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An Extended PID Type Iterative Learning Control 

 

Ali Madady 

 

Abstract: This paper presents a new iterative learning control (ILC) for discrete-time single-input sin-

gle-output (SISO) linear time-invariant (LTI) systems. To establish this ILC, the input of the controlled 

system is modified by using a novel four-parametric algorithm. This algorithm is called the extended 

proportional plus integral and derivative (EPID) type, since by eliminating the fourth parameter of it 

one would get to the PID type ILC, therefore PID type ILC is a special case of it. The convergence of 

the proposed ILC is analyzed and an optimal method is presented to determine its parameters. It is 

shown that the given ILC has a better performance than the PID-type one. Three illustrative examples 

are included to demonstrate the effectiveness and the preference of the presented ILC. 
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1. INTRODUCTION 

 

In automation industry we are faced with many 

systems that perform a certain task over a finite time 

duration. A sensible example of such systems is a robot 

manipulator that is required to repeat a same task with a 

high precision over a limited and constant time interval 

[1]. ILC [1-4] is a successful and effective method to 

control such systems. The main philosophy of the ILC is 

to measure and to records the information at the present 

iteration in order to use them to improve the system input 

at the next iteration. This is done by a mechanism which 

is called the learning algorithm. If the learning process to 

be convergence, after a number of repeated trials, the 

system should achieve a suitable input so that this input 

generates the desired output. 

The general field of ILC has been shown a high 

interest by the scholars. As starting point one can see the 

relevant literature in the survey paper [5]. Various 

techniques in ILC design are presented such as model-

based method [6], two-dimensional systems theory based 

technique [7], linear matrix inequalities (LMIs) and 

robust approach [8-9], adaptive methods [10-12] and 

semi-sliding window algorithm [13]. Also the issues of 

the stability, convergence and monotonic convergence of 

the various ILC algorithms have been discussed and 

explored [14-16]. 

One of the popular and effective procedures in ILC 

category is the usage of the optimization theory. Many 

researchers have been attempting to employ the 

optimization techniques in ILC. An ILC algorithm has 

been presented based on optimization techniques [17], 

where full convergence analysis of the algorithm with a 

causal representation of the algorithm is illustrated. A 

systematic solution for linear-type ILC is obtained in 

[18] by formulating the ILC design as a min–max 

optimization problem. The effectiveness of the optimiza-

tion methods in order to obtain a good and effective ILC 

design is presented in [19]. A useful technique in order to 

increase the convergence rate of the norm optimal ILC is 

presented in [20]. In [21] the problem of optimal ILC of 

general nonlinear discrete-time plants is studied. A 

norm-optimal ILC is presented in [22] when tracking is 

only required at a subset of isolated time points along the 

trial duration. The possibility of applying norm-optimal 

ILC to a system is studied [23], when there is not any 

priori information about system besides the fact that the 

system is LTI. A multi-parameter optimal ILC algorithm 

is presented in [24], which uses an approximate 

polynomial representation of the plant inverse. 

The PID (proportional plus integral and derivative) 

controller is highly used and is a very popular scheme in 

the process control industries [25]. This is mainly 

because of its effectiveness, simple structure, and its 

robustness. Therefore, many researchers are tempted to 

take the advantage of the PID strategy in designing the 

iterative learning control, which some of them can be 

found in [26-33]. We have already presented a PID-type 

ILC where its coefficients are determined in an optimal 

manner [34]. The aim of this paper is to present a new 

ILC, which is a meaningful extension of [34]. As it is 

explained in [34], it is imperative and interesting to 

notice that the P-component stabilizes the ILC system 

and causing monotonic convergence, and the I-term 

rejects the effect of non-zero initial errors and increases 

the convergence rate, while the D-component can reduce 

the effect of the inputs disturbance. Now one can easily 

see why the PID controller is a highly advantageous 

technique in the designing of ILCs. 

Hence, making any modification to the PID-type ILC 

is a significant task. This subject is the main motivation 

of this paper. So far in all the presented PID-type ILCs, 

including [34], in order to determining the modifier term 
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of the system input at the instant i th from the iteration 

1j + th, the instant 1i + th from the iteration j th is 

considered to be the present instant. Whereas another 

idea is to consider the instant i th from the iteration 

j th as the present instant. In this paper by combining 

this idea and the technique in [34], a four-parametric ILC 

is obtained that the PID-type ILC is a special case of it. It 

is shown that the convergence rate of this four-

parametric ILC, which is introduced as an extended PID-

type ILC, is higher than the PID-type one. 

The paper is organized as follows. Section 2 gives the 

necessary preliminaries and defines the problem. The 

proposed ILC is presented in Section 3. Section 4 

discusses the convergence and using an optimal approach 

so that the controller coefficients are obtained as closed-

form and explicit formula in terms of the system 

parameters. The performance of the presented ILC is 

compared by the PID-type one in Section 5. Three 

illustrative simulation examples are given in Section 6. 

Section 7 gives the conclusion. 

 

2. NOTATIONS AND PROBLEM STATEMENT 

 

Consider the following standard state-space equation 

to represent the underling discrete-time, linear, time-

invariant, single-input, single-output system: 

0

( 1) ( ) ( ) ( ),

( ) ( ) ( ),

(0) ,

0,1,..., , 0,1,...,

j j j x

j j y

j

x i Ax i Bu i w i

y i Cx i w i

x x

i M j

+ = + +⎧
⎪

= +⎪
⎨

=⎪
⎪ = =⎩

 (1) 

where ,

n
jx ∈� ju ∈�  and jy ∈�  are the state vector, 

the input and the output of the system, respectively. 
n

x
w ∈�  and 

y
w ∈�  are the unknown time-varying 

disturbances or effects of the un-modeled dynamics of 

the system. A, B and C are real matrices with appropriate 

dimensions. x0 is the system initial condition which is 

unknown. It is assumed that 0,CB ≠  that is the 

relative-degree of the system is one (trivially satisfied in 

practice). 

This system is assumed to be operating in a repetitive 

mode in finite discrete time interval [0, ],i M∈  where 

the subscript “j ” denotes the iteration or the trial number. 

It is assumed that the time duration of the iterations is not 

less than n and 4, that is max( ,4).M n≥  

The problem of ILC for system (1) is defined as 

follows [13,14,34]: 

A reference signal yd (i) is given; present an appropriate 

algorithm to modify the input of the system, so that by 

increasing the number of operation the error between the 

resultant output yj (i) and reference signal yd (i) becomes 

as small as possible, so that the following tracking is 

met: 

lim( ( ) ( )) 0 for 1,2,..., ,
d j
y i y i i M

j

− = =

→∞

 (2) 

that is ( )y i  follows the ( )
d
y i  exactly on [1, ].i M∈  

A new solution method for the ILC problem, namely 

EPID type ILC is to be presented in the next section. For 

the time being, we extend a compact formulation, which 

is named the “super-vectors” formulation [13,14], for 

model (1). 

 

Let super-vectors ( ),Y j ( ),U j ,
d

Y ,
x

W
y

W  and ( )E j  

are defined as follows: 
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 (3) 

where 

( ) ( ) ( ) 1, 2,..., .j d je i y i y i i M= − =  (4) 

Using (1) and after some manipulation one can obtain: 

0 0
( ) ( ) ,w x x yY j G U j G W G x W= + + +  (5) 

where Gw, Gx and G0 are the following matrices: 
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where gk is the standard Markov parameters of the 

system (1), which is defined as follows: 

1
for 1,2,..., .

k

k
g CA B k M

−

= =  (7) 

It is seen that Go is a low triangular Toeplitz matrix, 

which is formed by the following vector: 

1 2 3
[ ] ,

T

M
g g g g g= …  

where T denotes the transpose. 

Considering (5) for the two consecutive iterations j 
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and j + 1 and by subtracting them from each other one 

gets: 

0 0

0 0

( 1) ( ) ( 1)

( ) ,

w x x y

w x x y

Y j Y j G U j G W G x W

G U j G W G x W

+ − = + + + +

− − − −

 

or 

0
( 1) ( ) ( ) 0,1,...,Y j Y j G V j j+ = + =  (8) 

where 

( ) ( 1) ( ).V j U j U j= + −  (9) 

Therefore, by extension the “super-vectors” formula-

tion for model (1), the uncertain quantities 
0

{ , ( ),
x

x w i  

( )}
y

w i  are eliminated from model (1), and this model is 

stated in the form of the relation (8) that is a dynamic 

equation in the repetition domain j. 

From (8) one gets: 

0
( 1) ( ) ( ).

d d
Y Y j Y Y j G V j− + = − −  

The definitions of ( ),E j ( )Y j  and Yd, gives ( )E j =  

( ) ,
d

Y Y j−  Thus one can rewrite the above relation such 

that: 

0
( 1) ( ) ( ) 0,1,...E j E j G V j j+ = − =  (10) 

As a summary of the super-vectors formulation, one 

can state that when there is no ILC on the system (1) the 

dynamics of the error super-vector E( j ) is governed by 

Eq. (10), hence this equation can be interpreted as the 

open-loop system dynamics in the iteration domain. 

 

3. PROPOSED ITERATIVE LEARNING 

CONTROL LAW 

 

Generally the following law is considered to update 

the input of system (1) [34]: 

1 1
( ) ( ) ( ),

0,1,..., 1 , 0,1,...,

j j ju i u i u i

i M j

+ +
= + Δ

= − =

 (11) 

where 
1
( )ju i

+
Δ  is a modifier term. 

The technique used, in determining 
1
( )ju i

+
Δ  states 

that how to tackle the ILC problem. In the PID type ILC, 

1
( )ju i

+
Δ  is determined as follows [26,32,34]: 

( )

1

1
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( ) ( 1) ( )

( 1) ( ) ,
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j P j I j
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D j j

u i k e i k e m

k e i e i
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=
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+ + −

∑
 (12) 

where ej (i), for 1 ,i M≤ ≤  is given in (4), (0) 0,je �  

and kP, kI and kD are real constant gains (coefficients), 

which are called proportional, integration and derivative 

learning gains respectively [26,32,34]. 

According to (12), to extend the PID control law from 

the classical (non-repetitive) domain to the ILC in order 

to determine 
1
( ),ju i

+
Δ  the instance i +1 from j iteration 

is considered to be the present instance. Whereas there is 

an alternative option, since the time argument of 

1
( )ju i

+
Δ  is i, it is reasonable to consider instance i as 

the present instance. That is the ILC (12) can be as 

follows: 

( )1

1

( ) ( ) ( ) ( ) ( 1) ,
i

j P j I j D j j

m

u i k e i k e m k e i e i
+

=

Δ = + + − −∑

 ( (0) 0, ( 1) 0).j je e −� �   (13) 

Now, by linearly combining (12) and (13) one can 

obtain a more comprehensive ILC as follows: 
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So (12) and (13) are two especial cases of (14). 

According to (14), to determine 
1
( )ju i

+
Δ  the errors 

{ (1), (2),..., ( ), ( 1)}j j j je e e i e i +  are used and apparently 

there exist six parameters (coefficients). But it can be 

shown that these six parameters can be interchanged to 

four independent parameters. For this purpose one can 

easily write the relation (14) in the following compact 

form: 

1 1 2

2

3 4

1

( ) ( 1) ( )

( 1) ( ),

j j j

i

j j

m

u i k e i k e i

k e i k e m

+

−

=

Δ = + +

+ − + ∑
 (15) 

where 

1

1 2

2

1 2

3

1 2

4

1 1 1 0 0 0

0 1 1 1 1 1
.

0 1 0 0 1 1

0 1 0 0 1 0

P P

I I

D D

k
k k

k
k k

k
k k

k
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 (16) 

The relation (15) is a lot more clear and explanatory 

than (14). Because the error values in deferent instant are 

in the form of four independent separated terms. So that 

the term 
2

1

( )
i

j

m

e m

−

=

∑  consists of error values in the 

instants {1,2,..., 2}i −  and each of the terms ej (i –1), 

ej (i ) and ej (i +1) consists of the error value at the 

instants i –1, i and i +1 respectively. Therefore it is 

clearly obvious that (15) is a four-parametric relation, 

where its parameters are {k1, k2, k3, k4} Since, in the PID-

type ILC there exist three parameters, then (15) can be 

considered as an extended PID-type ILC. We do in fact 

expect that in a four-parametric extended PID-type ILC 

by zeroing one of the parameters, one would obtain the 

same PID-type ILC. But by zeroing none of the 

parameters of (15) one could not get to the PID-type ILC, 

which is given in (12). For this, with a little manipulation, 

the relation (15) can be written in the following form: 
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( )
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where 
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4
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E
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Thus, the four-parametric relation (15) is transformed 

into another four-parametric relation in which {kP, kI, kD, 

kE} are the parameters. Where by zeroing kE one can 

obtain the same PID-type ILC. Therefore (17) is an 

EPID-type ILC. 

By employing the definitions of super-vectors E( j ) 

and V( j ), one can rewrite (17) in following compact 

form: 
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Substituting V( j ) from (19) into (10) yields: 

( 1) ( ) 0,1,...,
c

E j G E j j+ = =  (21) 

where 

1

2 3

( )

.

c P D o I o

D o E o

G I k k G k G F

k G F k G F

= − + −

+ −

 (22) 

Now one can state that (21) represents the dynamics of 

the closed-loop system in the repetition domain when the 

presented EPID-type ILC is used to control system (1). 

 

4. CONVERGENCE ANALYSIS AND OPTIMAL 

DESIGNE OF THE CONTROLLER 

PARAMETERS 

 

The convergence concept of any given ILC is its 

ability to control system (1) so that for any initial input 

u0(i), that is for any E(0), the tracking property (2) to be 

guaranteed, that is: 

lim ( ) 0.E j

j

=

→∞

 (23) 

A strong type of the convergence is the monotonic one, 

which means the better and better operation from trial to 

trial [34]. That is for any E(0) not only the tracking 

property (2) holds but also we have: 
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j

λ λ

λ λ

λ

⎧ + < ≠⎪
⎨

+ = =⎪⎩

= ∞ =

 (24) 

where 
λ

 denotes the λ -norm. 

 

Theorem 1: The presented ILC is convergent if and 

only if the sum of the three coefficients kP, kI and kD of 

(17) is chosen in the following interval: 

1
1 ( ) 1.

P I D
g k k k− + + <  (25) 

Proof: The dynamic of the closed-loop system in the 

repetition domain in the PID-type ILC instead of (21) 

was as follows [34]: 
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1 2
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(6) and (20), respectively. 

It is also proven that Gc is a low triangular Toeplitz 
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From (22) and (27) one gets: 

0 3
.

c c E
G G k G F= −  (31) 

Substituting Gc, Go and F3 respectively from (29), (6) 

and (20) into (31) yields: 
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1

2 1

3 2 1

( 1) ( 2) ( 3) 1

( 1) ( 2) 2 1

0 0 0 0

0 0 0

0 0
,

0

c

c c

c c c

c

c M c M c M c

cM c M c M c c

g

g g

g g g
G

g g g g

g g g g g

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

� � �

…

 

 (32) 

where 

2

for 1,2

for 3,..., .

ci

ci

ci E i

g i
g

g k g i M
−

=⎧
= ⎨

− =⎩
 (33) 

Therefore 
c

G  is a low triangular Toeplitz matrix 

which is formed by the following vector: 
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[ ] .

T

c c c c cM
g g g g g= …  (34) 

From the low triangular structure of ,
c

G  the charac-

teristic polynomial of 
c

G  is obtained as 

1
( ) det( ) ( ) .

c

M

c cG
I G gλ λ λΔ = − = −  

Hence all eigenvalues of 
c

G  are equal to 
1
.

c
g  

By considering the homogeneous linear dynamical 

equation (21), one concludes that the presented EPID-

type ILC is convergent if and only if we have 

1
1,

c
g <  (35) 

this is the same as (25).           � 
 

Comment 1: According to (7) we have g1 = CB, since 

CB is assumed to be nonzero, one can pick up numerous 

real numbers for kP, kI and kD which they satisfy 

inequality (25). 

The following theorem gives a sufficient condition for 

monotonic convergence. 
 

Theorem 2: The presented ILC is monotonically 

convergent if: 

1
1.

c
g <  (36) 

Proof: It is similar to the proof of the presented 

lemma in [34].             � 
 

Comment 2: Considering the details of the proof of 

the Theorem 2, which is not brought here for its 

similarity to the proof of the presented lemma in [34], it 

is concluded that if whatever one decreases 
1c

g  by 

choosing the appropriate values for the learning gains kP, 

kI, kD and kE then the convergence rate increases. In order 

to minimize 
1c

g  and consequently to achieve the 

maximum convergence rate, it is possible to use the 

nonlinear numerical techniques (such as optimization 

toolbox of the MATLAB) to calculate the learning gains 

kP, kI, kD and kE. However, here instead of 
1c

g  an 

upper bound of it is to be minimized for two reasons. 

Firstly, by numerical minimizing of 
1c

g  one can not 

to achieve a closed-form and explicit formula for the 

parameters kP, kI, kD and kE, while here we are interested 

to obtain a closed-form formula for these parameters. 

Secondly, a critical and important step in any numerical 

optimization method lies in selecting the initial values of 

variables. Hence, one can use the obtained values for kP, 

kI, kD and kE from minimizing the upper bound of 
1c

g  

as the initial values in numerical minimizing of 
1
.

c
g  

Since 
c

g  has M  components, it is easy to show 

that: 

1 2
.

c c
g M g<  (37) 

Therefore 
2c

M g  is a upper bound for 
1
,

c
g  

hence kP, kI, kD and kE are obtained such that the 

following index function to be minimum: 

2

2
.

T

c c c
g g gρ = =  (38) 

Using (30) and (33), one can write 
c

g  as in the 

following form: 

,
c

g HKα= −  (39) 

where ,

M
α ∈�

4M
H

×

∈�  and 4
K ∈�  are defined as 

follows: 

1 1 1

2 1 2 2 1

3

3 3 2 1

1

1 2

1

[1 0 0 0 0] ,

0

0

,

[ ] .

T

l

l

M

M l M M M

l

T

P I D E

g g g

g g g g g

g g g g g
H

g g g g g

K k k k k

α

=

− −

=

=

⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

=

∑

∑

�

� � � �

 (40) 

The following lemma is presented for H . 
 

Lemma 1: We have rank( ) 4,H =  that is H  has full 

column rank, and hence T
H H  is invertible. 

Proof: We carry out some elementary column 

operations on .H  It is known that the row or column 

elementary operations dose not change the rank of the 

matrix. 

Step 1: Multiplying column 1 of H  by 1−  and add 

the result to columns 2 and 3: 

1

2 1 1

3 1 2 2 1

3

4 3 2

1

1

1 2

1

0 0 0

0

.l

l

M

M l M M

l

g

g g g

g g g g g

g g g g

g g g g

=

−

− −

=

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+ −
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎢ ⎥⎣ ⎦

∑

∑

� � � �

 (41) 
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Step 2: Adding column 2 to column 3: 

1

2 1

3 1 2 1 1

3

4 1 2 2

1

1 2

2

1 1

0 0 0

0 0

.l

l

M M

M l l M

l l

g

g g

g g g g g

g g g g g

g g g g

=

− −

−

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∑

∑ ∑

� � � �

 (42) 

Step 3: Multiplying column 4 by –1: 

1

2 1

3 1 2 1 1

3

4 1 2 2

1

1 2

2

1 1

0 0 0

0 0

.l

l

M M

M l l M

l l

g

g g

g g g g g

g g g g g

g g g g

=

− −

−

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎢ ⎥⎣ ⎦

∑

∑ ∑

� � � �

 (43) 

Step 4: Adding column 3 to column 4: 

1

2 1

3 1 2 1

3

4 1 2 1

1

1 2 3

1 1 1

0 0 0

0 0

0

.l

l

M M M

M l l l

l l l

g

g g

g g g g

g g g g g

g g g g

=

− − −

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∑

∑ ∑ ∑

� � � �

 (44) 

Since 
1

0g CB= ≠  the above matrix and consequently 

H  has full column rank.          � 

 

Now from (38) and (39) one gets: 

1 2 .
T T T
HK K H HKρ α= − +  (45) 

Obtaining the gradient (derivation) of ρ  respect to K 

as: 

2 2 .
T T

H H HK
K

ρ
α

∇
= − +

∇
 (46) 

As according to Lemma 1 T
H H  is invertible, it is 

concluded that the equation 0
K

ρ∇
=

∇
 has a unique solution 

for K: 

* * * * * 1

[ ] ( ) .
T T T

P I D E
K k k k k H H H α

−

= =  (47) 

From (46) it is obtained: 

2

2
2 .

T
H H

K

ρ∇
=

∇

 (48) 

The symmetric matrix T
H H  is positive definite, 

therefore K* makes the index ρ  to become a global 

minimum. 

By substituting *

K  from (47) into (45) then the 

global minimum of ρ  is obtained as follows: 

* 1

1 ( ) .
T T T
H H H Hρ α α

−

= −  (49) 

Comment 3: Form (47) and (49) one gets: 

* *

1 .
T
HKρ α= −  (50) 

Substituting α  and H  from (40) into (50) yields: 

* * * *

1
1 ( ).

P I D
g k k kρ = − + +  (51) 

From (38) and (49) it is obvious that *

0 1,ρ≤ <  

therefore, the obtained optimal values for the controller 

parameters satisfy the inequality (25), which is necessary 

and sufficient in order to have the presented ILC to be 

convergent. 

 

5. COMPARISON WITH PID-TYPE ILC 

 

In this section it is intended to compare the perform-

ance of the presented EPID-type ILC with PID-type and 

show that the EPID-type is better. 

In the PID-type ILC instead of inequality (36), the 

sufficient condition for having monotonically converg-

ence is [34]: 

1
1,

c
g <  

where g
c
 is the given vector in (28). 

Also instead of (37) we have [34]: 

1 2
.

c c
g M g<  

For this reason instead of (38) the following index 

becomes to be the minimum [34]: 

2

2
.

T

c c c
g g gρ = =  

Comparison of the performances of the PID-type and 

the EPID-type ILCs, is the meaning of the comparison of 

the obtained global minimums for ρ  in [34] and ρ  in 

this paper, respectively. The global minimum of ρ  is 

given in (49) and similarly the global minimum of ρ  is 

[34]: 

* 1

1 ( ) ,
T T T
H H H Hρ α α

−

= −  (52) 

where M
α ∈�  is the same given vector in (40) and 

3M
H

×

∈� is such that [34]: 

1 1 1

2 1 2 2 1

3

3 3 2

1

1

1

.

l

l

M

M l M M

l

g g g

g g g g g

g g g g
H

g g g g

=

−

=

⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

� � �

 (53) 
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From Lemma 1, one gets: 

rank( ) 3.H =  (54) 

It is needed to prove * *

.ρ ρ<  In order to do so, the 

following lemma is required: 

 

Lemma 2: The scalar η which is defined as follows is 

a positive number: 

{ }1( ) ,T T T
L I H H H H Lη

−

−�  (55) 

where 

[ ]1 2 2
0 0 .

T

M
L g g g

−

= �  (56) 

Proof: Considering the definitions of the matrices 

,H  H and the vector L, we get: 

[ ].H H L=  (57) 

From (57) it is resulted: 

.

T T

T

T T

H H H L
H H

L H L L

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (58) 

From Lemma 1, one concludes that the symmetric 

matrices T
H H  and T

H H  are both positive definite 

and hence det( ) 0
T

H H >  and det( ) 0.
T

H H >  

For any invertible matrix ,

n n

A
×

∈�  any vectors 

, ,

n

x y∈�  and scalar a the following identity holds [35, 

page 133, fact 2.14.2]: 

1
det ( )det( ).

T

T

A x
a y A x A

y a

−

⎛ ⎞⎡ ⎤
= −⎜ ⎟⎢ ⎥⎜ ⎟

⎣ ⎦⎝ ⎠
 (59) 

Applying the above formula for T
H H  results: 

det( )
,

det( )

T

T

H H

H H

η =  (60) 

where η is given by (55). 

Since both det( )
T

H H  and det( )
T

H H  are positive, 

immediately one concludes that η is positive too.    � 

 

Now the main result of this section is presented. 

 

Theorem 3: We have * *

,ρ ρ<  and hence the per-

formance of EPID-type ILC is better than PID-type one. 

Proof: Let us define: 

* *

.ρ ρ ρΔ = −  (61) 

From (49) and (52) it is obtained: 

1 1( ) ( ) .T T T T T T
H H H H H H H Hρ α α α α

− −

Δ = −  (62) 

On the other hand from (40) and (53) we get: 

1

1

[1 1 1],

[1 1 1 0].

T

T

H g

H g

α

α

=

=

 (63) 

Substituting (63) into (62) yields: 

ρΔ =  

[ ] [ ]2 1 1

1

1
1

1
1 1 1 0 ( ) 1 1 1 ( ) 1 .

1
1

0

T T
g H H H H

− −

⎧ ⎫⎡ ⎤
⎡ ⎤⎪ ⎪⎢ ⎥

⎪ ⎪⎢ ⎥⎢ ⎥ −⎨ ⎬⎢ ⎥⎢ ⎥⎪ ⎪⎢ ⎥⎢ ⎥ ⎣ ⎦⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 

 (64) 

Let 1( )T
H H

−  to be partitioned in the form of four 

blocks as follows: 

11 121

12 22

( ) ,T

T
H H

−

Γ Γ⎡ ⎤
= ⎢ ⎥

Γ Γ⎣ ⎦
 (65) 

where 3 3

11
,

×

Γ ∈�
3 1

12

×

Γ ∈�  and 
22

.Γ ∈�  

Form (64) and (65) it is resulted: 

( )2 1

1 11
( ) ,T

g H Hρ
−

Δ = ∑ Γ −  (66) 

where 1

11
( ( ) )T

H H
−

∑ Γ −  denotes the summation of all 

of the components of the matrix 1

11
( ) .T
H H

−

Γ −  

For four arbitrary matrices ,

n n

A
×

∈� ,

n m

B
×

∈�  
m n

C
×

∈�  and m m

D
×

∈�  the following identity holds 

[35, page 108, proposition 2.8.7] if A and 1
D CA B

−

−  

are nonsingular: 

1 1 1 1 1 1

1 1 1

1 1 1

1 1

( )

( )

( )
.

( )

A B A A B D CA B CA

C D D CA B CA

A B D CA B

D CA B

−

− − − − −

− − −

− − −

− −

⎡ + −⎡ ⎤
= ⎢⎢ ⎥

− −⎣ ⎦ ⎢⎣

⎤− −
⎥

− ⎥⎦

 (67) 

Let us to try to use the above identity for computing 
1( ) .T

H H
−  From (58) one gets: 

, , , .

T T T T
A H H B H L C L H D L L= = = =  (68) 

Hence: 

1 1( ) .T T T T
D CA B L L L H H H H L

− −

− = −  

Here it is observed that 1
D CA B

−

−  is a scalar, and 

which is the same η defined in (55). According to 

Lemma 2, η is a positive number, hence it is not zero. 

Thus 1
D CA B

−

−  is invertible. Because T
A H H=  is 

also invertible, then one can use the formula (67) in order 

to calculate 1( ) .T
H H

−  Therefore considering (65) we 

obtain: 

1 1 1 1

11

1 1 1

12 22

( ) ( ) ( ) ,

( ) , .

T T T T T

T T

H H H H H LL H H H

H H H L

η

η η

− − − −

− − −

Γ = +

Γ = − Γ =

 (69) 

Substituting for Γ11 from (69) into (66) yields: 

( )
2

1 11 ( ) ( ) .
T T T Tg

H H H LL H H Hρ
η

− −

Δ = ∑  (70) 

Let us to show the vector 1 3( )T T
H H H L

−

∈�  as: 
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( )
1

.

T T

a

H H H L b

c

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (71) 

Substituting (71) into (70) yields: 

( )
2

21
.

g
a b cρ

η
Δ = + +  (72) 

According to Lemma 2, η is positive number, hence 

from (72) it is resulted that Δρ is also positive.    � 

Comment 4: In the relation (72), if a + b + c = 0 then 

it is resulted that Δρ = 0. That is the performances of the 

PID-type and the EPID-type ILCs are identical. In fact 

this special case occurs when the obtained optimal value 

for kE, that is *

,
E
k  to be zero. Obviously in this case the 

EPID-type ILC is reduced to the PID-type one. The 

following lemma clarifies this fact. 

 

Lemma 3: We have: 

* 1 ( ),
E

g
k a b c

η
= − + +  (73) 

and hence: 

*

0 0.
E
k a b c= ⇔ + + =  

Proof: In taking (47) in to account, in order to 

determine *

E
k  it is required to multiply the fourth row 

(last row) of 1( )T
H H

−  by the vector T
H α = g1[1 1 1 

0]T. Then by using (65) and (69) we have: 

* 11 ( ) [1 1 1] .T T T

E

g
k L H H H

η

−

= −  (74) 

Substituting 1( )T T
L H H H

−  from (71) into (74) results 

(73).                � 

 

6. NUMERICAL EXAMPLES 

 

In order to illustrate the effectiveness of the presented 

ILC, three examples are given in this section. 

 

Example 1: The first example is considered as similar 

to the example of [34], which is a position servo control 

system. Let us consider a DC motor that its armature is 

supplied by a constant current source. Its field winding is 

supplied by an adjustable voltage source, so that, this 

voltage controls the rotational angle of the motor, as 

shown in Fig. 1. The motor rotates a mechanical load. 

In this case the dynamics of the motor is modeled by 

the following state space equations [34]: 

( ) ( ) ( )

( ) ( )

fx t Ax t Bv t

y t Cx t

= +⎧⎪
⎨

=⎪⎩

�

   0t ≥ , 

where 

( ) ( ) ( ) ( ) ,
T

fx t i t t tω θ⎡ ⎤= ⎣ ⎦  ( ) ( ) ,y t tθ=  

fL
J,f

,ω θ

I =Constanta

fR
fi (t)

fV (t)

+

_

Field 

winding

Mechanical

load

 

Fig. 1. DC motor with constant armature current. 

 

and 

J J

0 0

0 ,

0 1 0

R f

L f

k fm
A −

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

0 ,

0

L f

B

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

[0 0 1].C =  

The parameters and the signals of this model are as 

follows. Rf, Lf are the field winding resistance and the 

inductance respectively, km is the motor torque ratio, J 

and f are momentum of inertia and the friction ratio of 

the mechanical load respectively, vf (t) and if (t) are 

respectively the field winding source voltage and current, 

ω(t) and θ(t) are the motor shaft rotational speed and 

angle respectively. 

It is desired to control the motor so that its output 

follows periodically a given desired signal yd(t) in the 

time interval [0, tf ]. In order to determine the motor 

input voltage according to the EPID-type ILC, firstly the 

model of motor should be discretized. For this, let us 

choose sampling period T = 0.01 sec and motor param-

eters to be: 

2

Nm15 , 1.25 H, 120 ,
A

Nms Nms0.8 , J 7.5 , 12 sec.
rad rad

f f m

f

R L k

f t

= Ω = =

= = =

 

The obtained discrete mode is as follows: 

( 1) ( ) ( )

( ) ( )

0,1,...,1200, 0,1,...,

j D j D fj

j D j

x i A x i B V i

y i C x i

i j

+ = +⎧
⎪

=⎨
⎪

= =⎩

 

where j denotes the iteration number and 

0.8869 0 0

0.1507 0.9989 0 ,

0.0008 0.0100 1

D
A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

0

0.0097 ,

0.0093

D
B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

0

0 .

1

T

D
C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The desired output trajectory is chosen to be a 

parabolic signal as follows: 
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Fig. 2. The desired output trajectory and the motor 

output (rotational angle) in iterations j = 0,2,6,10, 

12,15. 

 

( ) 1.25 ( ) 0 ,
d f f
y t t t t t t= − < ≤  12 sec,ft =  

that is: 

1( ) ( ) 1 1200.
8000

f

d

t
y i i M i i M

T
= − ≤ ≤ = =  

All initial conditions as well as the motor input voltage 

at the iteration j = 0 are chosen to be zero. 

Fig. 2 shows the obtained trajectories for the motor 

rotational angle (the motor output) for some iterations 

and the desired output trajectory. As can be seen from 

this figure by increasing the iterations number, the motor 

output is rapidly converged to the given desired output 

trajectory. 

Figs. 3-5 show all the three norms 1, 2 and ∞, for E( j ) 

versus the iteration number j. These figures indicate that 

the convergence is monotonic in the sense of all three 

norms 1, 2 and ∞. 

For purposes of comparing, the obtained norms from 

the PID-type ILC, are also included in Figs. 3-5. It is 

observed that in the sense of all three norms the conver-

gence rate of the EPID-type ILC is faster, which confirms 

the theoretical results of Theorem 3. Particularly Fig. 5 

shows that the PID-type ILC convergence is not 

monotonic in the sense of ∞ norm whereas in EPID-type 

ILC the convergence is monotonic. 
 

Example 2: As for the performance comparison of the 

presented method in this paper with the method of [14], 

the second example is selected from [14]. The system is 

stable oscillatory with the following transfer function 

[14]: 

0.8
( ) .

( 0.5)( 0.6)

z
G z

z z

−
=

− +

 

By taking the Z inverse transform from the G(z), the 

Markov parameters of the system are obtained as 

follows: 

1 13 14
(0.5) ( 0.6) .

11 11

k k

k
g

− −

= − + −  

 

Fig. 3. The norm 1 of the error vector E( j ) with respect 

to j. 

 

 

Fig. 4. The norm 2 of the error vector E( j ) with respect 

to j. 

 

 

Fig. 5. The norm ∞ of the error vector E( j ) with respect 

to j. 

 

Just as in [14], let M = 60 and the desired trajectory is 

a triangle (ramp), having the maximum height of 1, given 

by: 
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1 30
30

( )
(60 )

31 60.
30

d

i
i

y i
i

i

⎧
≤ ≤⎪⎪

= ⎨
−⎪ ≤ ≤

⎪⎩

 

The desired output trajectory and the obtained output 

for the system from EPID method are given in Fig. 6. 

This figure demonstrates that the convergence rate is 

drastically fast. 

Since in [14] the 2-norm of E( j ), that is the root mean 

square error, is given with respect to j, in here also this is 

done in order to be able to compare the results. Fig. 7 

shows the obtained 2-norm of E( j ) versus the iteration 

number j from the presented method as well as the 

method of [14]. By comparing the two graphs in Fig. 7 

clearly one can see that the convergence rate of the 

presented ILC in this paper is drastically faster than the 

method which is given in [14]. The learning coefficient 

in [14] is time-variant, whereas the method of this paper 

benefits from the time-invariant learning gains. It is clear 

that the implementation of an ILC having time-invariant 

learning gains is a lot easier than an ILC with time-

variant gains. 
 

Example 3: The third example is chosen from recently 

published paper [24]. The system has the following 

transfer function: 

2

0.02771 0.02713
( ) .

1.958 0.9589

z
G z

z z

−
=

− +

 

For this system the Markov parameters are obtained as 

follows: 

{

}

3

3

0.0283(0.97923) cos(21.91 10 )

0.0186sin(21.91 10 ) .

k

k
g k

k

−

−

= ×

+ ×

 

The reference signal is ( ) 5sin(0.5 )
d
y i iπ=  over the 

time interval 1 14.i≤ ≤  

 

Since in [24] the 2-norm of E( j ) is tabulated in term 

of the repetitions number, in here also this is done in 

order to be able to compare the results. Table 1 shows 

the 2-norm of E( j ) in the first ten iterations. It is 

observed that the convergence rate of the presented 

method in this paper is a lot faster. Whereas in [24] a 

large number of learning coefficients are used but in the 

presented technique in this paper there are just four 

learning coefficients. 

 

7. CONCLUSION 

 

This paper presented a novel iterative learning control 

approach for trajectory tracking. To establish this ILC, a 

linear combination of the previously presented [34] and a 

new PID-type ILC was considered. It was shown that the 

presented ILC has four independent learning gains where 

by zeroing its fourth learning gain, one achieves the PID-

type ILC. Consequently, it is merited to be called an 

extended PID-type ILC. 

The convergence and the monotonic convergence of 

the given ILC was analyzed and a norm-optimization 

based method was developed to determine its learning 

gains, and these gains were obtained as the explicit 

closed-form formulas in terms of the Markov parameters 

of the system. The performance of the presented EPID-

 

Fig. 6. The desired output trajectory and the system 

output in iterations j = 0 up to 4. 

 

Fig. 7. The norm 2 of the error vector E( j ) with respect 

to j (solid line is for this paper and dash line is 

for [14]). 

Table 1. The norm 2 of the error vector E( j ) values for 

the first 10 iterations. 

Iteration

number

The obtained 

results from this paper 

The obtained 

results from [24] 

j = 0 79.0569 79.0569 

j = 1 0.0076 2.0750 

j = 2 8.4118×10–7 0.8450 

j = 3 1.0837×10–10 0.5409 

j = 4 1.6490×10–14 0.3993 

j = 5 1.5299×10–18 0.3160 

j = 6 8.4487×10–23 0.2621 

j = 7 2.0102×10–27 0.2230 

j = 8 5.9616×10–34 0.1929 

j = 9 9.9219×10–41 0.1692 

j = 10 1.2225×10–47 0.1498 
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type ILC was compared with the PID-type ILC and it 

was mathematically proven that its performance is better, 

that is its convergence rate is faster than the PID-type. 

Finally, by some examples the effectiveness and the 

preference of the presented ILC were illustrated. 
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