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Abstract: In this paper, we propose the robust digital control for active magnetic bearing (AMB) sys-

tems. For achieving the robust stability, we deal with the uncertainties of the given system based on the 

Takagi-Sugeno (T-S) fuzzy model. Also, in order to solve the digital implementation for real plants, 

this paper presents a robust intelligent digital redesign (IDR) method. The term IDR involves convert-

ing an analog controller into an equivalent digital one in the sense of state-matching. The uncertainties 

in the plant dynamics is shown in the IDR condition by virtue of the pade and inverse-pade approxima-

tion method. Also, the robust stability property is preserved by the proposed method. The sufficient 

conditions for robust controller are obtained in terms of solutions to linear matrix inequalities (LMIs). 

Finally, simulation results for two AMB systems are demonstrated to visualize the feasibility of the 

proposed method. 

 

Keywords: Active magnetic bearing (AMB), intelligent digital redesign (IDR), linear matrix 
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1. INTRODUCTION 

 

In recent year, the magnetic bearings are widespread 

more and more in many industrial applications such as 

flywheels, satellites, and high-speed turbines, etc. 

According to principle of producing suspension forces, 

we can classify the magnetic bearings as passive and 

active. Among them, active magnetic bearing (AMB) 

systems have been paid more attention. Because the 

AMB dramatically reduces the friction and wear, it has 

virtually semi-permanent life without lubrication and 

mechanical maintenance [1]. As a result, there are many 

researches to control the AMB, such as linear control [2], 

PID control [3], sliding mode control [4], feedback 

linearization [5], and adaptive control [6]. However, the 

dynamics of AMB has severe nonlinearities so that the 

control of the given system is not easy. In other words, 

the inherently unstable dynamics of the AMB, associated 

with the complexity of the rotor dynamics, makes it 

impossible to operate the concerned system without a 

proper control.  

For solving these nonlinearity problems, [1] and [7] 

have dealt with robust control for AMB system by using 

the Takagi-Sugeno (T-S) fuzzy model. The main 

advantage of fuzzy model is to express a nonlinear AMB 

system by the time-varying convex combination of linear 

state space models using nonlinear fuzzy membership 

functions so that it is easy to apply the various control 

technique, such as output feedback control, decentralized 

control, H∞ control, and so on. Especially, through the 

merge of the T-S fuzzy control with a digital redesign 

(DR) method, it is possible to use the digital devices in 

the control of complex dynamical systems. This control 

technique is called by an intelligent digital redesign 

(IDR) [8,9-12]. The IDR method involves converting an 

existing analog fuzzy controller into an equivalent digital 

counterpart in the sense of state-matching.  

The robust IDR problem has been also studied in [13]. 

However, the method in [13] which is known as the local 

approach has two main disadvantages: first, it only 

considered the each subsystem in T-S fuzzy systems so 

that it only allowed the local state-matching; second, any 

stability conditions for digital control systems were not 

considered in their IDR procedure. To overcome these 

weaknesses, the global robust IDR approach has been 

proposed in [12]. In order to solve the robust IDR 

problem, they have solved the complex structural 

property in the procedure of discretization by using the 

bilinear and inverse-bilinear approximation method. 

However, since the robust IDR in [12] did not consider 

the high-order uncertain terms in discretization, it may 

show the poor performance according to increase of the 

sampling period. 

Motivated by the above observations, this paper 

presents a novel robust control method for digital 
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implementation of the AMB. For achieving the robust 

stability, we deal with the parametric uncertainties of the 

concerned system in the form of the norm-bounded. Also, 

we derive the discretized models of the analog and 

digital control systems preserving the property and 

structure of the uncertainties by using pade and inverse-

pade approximation method. Based on these discretized 

models, the IDR problem is to find the relevant digital 

fuzzy gains that minimize the norm distance between the 

states of the analog and the digital robust control system 

and stabilize the digital control system simultaneously. 

Its constructive conditions are provided in the linear 

matrix inequalities (LMIs) formats, and therefore easily 

tractable by the convex optimization techniques. Finally, 

the obtained LMIs are applied to the two AMB systems: 

1) 1-dimension of freedom (DOF) AMB system; 2) 2-

axis controlled vertical shaft AMB system which are 

constructed as the T-S fuzzy model. 

This paper is organized as follows: Section 2 deals 

with the T-S fuzzy control scheme in nonlinear aspect. 

The robust control methodology based on digital 

controller is proposed in Section 3. The two robust 

simulation results of AMB system are demonstrated in 

Section 4. This paper concludes with Section 5. 

 

2. PRELIMINARIES 

 

The general T-S fuzzy model can be represented as 

1 1
: ( ) ... ( )

( ) ( ) ( ) ( ) ( ),

i i p ip

d i i d i i d

R If z t is about and and z t is about

Then x t A A x t B B u t

Γ Γ

= + ∆ + + ∆�

 (1) 

where ,
i

R {1,2, , },
r

i q∈Ι = �  denotes the i th fuzzy 

rule, ( ),
h
z t {1,2, , },

p
h p∈Ι = �  is the h th premise 

variable, ,

i

h
Γ ( , ) ,

r p
i h I I∈ ×  is the fuzzy set of ( )

h
z t  

in Ri, Ai and Bi are known constant matrices with 

appropriate dimensions, and ∆Ai and ∆Bi are unknown 

matrices with appropriate dimensions which represent 

the system uncertainties. The subscript ‘d’ means “under 

digital control action”, and the subscript ‘c’ will denote 

“under analog control action”. 

Using the singleton fuzzifier, product inference engine, 

and center-average defuzzification, (1) is inferred as 

1

( ) ( ( ))(( ) ( ) ( ) ( )),
r

d i i i d i i d

i

x t z t A A x t B B u tθ

=

= +∆ + +∆∑�  (2) 

where 
1

( ( )) ( ( )) / ( ( ))
r

i i ii
z t w z t w z tθ

=
= ∑  and ( ( ))

i
w z t = 

1
( ( )),

ih

p

hh
z tµ

Γ=∏  and 

[ ]( ) 0,1
( ( )) :i

h
h

h z t
z t Uµ

Γ
⊂ →R R  

is the membership function of zh(t) on the compact set 

( ) .hz t
U  

Suppose that a digital fuzzy control 

1 1
: ( ) ... ( )

( ) ( ).

i i p ip

i
d d d

R If z kT is and and z kT is

Then u t K x kT

Γ Γ

=

 (3) 

The defuzzified output is given by 

1

( ) ( ) ( ( )) ( ),
r

i

d d i d d

i

u t u kT z kT K x kTθ

=

= =∑  (4) 

where ( ) m

d
u kT ∈�  is the digital control input to be 

determined in time interval [ , ),t kT kT T∈ +
0
,K

≥
∈�  

and 
0

T
>

∈�  is the nonpathological sampling period. 

 

Remark 1 [14-16]: The analog fuzzy control system 

is represented in the same manner 

1 1

( ) ( ( )) ( ( ))(( )

( ) ) ( ).

r r

c i j i i

i j

j
i i c c

x t z t z t A A

B B K x t

θ θ

= =

= + ∆

+ + ∆

∑∑�

 (5) 

Remark 2: In this paper, we assume that ∆Ai and ∆Bi 

can be described as follows: 

1 2
[ ] ( )[ ],

i i i i i i
A B D F t E E∆ ∆ =  (6) 

where Di, E1i, and E2i are known real constant matrices of 

compatible dimensions, and Fi(t) is an unknown matrix 

function with Lebesgue-measurable elements and with 

( ) ( ) .T

i i
F t F t I≤  

 

3. MAIN RESULTS 

 

In this section, we are interested in solving the robust 

IDR problem for the AMB system. Generally, in order to 

find some relevant digital control satisfying the state-

matching, the IDR problem is dealt with discrete-time 

manner. Toward that end, we need two different models; 

the one is closed-loop analog control system and the 

other is discrete-time model of the closed-loop digitally 

controlled system. Motivated by above consideration, 

our IDR problem is formulated as follows: 

 

Problem 1: When analog plant (5) is globally 

asymptotically stable, find Kd

i achieving that the closed-

loop state xd(t) of (2) and (4) 

1 1

( ) ( ( )) ( ( ))(( ) ( )

( ) ( ))

r r

d i j i i d

i j

j
i i d d

x t z t z kT A A x t

B B K x kT

θ θ

= =

= + ∆

+ + ∆

∑∑�

 (5) 

matches xc(t) of (5) for any 
0
,K

≥
∈�  as closely as 

possible with guaranteed stability of (7) in some sense. 

In order to solve the IDR in the discrete-time domain, 

it is necessary to obtain the discrete-time models of (5) 

and (7). However, it is not easy to obtain the exact 

models because 1) the structural property of the 

uncertainties should also be solved in the procedure of 

discretization; 2) the robust stabilization of the sampled-

data fuzzy system should be guaranteed. Toward that end, 

we consider the following pade and inverse-pade 

approximation method. 

 

Lemma 1: The structured uncertain matrices are 

shown as follows: 
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( ) 1

1

1
( ) ( )

2

( ) ( ),
6

i iA A

i i i i

i i i i i

e G I A A G I

T
G I A A A G I

+∆ −

−

≅ − ∆ +

− − ∆ −

 (8) 

( )

0

1

1 1

1

( )

( )( ) ( )

1
( ) ( )

2

( ) ,
6

i i
T

A A

i i

i i i i i

i i i i i i i

i i i i i

e B B d

G I A A B B

G I A B G I A A H

T
G I A A A H

τ

τ
+∆

−

− −

−

+ ∆

= − + ∆ + ∆

= − ∆ + − ∆

− − ∆

∫

 (9) 

where ,
iAT

i
G e=

1( ) ,
i i i i

H G I A B
−

= −
0

T
>

∈� is the 

sampling period. 

 

Proof: This proof is a trivial extension of [17,18].   � 

Remark 3: It is well known that the pade approxima-

tion method is one of the most popular approaches to 

find low-order rational approximations of a high-order 

rational function in the field of system modeling and 

design [17]. 

In this situation, for the appropriate sampling period T, 

the discrete-time models of (5) and (7) can be repre-

sented by 

1 1

ˆ ˆ( ) ( ( )) ( ( ))( ) ( ),
r r

c i j ij ij c

i j

x kT T z kT z kT G G x kTθ θ

= =

+ = +∆∑∑

 (10) 

1 1

( ) ( ( )) ( ( ))(

( ) ) ( ),

r r

d i j i i

i j

j
i i d d

x kT T z kT z kT G G

H H K x kT

θ θ

= =

+ = + ∆

+ + ∆

∑∑
 (11) 

where 

ˆ ˆ ˆ( ) ,ij ij i ijG F tδ ς∆ =  (12) 

1 2
[ ] ( )[ ]

i i i i i i
G H F tδ ς ς∆ ∆ = . (13) 

Remark 4: There are several methods to obtain (10) 

and (11) such as general Euler approximation. Also, [12] 

adapted the bilinear and inverse bilinear method to 

reduce the structural error. To obtain more detailed 

models, we can use the discretization method in 

[8,9,11,12] together with Lemma 1. As a results, the 

uncertain matrices in (10) and (11) are determined by 

( )ˆ ,
j

i i cA B K T
ijG e

+

=  

11ˆ ˆ ˆ( )( ) ( )( )
2

ˆ( )( ),
3

j j
ij ij i i c i i c ij

j
i i c ij

G G I A B K A B K G I

T
A B K G I

−

∆ = − + ∆ + ∆ +

− ∆ + ∆ +

{ }11
( ) ( ) ( ) ,

2 3
i i i i i i i i

T
G G I A A G I A A G I

−

∆ = − ∆ + − ∆ −  

11
( ) 2 ,

2 3
i i i i i i i i i

T
H G I A B A H A A H

−
 

∆ = − ∆ + ∆ − ∆ 
 

 

ˆ
ijδ ={ }11 ˆ( )( ) ,

2 3

j
ij i i c i

T
G I A B K D

−

− + −  

1 2
ˆˆ ( )( ),j

ij i i c ijE E K G Iς = + +  

11
( ) ,

2
i i i i

G I A Dδ
−

= −  

{ }1 1
( ) ( ) ,

3
i i i i i

T
E G I A G Iς = + − −  

2 1 2
2 .

3
i i i i i i

T
E H A H Eς

 
= − 

 
 

We have discussed the structural property of the 

uncertainties in Remark 4. In order to match trajectories 

of (10) and (11), we compare them, under the assumption 

that (0) (0),
c d
x x= ( ) ( ).

c d
x kT T x kT T+ = +  If there 

exists ,

i

d
K ,

r
i I∈  then (10) and (11) satisfy 

ˆ ˆ ( ) j
ij ij i i i i dG G G G H H K+ ∆ = + ∆ + + ∆  (14) 

for ( , )
r r

i j I I∈ × . However, finding ,

i

d
K

r
i I∈  to 

satisfy (14) is not theoretically solvable since ˆ ,ijG∆ ,
i

G∆  

and 
i

H∆  are unknown and (14) for ( , )
r r

i j I I∈ ×  are 

usually inconsistent in the practical control engineering. 

In this situation, we should find ,

i

d
K ,

r
i I∈  to closely 

match trajectories of (10) and (11) and to ensure the 

asymptotical stability of Kd(kT) of (7). 

Consider the following lemma and proposition which 

will be used in the proof of our main results: 

Lemma 1 [19]: For any real matrices 
1 1

,

T
Λ = Λ

2
,Λ  

3
( ),tΛ  and 

4
Λ  with appropriate dimensions, the 

following inequality holds: 

1 2 3 4 4 3 2
( ) ( ) 0,T T T
t tΛ +Λ Λ Λ + Λ Λ Λ ≺  

where 
3
( )tΛ  satisfies 

3 3
( ) ( )T
t t IΛ Λ ≤  if and only if 

1

41

1 4 2

2

0
T

T

ε

ε ε

ε

−

−

 Λ
 Λ + Λ Λ    Λ  

≺  

for some 0.ε <  

Proposition 1: We suppose that ( ) ( ) :
c d
x kT x kT= =  

( ).x kT  If there exists ,

i

d
K ,

r
i I∈  such that 

ˆ ˆ ˆ
j j

ij i i c ij i i dG G H K G G H K γ− − + ∆ −∆ −∆ ≤  (15) 

for some constant ˆ 0,γ >  then (10) and (11) satisfy 

ˆ( ) ( ) ( ) .
c d
x kT T x kT T x kTγ+ − + ≤  (16) 

Proof: Subtracting (11) from (10) and taking the 

norms on the both sides yield 

1 1

ˆ( ) ( ) | ( ( )) |

ˆ ( )

r r

c d ij ij

i j

j j
i i c ij i i d

x kT T x kT T z kT G

G H K G G H K x kT

θ

= =

+ − + ≤

− − + ∆ −∆ −∆

∑∑
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under the assumption of ( ) ( ) : ( ).
c d
x kT x kT x kT= =  

From the fact that 0 ( ( )) 1ij z kTθ≤ ≤  for any ( , )i j ∈  

,
r r
I I×  it can be shown that (16) holds whenever (15) 

for ˆ 0γ >  is satisfied.           � 

Remark 5: Proposition 1 indicates that, if there exists 

,i
d

K ,
r

i I∈  such that (15) holds for a possibly small 

ˆ 0,γ >  then ( )
d
x kT T+  of (11) closely matches (

c
x kT  

)T+  of (11) under the assumption of ( ) ( ).
c d
x kT x kT=  

Proposition 2 [12]: Consider (7). There exists some 

constants 
1

0η >  such that 

1
( ) ( ) ,

d d
x t x kTη≤  (17) 

where 1 ( , )sup (1 ) ,
r r

T
i j I I T e

α

η β
∈ ×

= + sup {
r

i I i
Aα

∈
= +  

1
},

i i
D E  and ( , ) 2sup { }

r r

j j
i j I I i d i i dB K D E Kβ

∈ ×
= +  

for [ , ).t kT kT T∈ +  

As shown in Propositions 1 and 2, if xd(kT) converges 

to the equilibrium point, then the digital trajectory xd(t) 

also tends to the origin. This means that, in the sufficient 

small sampling period, it allows us to design the 

stabilizing Kd

i in the discrete-time domain via (11). 

Indeed, [11] and [20] showed that, the nonlinear digital 

control system is stable if its approximate model is stable.  

The main Theorem is summarized as follows: 

Theorem 1: Suppose that there exist a matrix Li, 

0,
i
P � ,

i

d
σ 0,

k

i
Q � ( )k k T

ij ijQ Q=  and the scalars ijε  

and îjε  are optimal solutions to 

ˆ, , , ,

Minimize subject to
i k

i d ij ij ijP Qσ ε ε

γ  

1 2

* * *

ˆ( ) * *
0,

ˆ 0 *

0 0

j
ij i i d ij ij

ij ij

j
i i d ij

L

G G L H D L

L I

L I

γ

σ ε γ

ς ε

ς ς σ ε

− 
 

− − − 
 − 
 − − −  

≺

 (18) 

1 2

1 2

4 * * *

* *
( ) 0,

0 *

0 0

k
i ij

j
i i d ij ij k

i
i d

j
i i d ij

i
j j d ij

P Q

G L H D P

L LGjL H

L I

L I

σ ε

σ

ς ς σ ε

ς ς σ ε

 − +
 
    + +
       − ++ +   
 
 + −
 
 + −  

�

≺  (19) 

where {( , ) |1 },
r r

i j I I i j r
∀

∈ × ≤ ≤ ≤ ,
r

k I∈
ˆ

ij ijD δ=  

ˆ ,
T T

ij i iδ δ δ× + .

T T
ij i i j jD δ δ δ δ= +
�  Then, ( )

d
x kT of (7) 

closely matches ( )
c
x kT  of (5), and origin of (11) is 

globally exponentially stable. When the minimization 

problem subject to (18) and (19) is feasible, the digital 

gain is obtained by The fuzzy gains are given by 
1
,

i i

d d
K Lσ

−

= .
r

i I∈  

Proof: Before proceeding the state-matching condition, 

we consider the following nonquadratic Lyapunov 

function candidate 

1

( ( )) ( ) ( ( )) ( )

( ) ( ),

r
T

d d i i d

i

T

d z d

V x kT x kT z kT Px kT

x kT P x kT

θ

=

=

=

∑
 (20) 

where 0,
i
P �

r
i I∈  and 

1

( ( )) .
r

z i i

i

P z kT Pθ

=

=∑  The rate 

of increase of ( ( ))
d

V x kT  is 

( ( )) ( ( )) ( ( ))

( ) ( )

( ) ( )

d d d

T

d z d

T

d z d

V x kT V x kT T V x kT

x kT T P x kT T

x kT P x kT

∆ = + −

= + +

−

 

 

1

1
( ( )) ( ( )) ( )(

4

) (

) 4 0.

r r
T

i j d i

i i j

j i j
i d j j d i i d

i T j
j j d z i i d j

i j
j d i i d j i

j
d

z kT z kT x kT G

H K G H K G H K

G H K P G H K G

H K G H K G H

K P

θ θ

= ≤

≤

+ + + + ∆ + ∆

+ ∆ + ∆ + +

+ + ∆ + ∆ + ∆ + ∆

× −

∑∑

≺

(21) 

When the inequalities are represented as the 

nonquadratic case, the principal results are slightly 

modified as [21,22], 

*
0 0,

iT
ij z ij T

ij z

P

A P A P
A L L L P

 
− ⇔  

+ −  
≺ �  (22) 

where L is a matrix with appropriate dimensions. 

Application of the Schur complement to the foregoing 

inequality results in 

4 *

( )

k
i i

j i
i i d j j d T

kj i
i i d j j d

P Q

G H K G H K
L P L L

G H K G H K

 − +
 
  + + + +
  − +
  ∆ + ∆ + ∆ + ∆  

 

 0,≺  (23) 

where ( , , ) ,
r r r

i j k I I I∈ × × 0,
k

ijQ � ( ) .k k T
ij ijQ Q=  We 

can use (12) and (13) to show 

1 2

1 2

1 2

1 2

4 *

( ) ( )

( ) 0( ) 00 0

0 ( ) ( ) 0

( ) 0 ( ) 0 0 0

0 ( )( ) 0

k
i i

j i T
i i d j j d k

j
i i di

i
i i i j i d

T T Tj
i i d i

i
i iij j d

P Q

G H K G H K L P L L

K LF t

F t K L

K L F t

F tK L

ς ς

δ δ ς ς

ς ς

δ δς ς

 − +
 

+ + + − +  

 +  
 +   

+      

 +    
 +    

+     

 

 0.≺  (24) 

Since it follows from Lemma 2 that 
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1 2

1 2

1 2

1 2

1 21

1 2

( ) 0( ) 00 0

0 ( ) ( ) 0

( ) 0 ( ) 0 0 0

0 ( )( ) 0

( ) 00 0 0 0
ˆ ˆ

( )

j
i i di

i
i i i j j d

T T Tj
i i d i

i
i iij j d

T j
i i d

ij ij i
i i i i j j d

K LF t

F t K L

K L F t

F tK L

K L

K L

ς ς

δ δ ς ς

ς ς

δ δς ς

ς ς
ε ε

δ δ δ δ ς ς

−

 +  
   

+      

 +    
 +    

+     

+   
≤ +   

+   

1 2

1 2

0

( ) 0

( ) 0

T

j
i i d

i
j i d

K L

K L

ς ς

ς ς

 
 
  

 +
 ×

+  

 

for some scalar ˆ 0.ijε >  Denoting i i

d d
K Lσ =  and 

(24) holds if 

1

1 2

1

1 2

1 2

1 2

4 *

ˆ ( )

ˆ 00

0 ˆ0

0
0

0

k
i i

j i T
i i d j j d ij ij k

T
j

iji i d

i
j j d ij

j
i i d

i
j j d

P Q

G L H G L H D P L L

IL

L I

L

L

σ σ ε

ες ς σ

ς ς σ ε

ς ς σ

ς ς σ

−

−

 − +
 

+ + + + − +  

  +
  +
 +    

 +
 ×

+  

�

≺

 

in which .

T T
ij i i j jD δ δ δ δ= +
�  By the Schur complement, 

we see that the foregoing inequality holds as (19). 

Next, we consider the state-matching condition in (14) 

to closely match trajectories of (10) and (11). In order to 

solve the matching problem in (14), we minimize the 

norm distances between ˆ ˆ
ij ijG G+ ∆  and 

i i i
G G H+ ∆ +  

j j
d i dK H K× + ∆  as follows: 

ˆ ˆ ˆ
j j

ij i i c ij i i dG G H K G G H K γ− − + ∆ −∆ −∆ ≤  (25) 

for some ˆ 0.γ >  Applying the congruence transformation 

with L to (25) yields the following inequality 

2

ˆ ˆ( )

ˆ ˆ( ) ,

T j j T
ij i i c ij i i d

j j T
ij i i c ij i i d

L G G H K G G H K

G G H K G G H K L L Lγ

− − +∆ −∆ −∆

× − − +∆ −∆ −∆ ≤

 

where some constant 0.γ >  Using the Schur 

complement, (12) and (13) yield 

1 2

*

ˆ( )

0 *
0,

ˆ ˆ( ( ) ( ) ) ( ) 0

j
ij i i d

j
ij i ij i i i i i i d

L

G G L H L

D F t F t L F t

γ

σ γ

ς δ ς δ ς σ

− 
 

− − −  

 
+  

− −  
≺

 

which are equivalent to 

* 0 0

ˆ ˆ( ) j
ij iij i i d

L

DG G L H L

γ

δσ γ

−   
+   

− − −      
 

1 2

1 2

ˆ 0( ) 0

0 ( ) 0

ˆ 0 ( ) 0

0 ( )0

0 0
0.

ˆ

iji

j
i i i d

T T
ij i

j
ii i d

T

ij i

LF t

F t L

L F t

F tL

D

ς

ς ς σ

ς

ς ς σ

δ

  
+   

− −    

   
+    

− −    

 
×  
  

≺

 (26) 

By Lemma 2, it can be verified that (26) holds if 

1

1

1 2

1 2

*

ˆ( )

ˆ 0 0

0 0

ˆ 0
0,

0

j
ij i i d ij ij

ij ij

j
i i d ij

T

ij

j
i i d

L

G G L H D L

L

L

L

L

γ

σ ε γ

ς ε

ς ς σ ε

ς

ς ς σ

−

−

− 
 

− − −  

  
 +  
 − −    

 
×  

− −  
≺

 

where ˆ ˆ T T
ij ij i j i iD δ δ δ δ= + . Application of the Schur 

complement to the foregoing inequality results in (18). 

This completes the proof.          � 

Remark 6: This paper makes some contributions to 

the research field of IDR by considering: 1) the 

uncertainties in the global state-matching procedure 

([8,9,11] did not consider the uncertainties); 2) the 

structural property of the uncertainties in the procedure 

of discretization which is represented in Remark 4 ([13] 

thought over only the structural property of the local 

uncertainties); 3) the robust stabilization of the sampled-

data fuzzy system which is shown in Theorem 1 ([9,11] 

considered only the stabilization without robustness); 4) 

the pade approximation method which can provide an 

accurate approximate uncertain model (it is possible to 

extend the more robust result than the result in [13]). 

Remark 7: Instead of the LMIs (18)-(19), we can use 

more relaxed condition such as non-PDC issue which is 

discussed in [22,23]. 

Remark 8 [Sampling Rate Selection]: It is noted that 

the mapping of an analog system to its corresponding 

discretized system can be one-to-one if a selected 

sampling period satisfies the sampling condition. If a 

sampling period that violates the sampling theorem is 

selected, then the satisfactory state-matching may not be 

achieved. Hence it is suggested to choose 
0

T
>

∈�  such 

that 

( , )
min { / ( (( ) ( ) ))}

r r

j
i i i i c

i j I I
T A A B B Kπ ζ λ

∈ ×

< + ∆ + + ∆  

to acquire an acceptable state-matching performance. 

 

4. SIMULATION RESULTS 

 

In this section, the two AMB systems: 1) 1-DOF AMB 

system; 2) 2-axis controlled vertical shaft AMB system 

are discussed for designing the fuzzy controller. 
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4.1. Case A: 1-DOF AMB system 

Figure 1 shows a diagram of the simplified 1-DOF 

AMB system. The 2-rule based fuzzy model of the 

concerned system is described by [7] 

1 1 1 1 1
: ( ) , ( ) ( ) ( ),R If z t is Then x t A x t B u tΓ = +�  

2 1 2 2 2
: ( ) , ( ) ( ) ( ),R If z t is Then x t A x t B u tΓ = +�  

where 

0

1 1

0 0

0 1 0

2 1
0 0 ( ( ))

0 0

g g

A f t
m A m A

φ
µ µ

 
 

Φ = + 
 
  

, 

0

1 2

0 0

0 1 0

2 1
0 0 ( ( ))

0 0

g g

A f t
m A m A

φ
µ µ

 
 

Φ = + 
 
  

, 

1 2

0

0

1/

B B

N

 
 = =  
  

 

the control flux function ( ( ))f tφ  is a nonlinear function, 

N  is a number of turns in coil, m is the effective mass 

rotor, Ag is the electromagnet pole area, and µ0 is air 

permeability. Table 1 shows the specific parameter of the 

1-DOF AMB system. Assuming 
1 2

( ( )) [ , ],f t M Mφ ∈  

then it can be represented by [7] 

1 22 1
( ( )) ( ( ( ))) ( ( ( ))) ,f t f t M f t Mφ µ φ µ φ

Γ Γ
= +  (27) 

where  

1

1

2 1

( ( ))
( ( ( ))) ,

f t M
f t

M M

φ
µ φ
Γ

−

=

−

 

2

2

2 1

( ( ))
( ( ( ))) .

M f t
f t

M M

φ
µ φ
Γ

−
=

−
 

 

 

Fig. 1. Schematic diagram of a simplified 1-DOF AMB 

system. 

 

Table 1. Nominal parameters of the 1-DOF AMB. 

Parameter Values 

number of turns in coils N 321 

effective mass rotor m 4.5 kg 

electromagnet pole area Ag 137 mm 

air permeability µ0 1.25×10-6 H/m 

During the simulation time, the system parameters are 

randomly varied within the bounds of 50 % of their 

nominal values. In this situation, we define the uncertain 

matrices as 
1

( ) ,
i i i i

A D F t E∆ =  where the matrices H =  

[0 0.5 0]
T  and 0

1

0

2
[0 0.5 ].i

g

E
m Aµ

Φ
=  The simulations 

are performed in sampling period 0.0004T =  and we 

set the initial condition (0)
c
x = (0) [0.15 0 40] .T

d
x = −  

The well-constructed analog gains are computed by 

1 6 4 6
[ 2.6408 10 2.0748 10 2.0090 10 ]

c
K = − × − × − × , 

2 6 4 6
[ 2.6988 10 2.0979 10 2.6057 10 ]

c
K = − × − × − × . 

Based on Theorem 1, the digital fuzzy gains are 

represented as 

1 6 4 6
[ 0.5909 10 1.5001 10 8.1287 10 ]

d
K = − × − × − × , 

2 6 4 6
[ 0.5977 10 1.5206 10 8.2033 10 ]

d
K = − × − × − × . 
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Fig. 2. State x1 of the controlled 1-DOF AMB system 

with T = 0.0004: analog (solid), proposed 

(dotted), [12] (dashed). 
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Fig. 3. State x2 of the controlled 1-DOF AMB system 

with T = 0.0004: analog (solid), proposed 

(dotted), [12] (dashed). 
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Other available IDR method in [12] is also simulated at 

the same sampling period. As shown in Figs. 2-4, the 

state trajectories of the proposed method are identical to 

those of the original analog control system. However, the 

compared method which was used the bilinear approxi-

mation has poorer responses than our approach. 
 

4.2. Case B: 2-axis Controlled Vertical Shaft AMB 

System 

The AMB system employed in this research is a two-axis 

controlled vertical shaft magnetic bearing with a 

symmetric structure that has been studied previously in 

[6,24,25]. An outline of this system is depicted in Fig. 5. 

The dynamic equation of AMB system is represented 

as follows [1] and [25]: 

1 2
( ) ( ),x t x t=�  

2 2

2 2 2

1 1

( ( )) ( ( ))
( ) ( ) ( ),

( ( )) ( ( ))

b b
i u t i u tk

x t w t
m G x t G x tβ β

+ −

= − +

− +

�  

where ip(t) is the control current in amperes, x1(t) is the 

rotor displacement measured in meters, k is the force 

constant, β is the sensitivity of air gap to shaft 

displacement, ib is the bias current, G is the nominal air 

gap, and m is the mass of the rotor. Table 2 shows the 

specific parameters of studied AMB system. 

Above AMB fuzzy system has two nonlinear terms ν1 

and ν2 which can be obtained by 

1 2 2

1 1

1

( ( )) ( ( ))G x t G x t

ν
β β

=

− +

, 

2 2

1

2 2 2

1 1

2 ( )

( ( )) ( ( ))

G x t

G x t G x t

β
ν

β β

+

=

− +

. 

Assuming that 
1 11 12

[ , ]M Mν ∈  and 
2 21 22

[ , ]M Mν ∈  

and endowing the following membership function: 

11

1 12

12 11

( )t M

M M

ν
µ
Γ

−

=

−

, 
21

1 11

12 11

( )t M

M M

ν
µ
Γ

− +

=

−

, 

12

2 22

22 21

( )t M

M M

ν
µ
Γ

−

=

−

, 
21

2 21

22 21

( )t M

M M

ν
µ
Γ

− +

=

−

. 

 

Fig. 5. 2-axis controlled vertical shaft AMB system. 

 

Table 2. Nominal parameters of the 2-axis AMB system. 

Parameter Values 

rotor mass m 4.5532 kg 

Force constant k 5.3379×10-6 N(m2/A2) 

Sensitivity of air gap β 0.974 

bias current ib 0.3A 

Nominal air gap G 5.88×10-4m 

 

Casting the above system into a T-S fuzzy system, the 

nonlinear terms should be expressed as convex 

combinations. The fuzzy model for AMB system is 

constructed as following 4-rule fuzzy models [1]: 

1 1 11 2 12

1 1

: ( ) ( ) ,

( ) ( ) ( )

R If z t is and z t is

Then x t A x t B u t

Γ Γ

= +�
 

2 1 11 2 22

2 2

: ( ) ( ) ,

( ) ( ) ( )

R If z t is and z t is

Then x t A x t B u t

Γ Γ

= +�
 

3 1 21 2 12

3 3

: ( ) ( ) ,

( ) ( ) ( )

R If z t is and z t is

Then x t A x t B u t

Γ Γ

= +�
 

4 1 21 2 22

4 4

: ( ) ( ) ,

( ) ( ) ( )

R If z t is and z t is

Then x t A x t B u t

Γ Γ

= +�
 

where 

2
1

11

0 1

4
0

b
A ki G

M
m

β

 
 =
 
  

, 
1

12

0

2
b

B ki
M

m

 
 =
 
  

, 

2
2

11

0 1

4
0

b
A ki G

M
m

β

 
 =
 
  

, 
2

22

0

2
b

B ki
M

m

 
 =
 
  

, 

2
3

21

0 1

4
0

b
A ki G

M
m

β

 
 =
 
  

, 
3

12

0

2
b

B ki
M

m

 
 =
 
  

, 

2
4

21

0 1

4
0

b
A ki G

M
m

β

 
 =
 
  

, 
4

22

0

2
b

B ki
M

m

 
 =
 
  

. 
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Fig. 4. State x3 of the controlled 1-DOF AMB system

with T = 0.0004: analog (solid), proposed

(dotted), [12] (dashed). 
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In order to analyze the influence of uncertainties, we set 

the variation of all system parameters as 30 % of their 

nominal values. That is, the uncertain matrix ∆Ai = 

1
( )

i i i
D F t E  and 

2
( )

i i i i
B D F t E∆ =  can be represented as 

1 2 3 4

0 0 0

0 0.3 0.3
D D D D

 
= = = =  

 
, 

2

11 12 11

0 0

4
0

0 0

b
ki G

E E M
m

β

 
 
 = =
 
 
  

, 

2

13 14 12

0 0

4
0

0 0

b
ki G

E E M
m

β

 
 
 = =
 
 
  

, 

21 23

21

0

0

2
b

E E

ki
M

m

 
 
 

= =  
 
 
  

, 

21 23

22

0

0

2
b

E E

ki
M

m

 
 
 

= =  
 
 
  

, 

where 
4

i I∈  and we set 6(0) (0) [2.54 10
c d
x x

−

= = ×  

0]T. Based on the Theorem 1, the gain matrices for T = 

0.0005 are obtained as 

1
[ 23508.256 384.335]

d
K = − − , 

2
[ 23506.804 384.997]

d
K = − − , 

3
[ 23508.071 384.164]

d
K = − − , 

4
[ 23506.544 384.817]

d
K = − − , 

which guarantee the asymptotic stability of the closed-

loop system. As shown in Fig. 6, we observe that the 

state trajectory of the proposed method is almost 

identical to that of the original analog system. However, 

the other method in [12] does not give us the satisfactory 

state-matching performance. The simulation results for 

relatively large sampling period T = 0.0005 are also 

shown in Figs. 7. and 8. From those figures, we can 

recognize the proposed method is quite successful, even 

in the presence of parametric uncertainties for complex 

nonlinear systems. To sum up the two simulation results, 

we set the performance measures which is defined as 

0
1

( ( ) ( ) ),
f

r
t

c d

i

x t x t dt

=

Ρ = −∑ ∫  

where tf is the final time. As shown in Table 3, the 

proposed method shows better performance than the 

conventional method. 
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Fig. 6. Time responses of the 2-axis AMB system with T 

= 0.0002: analog (solid), proposed (dotted), [12] 

(dashed). 
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Fig. 7. Time responses x1 by the proposed method with T 

= 0.0005: analog control (solid) and proposed 

(dotted). 
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Fig. 8. Time responses x2 by the proposed method with T 

= 0.0005: analog control (solid) and proposed 

(dotted). 
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Table 3. Comparison of the IDR performance P.  

Method [12] Ours 

Case A 
T = 0.0004 2.5587 0.4602 

T = 0.001 4.3966 1.5046 

Case B 
T = 0.0002 9.0393×10-5 1.7284×10-6 

T = 0.0005 Unstable 2.0548×10-5 

 

5. CONCLUSIONS 

 

This paper has presented the robust digital control for 

AMB systems which is composed as uncertain nonlinear 

system. We have investigated the parametric 

uncertainties of the concerned system based on the T-S 

fuzzy model so that we have achieved the robust stability. 

Also, in order to solve the digital implementation for real 

plants, we have presented the robust IDR method. The 

uncertainties in the plant dynamics is shown in the IDR 

condition by virtue of the pade and inverse-pade 

approximation method. The sufficient conditions for 

robust stabilizing controller designs have been given in 

terms of solutions to a set of LMIs. Through the 

simulation results of the two HMB systems, we have 

demonstrated the superiority of the proposed IDR 

method. 
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