to apply FIR technique, Dai and Cheng recon-

structed the DMC algorithm based on an FIR model in 

[15]. 

The aim of DMC algorithms is to compute the future 

control increment sequence { ( ), , ( 1)}u k u k mΔ Δ + −�  to 

minimize the objective function 

( )
2 2

1 1

( ) ( ) ( ) ( ),
P m

j i

j i

J k q r k y k j r u k i j
= =

= − + + Δ + −∑ ∑�  

where m is control horizon, P is predictive horizon, r(k) 

is the set point of process output, qj and ri are weights of 

output errors and input changes. Normally we have 

N > P > m. 

The predictive error is defined as 

ˆ( ) ( ) ( ) ( ) ( ),fe k j r k y k j e k j y k j+ = − + = + − +� �  

where 

ˆ( ) ( ) ( ) ( ).Pe k j r k y k j d k+ = − + −�  (5) 

Let 



Robust Stability Conditions for DMC Controller with Uncertain Time Delay 

 

243

1

1 1

2 1

2 1

0 0

0
,

M

M

P P M P M P M

h

h h
H

h h a

h h a

−

− + − + ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

� � � �

�

�

� � � �

�

 (6) 

( )

,

( 1)

u k

u

u k M

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟+ −⎝ ⎠

�  

ˆ( 1)

ˆ ,

ˆ( )

e k

e

e k P

+⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟+⎝ ⎠

�  

( 1)

,

( )

e k

e

e k P

+⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟+⎝ ⎠

�  

( 1)

,

( )

f

f

f

y k

y

y k P

+⎛ ⎞
⎜ ⎟
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⎜ ⎟+⎝ ⎠

�

� �

�

 

( )

,

( 1)

u k

u

u k M

Δ⎛ ⎞
⎜ ⎟

Δ = ⎜ ⎟
⎜ ⎟Δ + −⎝ ⎠

�

1

0
,

0

b

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
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⎝ ⎠

�

1 0 0

1 1
.

0

0 1 1

G

⎛ ⎞
⎜ ⎟
−⎜ ⎟=

⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

�

� �

� � �
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We have 

ˆ ,fy Hu=  ˆ ,e e Hu= −  

( 1).u Gu bu tΔ = − −  

Let 
1
, ,( , )

P
Q diag q q= �

1
, ,( , )

m
R diag r r= �  the ob-

jective function can be represented as 

( ) ( )

ˆ ˆ( ) ( ) ( )

( 1) ( 1) .

T

T

J k e Hu Q e Hu

Gu bu k R Gu bu k

= − −

+ − − − −

 

The corresponding optimal solution is 

1

1

1

ˆ( ) ( ( 1))

ˆ( )

( ) ( 1).

T T T T

T T T

T T T

u H QH G RG H Qe G Rbu k

H QH G RG H Qe

H QH G RG G Rbu k

−

−

−

= + + −

= +

+ + −

 

Noting that only the first term u(k) of u is employed in 

the DMC algorithm, we have 

ˆ( ) ( 1),
e u

u k k e k u k= + −  (7) 

where 

1

1
( ) [ , , ],T T T T

e P
k b H QH G RG H Q c c

−

= + = �  

1( ) .T T T T

u
k b H QH G RG G Rb

−

= +  

 

3. MAIN RESULTS 

 

3.1. Control system structure 

Here we consider a single-loop networked control sys-

tem illustrated in Fig. 1. Network exists between not only 

sensor and controller but also controller and actuator. 

The sensor is time-driven in this system while both the 

controller and the actuator are event-driven. 

We consider a SISO system in the form of state space 

as following 

 

Fig. 1. Control structure with uncertain time delay in the 

sensor-controller and controller-actuator links. 

 

( ) ( ) ( )

( ) ( ) ( ),

x t Ax t Bu t

y t C C x t

= +⎧
⎨

= + Δ⎩

�

 (8) 

where ( ) n

x t R∈  is the state vector, ( )u t R∈  is the con-

trol input and ( )y t R∈  is the output. A, B and C are sys-

tem matrices with appropriate dimensions. ΔC denotes 

the uncertain part of the system. It is unknown but 

bounded by 

min max
.C C CΔ ≤ Δ ≤ Δ  

Considering the effects of the network, time delay is 

introduced in the discrete form. We assume that the time 

delay nhτ ε= +  where h is the sampling period and ε < 

h. Hence, we have the discrete form of (8) 

0 1
( 1) ( ) ( ) ( 1)

( ) ( ) ( ),

x k Ax k B u k n B u k n

y k C C x k

+ = + − + − −⎧
⎨

= + Δ⎩
 (9) 

where 

0
0

kh
As

B e Bds
ε−

= ∫ ,  
1

.

k

h
As

h
B e Bds

ε−

= ∫  

Time delay will not only have effect on the discrete 

model, but on the step response and impulse response 

coefficient as well. Here we introduce the following 

lemma. 

Lemma 1: For the system (9) with time delay 

,nhτ ε= +  the unit-step response coefficient 
1

[ ,a a=  

2
, , ]

T

N
a a�  satisfies  

0

1

0 0

1

0 0 0 1

( ) ,

( )( ), 1

( )( ( )), 1,

i

n

i

i i n

w

C C A x i n

a C C A x B i n

C C A x A B A B B i n

+

− −

⎧ +Δ ≤
⎪⎪

= +Δ + = +⎨
⎪

+Δ + + + > +⎪⎩

 (10) 

where 2i n

w
A A A

− −

= + + + Ι�  and x0 is the original 

state. 

Meanwhile, the impulse response coefficient 
1

[ ,h h=  

2
, , ]

T

N
h h�  satisfies  

0

1

0 0

1 2

0 0 1

( ) ,

( )( ), 1

( )( ), 1.

i

n

i

i i n i n

C C A x i n

h C C A x B i n

C C A x A B A B i n

+

− − − −

⎧ + Δ ≤
⎪⎪

= + Δ + = +⎨
⎪

+ Δ + + > +⎪⎩

 (11) 

Proof: Assume the input u is unit-step signal, which 

means 
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1, 0
( )

0, 0.

k
u k

k

≥⎧
= ⎨

<⎩
 

Substituting it into (9), we have 

1 0 0 1 1 0n n
x Ax B u B u Ax

− − −

= + + =  

2

2 1 0 1 1 1 1 0n n
x Ax B u B u A x

− − −

= + + =  

�  

1 0 1 1 2 0

n

n n
x Ax B u B u A x

− − −

= + + =  

1

1 0 0 1 1 0 0

n

n n
x Ax B u B u A x B

+

+ −
= + + = +  

�  

1 0 1 1 1 1

1 2

0 0 0 1

1

0 0 0 1

( )( )

( ).

N N N n N n

N N n N n

N N n

w

x Ax B u B u

A x A B A A B B

A x A A B B

− − − − − −

− − − −

− −

= + +

= + + + + + Ι +

= + Γ + +

�  

Noticing that ( )
i i i
a y C C x= = + Δ  when u is unit-

step signal, we have (10). And (11) can be obtained in a 

similar way. 

The proof is completed.          � 
 

Differing from [21], in which the time-varying delay 

was converted to the constant maximum delay by using a 

receiving buffer, we consider the uncertain time delay in 

this paper. As mentioned in Lemma 1, different time 

delay will lead to different step/impulse response coeffi-

cient, we use ai,k and hi,k to denote the i th step/impulse 

response coefficient at time interval k. 

The networked-induced feedback delay is unknown 

but has certain upper and lower bound, denoted as τ max 

and τ min, respectively. In this paper, we assume the time 

delay τ obeys the uniform distribution. We adopt the av-

erage delay τ ave to predict the unknown time delay, i.e., 

τ
 ave=

max min( )

2
.

τ τ+

 Hence, when we calculate step/impulse 

response coefficient, it changes from time-variant to 

time-invariant. We use 
i
a�  and 

i
h�  to denote the thi  

step/impulse response coefficient when ave

,τ τ=  and 

H�  to replace Hk. 

Meanwhile, the uncertain part of the system ΔC is also 

unknown. In order to get the step/impulse response coef-

ficient, we let ΔC = 0 when calculating ai and hi. We 

adopt 
i
a�  and 

i
h�  to denote them.  

Hence, we rewrite (2) and (4) as follows: 

1

1

( ) ( ) ( ) ( ),
N

i N

i

y k j a u k j i a u k j N d k

−

=

+ = Δ + − + + − +∑ � �  

1

1

( ) ( ) ( ).
N

P i N

i j

y t j a u k j i a u k j N

−

= +

+ = Δ + − + + −∑� � �  

And (6) should be 

1

1 1

2 1

2 1

0 0

0
.

M

M

P P M P M P M

h

h h
H

h h a

h h a

−

− + − + ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

� �

� � � �

� ��
�

� � ��

� � � �

� � ��

 (12) 

In the rest of this paper, 
i
a�  and 

i
h�  mean step/impulse 

response coefficient of the system with uncertain part 

ΔC = 0 and the time delay τ ave. 

 

Substituting (4) and (12) into (5), we have 

 

1

2

,

1

1

1

,

1

( ) ( 1) ( )

ˆ

( ) ( ) ( )

( ) ( ( 1 )

( 1 )) ( )

( ) ( ( )

( )) ( )

P

P

N

i

i

N

N i k i i k i

i

N

i

i P

N

N i k i i k i

i

r k y k d k

e

r k y k P d k

r k a u k i

a u k N a a u

r k a u k P i

a u k P N a a u

−

=

− −

=

−

= +

− −

=

− + −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− + −⎣ ⎦

⎡ ⎤
− Δ + −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥+ + − − − Δ
⎢ ⎥
⎢ ⎥

= ⎢
⎢
⎢ − Δ + −
⎢
⎢
⎢ + + − − − Δ
⎢⎢⎣ ⎦

∑

∑

∑

∑

�

�

�

�

� �

�

�

� �

.⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

 (13) 

 

When substituting (13) into (7), the control system 

structure is obtained. The stability analysis is presented 

in section 3.2. 

Remark 1: Using the time-invariant time delay in-

stead of time-variant time delay τ to calculate ai and hi 

has two benefits. Firstly, it will reduce the computational 

burden greatly since there is no need to update H at each 

sample time k. Secondly, it solves the problem that the 

controller need to know the future time delay in order to 

calculate the amount of control. But using time-invariant 

time delay will lead to extra error which will affect stabi-

lization. Our work is to find the maximum time delay in 

which the system is asymptotically stable. 

Remark 2: The uncertain part ΔC will affect the 

step/impulse responses of the system. But it is not able to 

eliminate its effect and get the exact coefficient because 

ΔC is unknown. To deal with this problem, we let ΔC 

= 0 to compute ai and hi. The difference between the real 

step/impulse response coefficient and the one we used 

can be considered as model mismatch. Hence, this be-

comes a robust stability problem associated with time 

delay. 

 

3.2. Stability analysis 

Lemma 2: Let 
k
a
τ  denotes the step response coeffi-

cient of a system S with time delay τ at time interval k, if 

the following three conditions are satisfied 

1)  [ak] is monotone increasing and asymptotic stable; 

2)  The time delay τ is bounded by min max

;τ τ τ≤ ≤  

3)  Two functions ( ) :f x R R→  and ( ) :g x R R→  

are given, with the constraint that 
min max

( )F f x F≤ ≤  

and min max( )G g x G≤ ≤  for all x. 

Then the following two conclusions exist 

(a) 1 2
,

k k
a a
τ τ

≤  

where τ1 and τ2 satisfy τ1≥ τ2. 
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(b) 
( )

( )* *

( ), ( )
( ) ( ) ,

f g
F G Max f g

⋅ ⋅

+ = ⋅ + ⋅  

where * *

min min max max
( , ) {( ,G ),( , )}.F G F F G∈  

Proof: (a) As proved in Lemma 1, we have 1

k
a
τ

=  

1

0

k
h

a
τ

−

 and 2

2

0
.

k
k

h

a a
τ

τ

−

=  Since 1 2 ,τ τ≥  we can obtain 

that 1 2
.

h h
k k

τ τ

− ≤ −  Considering the condition 1), we 

can conclude that 
1 2

0 0
.

k k
h h

a a
τ τ

− −

≤  Hence we have 

1 2
.

k k
a a
τ τ

≤  

(b) Assume that there exists 0 0( , )F G  which is nei-

ther equal to min min( ,G )F  nor max max( , )F G  and satisfies 

( )
( )0 0

( ), ( )
( ) ( ) .

f g
F G Max f g

⋅ ⋅

+ = ⋅ + ⋅  (14) 

Thus we have the following two inequalities: 

0 0 min min
,F G F G+ > +  (15) 

0 0 max max
.F G F G+ > +  (16) 

If 
0 0

0,F G+ ≥  we have 

max max 0 0
0.F G F G+ > + ≥  

Equation (16) can be rewritten as 

0 0 max max
.F G F G+ > +  (17) 

As (17) is contradicted with the conditions, 0 0F G+  

should be less than zero. Hence we have 
min min

F G+ <  

0 0
0,F G+ <  and (15) can be rewritten as 

0 0 min min
.F G F G+ < +  (18) 

As (18) is also contradicted with the conditions, 

(F0, G0) satisfies (14) does not exist. Hence, we can ob-

tain Lemma 2(b).  
The proof is completed.          � 

Lemma 3 [25] (Jury’s dominant coefficient lemma): 

Consider a characteristic equation 1

0

( ) .ji

i

A z a z

∞

− −

=

=∑  If 

condition 
0

1
i

i

a

∞

=

<∑  is satisfied, then the discrete sys-

tem described by the characteristic equation is stable. 

Theorem 1: The system (9) with ΔC = 0 is stable if 

the following conditions are satisfied 

1 2

1
,

1

1

N

i i

i

τ τ

+

=

Ψ = Λ ϒ <∑  (19) 

for 
min max max min

1 2, , ,{ , },
i i i

τ τ τ τ τ τ

∀ϒ ∈ ϒ ϒ 1,2, , 1,i N= +�  

where 

1, 2, 3, 4, 5, 6, 7,
,

i i i r i r i i i i
k kσ σ σ σ σ σ σ⎡ ⎤Λ = − − −⎣ ⎦  

1 2 1,

1 1

1 1

ˆ ˆ

P P

i j i j j i j i

j j

c a c a
τ τ τ

− + + −

= =

⎡
ϒ = − ∂⎢

⎢⎣
∑ ∑  

2

1
,

T

i N N i u N
a c k a c

τ

−

⎤
∂ ⎥

⎦
 

1

,
P

r i

i

k c

=

=∑   ,j j ja a
τ τ

∂ = − �  

1,

1, [2, 1]

0, ,
i

i N

else
σ

∈ −⎧
= ⎨
⎩

 
2,

1, [1, 2]

0, ,
i

i N

else
σ

∈ −⎧
= ⎨
⎩

 

3,

1, [2, 1]

0, ,
i

i N

else
σ

∈ +⎧
= ⎨
⎩

 
4,

1, [1, ]

0, ,
i

i N

else
σ

∈⎧
= ⎨
⎩

 

5,

1, [ , 2]

0, ,
i

i N P N

else
σ

∈ − −⎧
= ⎨
⎩

 
6,

1, 1

0, ,
i

i

else
σ

=⎧
= ⎨
⎩

 

7,

1, 1

0, ,
i

i N

else
σ

= −⎧
= ⎨
⎩

 
, [2, 1]

ˆ
0, else.

i

i

a i N

a

∈ −⎧
= ⎨
⎩

�

 

Proof: Substituting (13) into (7), we have 

( )

( )

1

1

1 1

2

1

1

1

1

1

ˆ( ) ( 1)

[ , , ]

.

e u

P

N

k i k i N k N

i

N

i i k i

i

u k

N

k i k P i N k P N

i P

N

i i k i

i

u k k e k u k

c c

r a u a u

a a u

k u

r a u a u

a a u

τ

τ

−

+ − + −

=

−

=

−

−

+ − + −

= +

−

=

= + −

=

⎡ ⎤⎛ ⎞
− Δ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥− − Δ
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥− Δ +⎜ ⎟
⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥

− − Δ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

∑

∑

�

�

�

�

�

�
 

 (20) 

Follows from (20), we have 

( )

( )

1

1

1

1 1

2

1

1

1

1

1

2

1 1 1

( ) [ , , ]

ˆ

P

i k P

i

N

i k i N k N

i

N

i i k i

i

u k

N

i k P i N k P N

i P

N

i i k i

i

P N P

i k j i j k i N i k i N

i i j

u k c r c c

a u a u

a a u

k u

a u a u

a a u

c r c a u a c u

τ

τ

=

−

+ − + −

=

−

=

−

−

+ − + −

= +

−

=

−

+ − + −

= = =

= −

⎡ ⎤
Δ +⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥+ − Δ
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥Δ +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ − Δ
⎢ ⎥⎢ ⎥⎣ ⎦

= − Δ −

∑

∑

∑

∑

∑

∑ ∑∑

�

�

�

�

�

�

( )

( )

1

1

1 1

2

1 1 1

1

1

ˆ

,

P

i

P N

i j j k j u k

i j

N P P

j i j k i N i k i N

i j i

N

r j j k j u k

j

c a a u k u

W c a u a c u

k a a u k u

τ

τ

=

− −

= =

−

+ − + −

= = =

− −

=

− − Δ +

= − Δ −

− − Δ +

∑

∑ ∑

∑∑ ∑

∑

�

�

 (21) 
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where 

1

.

P

i k

i

W c r

=

=∑  

Noticing that 
1
,

k i k i k i
u u u

− − − −

Δ = −  (21) can be re-

written as follows 

( )

( )( )

2

1

1 1

1

1

1

1

ˆ( )

.

N P

i i j k i k i

i j

P

N i k i N u k

i

N

r j j k j k j

j

u k W c a u u

a c u k u

k a a u u
τ

−

+ − − −

= =

+ − −

=

− − −

=

= − −

− +

− − −

∑∑

∑

∑ �

 (22) 

Reforming (22), we have 

( )
2

1

1 1 1

ˆ( )
N P P

j i j k i k i N i k i N

i j i

u k W c a u u a c u

−

+ − − − + −

= = =

= − − −∑∑ ∑  

( )1 1

1

N

r i k i k i u k

i

k u u k u
τ

− − − −

=

− ∂ − +∑  

1 1 1

1

ˆ

P

i i r u k

i

W c a k k u
τ

+ −

=

⎛ ⎞
= + − − ∂ +⎜ ⎟

⎝ ⎠
∑  

( ) ( )
1

1 1

2 1

ˆ ˆ

N P P

j i j i j r i i k i

i j

c a a k u
τ τ

− −

− + + − −

= =

+ − + ∂ − ∂∑ ∑  

( ) ( )
2

1 1

1

ˆ ˆ(
N P

j i j i j r i i

i N P j

c a a k
τ τ

−

− + + −

= − =

+ − + ∂ − ∂∑ ∑  

)
N N i k i

a c u
− −

−  

( )2 1 2 1

1

ˆ

P

j N j N e r N N

j

c a a k k
τ τ

− + − −

=

⎛ ⎞
+ − + ∂ − ∂⎜ ⎟
⎜ ⎟
⎝ ⎠
∑  

( )1 1 1k N r N N k N r N k N
u k u k u

τ τ τ

− + − − − −

+ ∂ − ∂ + ∂  

( )
1

1, 1 2,

1 1

ˆ ˆ

N P

j i i j i i j

i j

W c a aσ σ

+

− + +

= =

⎛
= + −⎜

⎜
⎝

∑ ∑  

( )1 2

3, 4, 5,1r i i i i N N ii
k a c

τ τ

σ σ σ
−

−

+ ∂ − ∂ −  

)6, 7, 1i u i N k i
k a c uσ σ

−

+ −  

( )1 2

1
,

1

.

N

i i k i

i

W u
τ τ

+

−

=

= + Λ ϒ∑  (23) 

Noticing that (23) is a characteristic equation, by ap-

plying Lemma 3, the discrete system is stable if the sum 

of the absolute value of all coefficients is less than 1. 

Thus, to discuss the stability of (23) we should investi-

gate 

1 2

1 1
,

1 1

.

N N

i i i

i i

τ τ

+ +

= =

Ψ = Λ ϒ = Ψ∑ ∑  (24) 

To find the maximum of Ψ, we need to investigate ci, 

ˆ ,
i
a ,

r
k ,

u
k

,k i
σ  and .

i

τ

∂  Since ci, ˆ ,
i
a  kr and ku are 

determined by system matrix and controller matrix, 

meanwhile, 
,

{0,1}
k i

σ ∈  are switching functions and are 

determined by i only. Hence, Ψi is affected only by .

i

τ

∂  

Thus, we should investigate 1 2

3, 4,1i i ii

τ τ

σ σ
−

∂ − ∂  to find the 

maximum of Ψi. For simplicity, we use f (τ1) to denote 
1

3, 1i i

τ

σ
−

∂  and g(τ2) to denote 2

4,
.

i i

τ

σ− ∂  
min

,f
min

g ,  

max
,f

max
g  stands for the minimum of f (τ1) and g(τ2), 

the maximum of f (τ1) and g(τ2), respectively. 

By applying Lemma 2(b), we have 

( )
( ) ( )( )

( ) ( )( )
1 2

* *
1 2

,
, arg ,

f g
f g Max f g

τ τ

τ τ= +  

where * *

min min max max
( , ) {( ,g ),( , )}f g f f g∈  

As ,
i i i

a aτ τ

∂ = − �  by applying Lemma 2(a), we have 

( )min

arg ,
i i

Max a a
τ

τ

τ = − �  

( )max

arg .
i i

Min a a
τ

τ

τ = − �  

As σk,i are non-negative, we have 

( )
( )

( ) ( )( )
1 2

* *
1 2 1 2

,
, arg ,Max f g

τ τ

τ τ τ τ= +  

where * * min max max min

1 2
( , ) {( , ),( , )}.τ τ τ τ τ τ∈  

Noticing that 
( )

( )
( )1 2 1 2

1 2
, ,

( ) ( ( ),)
i

Max f g Max
τ τ τ τ

τ τ+ = Ψ  we 

have 

* *
1 2,( ) arg ( ),
i i

Max
τ τ

ϒ

ϒ = Ψ  

where 
* * min max max min
1 2, , ,{ , }.
i i i

τ τ τ τ τ τ

ϒ ∈ ϒ ϒ  

Since 
1

1

( ) ( ),
N

i

i

Max Max

+

ϒ ϒ
=

Ψ = Ψ∑  we have (19). 

The proof is completed.          � 
 

In order to give the robust stability conditions, we 

firstly give the following definition. 

Definition 2: For a given bounded uncertain part ΔC, 

we use the family of plants π to denote all the possibly 

plants satisfy (9) and the maximum and minimum step 

response coefficient are denoted as 
i
a  and .

i
a  In oth-

er words, for any plant belongs to π with step response 

coefficient ai, the following result exists: 

.

i i i
a a a≤ ≤  (25) 

Theorem 2: The system (9) with ΔC ≠ 0 is stable if 

the following conditions are satisfied 

1 2

1
,

1

1

N

i i

i

τ τ

+

=

Ψ = Λ ϒ <∑  (26) 

for 
min max max min

1 2, , ,{ , },
i i i

τ τ τ τ τ τ

∀ϒ ∈ ϒ ϒ 1,2, , 1,i N= +�  

where 

1 2 1,

, 1 1

1 1

ˆ ˆ

P P

i j j i j j i j i

j j

c a c a
τ τ τ

− + + −

= =

⎡
ϒ = − ∂⎢

⎢⎣
∑ ∑  

2

1
,

T

i N N i u N
a c k a c

τ

−

⎤
∂ ⎥

⎦
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1 2 1,

, 1 1

1 1

ˆ ˆ

P P

i j j i j j i j i

j j

c a c a
τ τ τ

− + + −

= =

⎡
ϒ = − ∂⎢

⎢⎣
∑ ∑  

2

1
,

T

i N N i u N
a c k a c

τ

−

⎤
∂ ⎥

⎦
 

,j j ja a
τ τ

∂ = − �  ,j j ja a
τ τ

∂ = − �  

and other parameters are the same within Theorem 1. 

Proof: Similar with the proof of Theorem 1, we 

should investigate (24). The difference lies on the factor 

of .

i

τ

∂  In Theorem 1, 
i

τ

∂  is determined by time delay 

only; while in Theorem 2, 
i

τ

∂  is affected by both time 

delay and uncertain part ΔC. As 
i i i

a a
τ τ

∂ = − �  and due to 

(25), we have 

.

i i i i i i
a a a a a a− ≤ − ≤ −

� � �  (27) 

Due to Lemma 2(a), we have 

max min

.

i i i i
a a a a
τ τ τ τ

≤ ≤ ≤  (28) 

Substituting (28) into (27) we have 

max min

,
i i i i i i
a a a a a a
τ τ τ

− ≤ − ≤ −
� � �  

which equals to 

max min

.

i i i

τ τ τ

∂ ≤ ∂ ≤ ∂  

Similar with the proof of Theorem 1, by applying 

Lemma 2 and Lemma 3 we could obtain Theorem 2, 

which ends the proof of Theorem 2.       � 

Remark 3: The effects of time delay and model mis-

match on system stability are essentially the same. The 

exact step/impulse response coefficient is unable to be 

obtained due to the existence of τ and ΔC. Theorem 1 

only considers the effect of τ, while in Theorem 2, we 

present the relationship among stability, time delay and 

model mismatch by Definition 2. Since the two factors 

are coupled with each other in Theorem 2, we can only 

get the conclusion that a less ΔC will lead to a larger 

maximum time delay. 

 

4. NUMERICAL EXAMPLES 

 

4.1. Example 1 (ΔC = 0) 

We firstly consider the following SISO system with 

ΔC = 0 

0.4522 0.3283 0.5
( 1) ( ) ( )

0.25 0 0

( 1) [0.1103 0.1886] ( ).

x k x k u k

y k x k

⎧ −⎡ ⎤ ⎡ ⎤
+ = +⎪ ⎢ ⎥ ⎢ ⎥

⎨ ⎣ ⎦ ⎣ ⎦
⎪ + =⎩

 (29) 

The sampling period h is 0.5 second. The parameters 

of DMC are set as followed: 0,8N = 2,1P = 5,m =  

2 ,
P

Q I= 2 .0.
m

R I=  All the simulation programs were 

implemented in the MATLAB R2011a with TRUETIME 

1.5. The simulation structure is shown by Fig. 2.  

There are five nodes in the structure. Node 4 is a 

sensor. It is time-driven and will send the measurement 

value y to node 1. Node 1 is an interference block. It is 

used to generate and simulate uncertain time delay τ
sc

. 

After that, node 1 will send y to node 3, the controller. 

When the input u is generated, it will be sent to node 5. 

Node 5 is another interference block, in which τ
ca

 is 

generated and simulated. Finally, u will be sent to Node 

2, the actuator. 

Assuming the desired output r(k) is a step function and 

0 5,
ca

τ≤ ≤ 0.
sc

τ =  Applying Theorem 1 we can easily 

get 724. 1.0 5Ψ = <  Thus the closed-loop system with 

uncertain time delay which is less than 5 seconds is 

asymptotically stable. Meanwhile, by using Theorem 1 in 

[21], we can also conclude the closed-loop system can be 

asymptotically stable if the maximum delay method is 

used. The comparison between uncertain delay method 

in this paper and the maximum delay method in [21] is 

drawn in Figs. 3 to 5. 

From the above three figures, we can conclude that 

our method can achieve a better control performance 

than the maximum delay method which was presented in 

[21]. 

Fig. 2. Simulation structure based on TrueTime 1.5 and 

Matlab R2011a. 
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Fig. 4. The output trajectories. 
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Fig. 5. The control input trajectories. 

 

4.2. Example 2 (ΔC ≠ 0) 

Here we consider a third-order SISO plant-family with 

ΔC ≠ 0 

2.1594 0.7735 0.3679

( 1) 2 0 0 ( )

0 0.5 0

0.5

0 ( )

0

( ) (1 )[0.3297 0.2455 0.1809] ( ).

x k x k

u k

y k x kκ

⎧ −⎡ ⎤
⎪ ⎢ ⎥+ =⎪ ⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦
⎪⎪
⎨ ⎡ ⎤
⎪ ⎢ ⎥+⎪ ⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦
⎪

= ± −⎪⎩

 (30) 

The sampling period h is 0.2 second. The parameters 

of DMC are set as followed: 0,8N = 2,1P = 5,m =  

2 ,
P

Q I= 0.2 .
m

R I=  The different upper bound of time 

delay with different uncertainty ε are given in Table 1. 

We assume that uncertainty κ = 0.1 and the maximum 

delay is 2.2 s. Figs. 6 and 7 show the output trajectories 

of the maximum delay method and our method, 

respectively. It is found that under the maximum delay 

method, the closed-loop system cannot be asymptotically 

stable. However, by applying the approach proposed in 

this paper, the closed-loop system is asymptotically 

stable, which is illustrated in Fig. 7. 

 

5. CONCLUSION 

 

This study mainly discusses the stability problems of 

NCS with DMC controller. Introducing networks into 

control systems will bring lots of new problems such as 

time delay. Design methods and stability analysis in a 

NCS are very challenging issues. 

The main contribution of this study is to obtain some 

simple stability criteria for a DMC controller to control 

networked processes with time delay. Uncertain time 

delay is considered, which is different from previous 

methods in which the time-varying delay is converted to 

constant maximum delay by using a receiving buffer. 

Receiving buffer will help to simplify the analysis but 

obviously increase the conservatism. Robust stability 

conditions are further presented. 

Table 1. Upper bound of time delay. 

Method 0.05κ =  0.1κ =  0.3κ =

Uncertain delay 2.8τ =  2.6τ =  2.2τ =

Maximum delay [21] 1.8τ =  1.8τ =  1.6τ =

 

0 5 10 15 20 25 30 35 40 45 50
-3000

-2000

-1000

0

1000

2000

3000

4000

Time (s)

S
y
s
te
m
 o
u
tp
u
t 
y

 

 

Maximum delay method

Desired output

Fig. 6. The output trajectories with τ = 2.2 s and κ = 0.1.

 

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Time (s)

S
y
s
te
m
 o
u
tp
u
t 
y

 

 

uncertain delay method

Desired output

Fig. 7. The output trajectories with τ = 2.2 s and κ = 0.1.



Robust Stability Conditions for DMC Controller with Uncertain Time Delay 

 

249

Our future work might be the extension of the 

proposed theory in the multiple-in-multiple-out (MIMO) 

cases. Meanwhile, the networked MPC problem for 

nonlinear processes needs to be further investigated.  
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