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Abstract: Inverse kinematics solutions for multi-DOF arms can be classified as analytical or numeri-

cal. In general, analytical solutions are preferable to numerical solutions because analytical ones yield 

complete solutions and are computationally fast and reliable. However, analytical closed-form solu-

tions for inverse kinematics of 6-DOF arms rarely exist for real-time control purposes of fast moving 

arms. In this paper, we propose a fast inverse kinematics algorithm with a closed-form solution for a 

specific 6-DOF arm. The proposed algorithm is verified using simulation modules developed by us for 

demonstrations. 
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1. INTRODUCTION 

 

Inverse kinematics plays a key role in robotics and 

computer animations. Given the pose (position and 

orientation) of the end-effector, inverse kinematics prob-

lems correspond to computing joint variables for that 

pose. Inverse kinematics solutions for 6-dergee-of-

freedom (DOF) arms may be characterized as analytical 

or numerical [1]. Analytical solutions can be further sub-

divided into geometry-based closed-form solutions [2] 

and algebraic-elimination-based solutions [3]. In general, 

closed-form solutions can only be obtained for 6 or less 

than 6-DOF systems with a specific structure. Solutions 

based on algebraic elimination express joint variables as 

solutions to a system of multivariable polynomial equa-

tions, or express a single joint variable as the solution to 

a very high degree polynomial and determine the other 

joint variables using closed-form computations.  

In contrast to the analytical solutions, numerical ap-

proaches iteratively converge to a solution based on an 

initial guess [4]. In numerical approaches, computation 

time to converge may vary, and thus numerical solutions 

are not appropriate to fast real-time control applications 

even if they are applicable to ill-posed systems. In gener-

al, analytical solutions are preferable to numerical ones 

for real-time control applications because analytical ones 

yield all solutions (completeness) and are computational-

ly fast and reliable. In some cases, partly closed-form 

and partly numerical solutions have been tried [5].  

The existence of the closed-form solution depends on 

the kinematic structure of the arm. Pieper [2] showed 

that the 6-DOF manipulator with a spherical wrist has a 

closed-form solution. Many researchers have obtained 

closed-form solutions for inverse kinematics of 6-DOF 

manipulators including Lee et al. [6], Kang [7] and oth-

ers [8-10] for 6-DOF PUMA robots, and Schilling [11] 

for a 6-DOF Intelledex 660T robot. However, these solu-

tions are ones for industrial manipulators that are differ-

ent in configuration from the human-like arm shown in 

Fig. 1. Fast and efficient closed-form solutions for the 6-

DOF arm such as Fig. 1 rarely exist for the real-time 

control purposes of fast moving arms. 

Among earlier works on anthropomorphic arms, Tola-

ni et al. [1] considered the inverse kinematics of 7-DOF 

anthropomorphic limbs, and they simplified the arm 

structure to two segments including the upper arm and 

the forearm while the shoulder blade is neglected. The 

simplification makes the inverse kinematics solvable but 

the solution is not able to apply to many robotic arms 

where shoulder blades are included. Also, Asfour et al. 

[12] derived a closed-form solution of the inverse kine-

matics for a 7-DOF arm of a humanoid robot ARMAR. 

After selecting a specific value of the z axis of the elbow, 

they determined joint angles by matrix equations using 

the decomposition approach. 

This paper presents an efficient (i.e., fast and reliable) 

closed-form solution of inverse kinematics for a 6-DOF 

arm similar to the human arm structure. Previously for 

the commercial arm by Robot and Design Co., Ltd. 

shown in Fig. 1, a pseudo-inverse numerical solution has 

been used for inverse kinematics of the arm, and the av-

erage converging time was reported to be about 1 ms. 

This is a big computational burden for real-time control 

of the fast moving arm, and, consequently, the sampling 

frequency of the feedback control system becomes quite 

low to control such a robot arm where high precision and 

fast response are the most primary requirements. Diffe-
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rently from the work by Asfour et al. [12], we obtained 

joint angles by geometric relationships, and thus our so-

lution is computationally faster than the Asfour’s solu-

tion. 

 

2. KINEMATIC STRUCTURE 

 

The robotic arm considered in this paper has 6-DOF 

motion as shown in Fig. 1. Even if the human arm has 

redundancy in motion, the basic 6-DOF motion of it is 

similar to the motion of this robot arm. The structure of 

the arm is simplified to four segments which represent 

the shoulder blade, the upper arm, the forearm and the 

hand.  

The actual motor positions of the arm are shown as cy-

linders in Fig. 2, but the coordinate frames and home 

configuration of the robot arm are chosen as the ones in 

Fig. 2 to fit the Denavit-Hartenberg (DH) convention, in 

which the origin o2 and o4 are placed at o1 and o3 respec-

tively. The chosen home configuration is natural since 

the shoulder lies in a horizontal line while the upper arm 

and the forearm lie in a vertical direction as in human 

arms. In the paper, l1 implies shoulder length, l2 does 

upper arm length, and l3 does forearm length. 

The base frame is attached at the origin of the shoulder 

blade while the last frame, the tool frame x6y6z6 of the 

hand, is attached at the joint between the forearm and the 

hand, the wrist. The chosen coordinate frames are pecu-

liar in the sense that the origin o2 of the frame x2y2z2 lies 

at the same point with the origin o1 (this point is denoted 

by S), the origin o4 lies at the same point with the origin 

o3 (this point is denoted by E), and the origin o6 lies at 

the same point with the origin o5 (this point is denoted by 

W). 

The forward kinematics problem for this robot arm is 

solved as usual using the DH parameters and homogene-

ous transformation matrices Ai for each joint i. Since all 

six joints are revolute, the forward kinematics solution is 

given by 
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31 32 33 34

.
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r r r r
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The position of the end-effector (i.e., wrist) is ob-

served from the transformation matrix 0T6 to be 

( )
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and the orientation of the hand is observed as a rotation 

matrix which is the first 3×3 submatrix of 0T6. Notice 

that the notation si means sin(θi) and ci means cos(θi). In 

the paper, lower-case bold face characters represent vec-

tors expressed in component forms, and left superscript 

notation represents the coordinate frame with which the 

vector is expressed. 

 

3. CLOSED-FORM SOLUTION 

 

The inverse kinematics problem is equivalent to the 

problem of solving the system of nonlinear equations 

obtained from the forward kinematics problem. Unfortu-

nately, the general analytical solution for this problem 

does not exist. 

We present a closed-form solution that is computa-

tionally fast and reliable. Compared to the Asfour’s work 

[12], we use different constraint equations to obtain the 

elbow pose, and also use geometric relationships to ob-

tain θ5 and θ6 instead of matrix inversions. The calcula-

tion process is composed of two steps. First, the position 

of the elbow position E is determined by solving the 

geometric constraints, and then each joint angle is deter-

mined using the calculated elbow position E. 

Before the elbow position is computed, the position 

and orientation of the origin o5 at the wrist are extracted 

from the given data. Let H be the position of the end 

point on the hand and 0R6 be the orientation of the coor-

dinate frame x6y6z6. 

 

 

Fig. 1. Picture of the robot arm (Robot and Design Co,

Ltd.). 
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Fig. 2. The coordinate frames and the home configura-

tion. 
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From the geometric relationship, the position vector of 

the wrist expressed in the frame x0y0z0 is extracted from 

the given data to be as in (3). 

0

4 6
,

W H

W H

W H

x x

W y y l

z z

   
   = = +   
     

j  (3) 

where l4 is the length of the hand. In (3), 
0
j6 is the unit 

vector of the y6 axis expressed in the base frame. The 

unit vector 0j6 can be extracted as the second column of 

the orientation matrix 0R6. 

0 0 0 0

6 6 6 6
[ ]R = i j k  (4) 

The elbow point E is obtained by solving the system 

of constraint equations. Since the point S is fixed and the 

lengths of the upper arm and forearm are constants, the 

point E can be placed on a circle as shown in Fig. 3. Due 

to the geometric relationships, one easily sees that point 

E must satisfy the set of constraints in (5). 
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Now let’s define the position vector E expressed in the 

base frame, and the unit vector 0k6 as 

0

6
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Then the constraints (5) can be written in terms of 

coordinates of elbow E. 
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To solve the simultaneous equations (7) conveniently, 

we define temporary variables 
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and a vector from W to S as 

2 2 2 2[ ]  with T
a b c a b c= = + +r r  (9) 

and another temporary variable k1 as 

22 2
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1
.

2

l l
k

− −
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Then one can express the variable tx and ty in terms of 

tz. from the first and third equation of (7). Here we 

demonstrate the method to obtain a solution in one case 

where parameters tx and a are not equal to zero. The 

solutions in other cases will be achieved in the same 

manner.  

With the assumption that 0,
y x

a k b k− ≠  ty can be 

written in terms of tz (in case 0,
y x

a k b k− =  the 

algorithm is done in the similar way). 
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Also tx can be expressed in terms of tz.  

4 5
,

x z
t k k t= +  (13) 

where 
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k k k k k
k k
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+

= − = −  (14) 

In the next step, if one substitutes ty in (11) and tx in 

(13) into the second equation of (7), a quadratic equation 

in terms of tz is obtained. 

Let’s define  

2 2 2 2 2 2

4 5 2 3 5 3 4 4 3
( ) ( 1)( ).k k k k k k k k l∆ = + − + + + −  (15) 

Then the solutions of the quadratic equation depend on 

the value of ∆. In case of ∆ > 0, the value of tz is 

calculated as in (16). 
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With respect to each value of tz, the value of ty and tx 

are determined by (11) and (13). Eventually, by using 

these variables and (8), the position of the elbow E = [x y 

z]T is obtained. 

After the position of the elbow is obtained, the rotation 

angle of each joint in the inverse kinematics problem is 

calculated gradually by geometric approach. First of all, 

the rotation angle of the fourth joint, θ4, is computed 

independently by the law of cosine. 
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Fig. 3. Geometric constraints of the elbow point E. 
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where 

2 2 2 2( ) ( ) ( ) .
W S W S W S

r x x y y z z= − + − + −  

The rotation angles of the first and second joints θ1 

and θ2 are computed directly from the elbow position. 

It is observed that the joint angle θ2 decides the z 

coordinate of the elbow while the angle θ1 relates to the x 

and y coordinate of this point. Therefore 

1
Atan2( , )

E E
y xθ =  (18) 

and 

1 1

2

2

cos .
E

l z

l
θ

−

 −
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 
 (19) 

Since the position of the elbow is not affected by the 

joint angle θ3, the position of the wrist should be 

considered in order to obtain θ3. It is obvious that the 

wrist position is decided by the first four joint angles. 

Since θ1, θ2 and θ4 are known, one can utilize the wrist 

position to obtain the angle θ3. Being taken from the 

result of the forward kinematics, the position of the wrist 

is the fourth column in the homogenous transformation 

matrix 0T5. It is seen that 

1 1 2 2 3 2 4

3

3 2 4

cos
W
z l l c l c c

l s s
θ

−

 − + +
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 (20) 

under the assumption that the upper arm and forearm are 

not in line or θ4 ≠ 0 (i.e., not a singular configuration). 

At the home configuration of the robot, the z axes of 

the frame x3y3z3 and the frame x5y5z5 are set parallel (see 

Fig. 2). The misalignment of these axes during the 

operation of the robot is caused by the joint angle θ5. 

This fact is applied for the calculation of the angle θ5. 

1 0 0

5 3 5
cos ( ),θ

−

= k ki  (21) 

where i  implies the inner product of two vectors. The 

unit vector 0k5 is identical to 
0
k6, and the unit vector 

0
k3 

is extracted from the homogenous transformation matrix 
0T3 of the frame x3y3z3. 

Finally, the joint angle θ6 is calculated by considering 

the angle between the y-axis of the last frame x6y6z6 and 

the vector r formed from the wrist to the elbow. 

0

1 6
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3
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The advantage of the above algorithm calculating all 

six joint angles is that each angle is obtained in only one 

formulation. The computation time is therefore very 

short while the result is reliable due to analytical 

solutions. The computation time of the algorithm in [12] 

is about 15 microseconds for each loop with C code in 

Intel Core Quad 2.4 GHz computer, while the 

computation time of the proposed solution is about 1.5 

microseconds for each loop in the same condition. The 

high computational speed comes mainly from the usage 

of geometric property instead of inversions of the 

homogenous transformation matrices in [12]. 

Among several sets of inverse kinematics solutions, 

we select a solution at the current instant to be a 

neighboring solution of the previous one at the previous 

instant without any jumps. 

It is noted that the proposed algorithm for the inverse 

kinematics computation can be applied for any 6-DOF 

arm which has a similar kinematics configuration. That is 

after applying the Denavit-Hartenberg notation to six 

joints of the arm, two coordinates are set at the shoulder, 

two at the elbow, and one at the wrist. 

 

4. VALIDATION 

 

Several additional works are performed to verify and 

demonstrate the proposed algorithm. First, the algorithm 

is implemented by C++ programming language to verify 

the computation time and solution accuracy. The test is 

performed with the Microsoft Windows XP operating 

system on a personal computer with 2.4Ghz Intel CPU. 

Only 2 microseconds are needed to implement whole 

algorithm calculation including the inverse kinematics 

for the 6-DOF arm, which is much faster than the 

pseudo-inverse algorithm used previously. This is also 

faster than Asfour et al.’s algorithm [12], and Badler and 

Tolani’s algorithm [13] which was reported to take 50 

microseconds on a 200-MHz SGI workstation that 

corresponds to 4.2 microseconds in the present computer 

condition. 

In order to validate the algorithm, the demonstration 

software as shown in Fig. 4 is developed in 3D OpenGL 

environment. The software is planned not only for 

kinematics validation but also for control purposes of the 

robot arm. However, it is used in this paper only for 

kinematics validation. As for the validation of the 

computation accuracy, a closed-loop process is 

embedded in the software, as shown in Fig. 5. At the 

initial state, the position and the orientation of the hand 

are given. Using the input data, the inverse kinematics 

computation is done, and the outputs from the state are 

the rotation angles of arm joints. The forward kinematics 

takes the joint angles and produces the actual position 

and orientation of the hand. The actual position and 

orientation of the hand are compared to the given ones in 

 

 

Fig. 4. The robot model in kinematics simulation 

software. 
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the first step. The errors can be acquired as a result (refer 

to Table 1). 

In the program of the proposed inverse kinematics, all 

kinematic parameters including arm lengths, joint angles 

and hand positions are expressed in the double type with 

at least 15 digits of precision. In Table 1 below, the 

position errors of the hand are calculated at three points 

and are summarized. Note that all results in the table are 

obtained when the orientation of the hand is set parallel 

to the vector [0 3 / 2 1/ 2].
H
r =  It is found from the 

validation process and the table that the position error is 

less than 10-13 mm which is due to round-off errors. For 

the human scale robot arm, it can be actually considered 

as zero errors. These results are obvious since our 

solution of the inverse kinematics is an analytic one 

instead of pseudoinverse or numerical solutions. 

The second demonstration module is developed with 

MSC VisualNastran Desktop and Matlab Simulink 

software to demonstrate the proposed inverse kinematics 

solution for motion tracking control of the 6-DOF arm. 

In this co-simulation work, the dynamic model of the 

robot is simulated by the VisualNastran Desktop while 

the controller is implemented in Simulink as shown in 

Fig. 6. The parameters such as mass and moment of 

inertia of each link is selected based on the given data 

from the humanoid arm manufacturer (Robot and Design 

Co, Ltd). 

In the simulation, the inverse kinematics computation 

is set prior to the system controller. As shown in Fig. 7, 

the joint angles that are the results of the inverse 

kinematics are the inputs to the system controller. For 

applications where the speed and the precision are 

required, such as path tracking, fast computation of the 

inverse kinematics takes an important role. Here the path 

may be divided into many tiny segments and the inverse 

kinematics computation should be done for the distal end 

of each segment. As the length of the segment gets 

smaller, the inverse kinematics calculation is required to 

be faster and more accurate. 

We executed a computer simulation of path tracking to 

demonstrate the inverse kinematics algorithm. In this 

example, the arm is controlled so that the finger tip can 

follow a sine curve. The path is divided into many small 

segments and the inverse kinematics is calculated for the 

distal end of each segment. Six independent PID 

controllers are designed for controlling the six motors in 

the joints. Visual Nastran Desktop (VND) and Matlab 

Simulink are used for the co-simulation work. The 

inverse kinematics and the control algorithm are 

implemented in Matlab Simulink while the robot 

dynamics is calculated by the VND software. 

Fig. 8 displays the simulation results for the two 

inverse kinematics algorithms that are tested in the same 

condition. The sampling time for this simulation is set to 

0.1 ms. The trajectory’s amplitude is 75mm and the 

frequency is 0.25Hz. Simulation is performed for 5 

seconds. Initially, the robot arm is set at the home 

configuration. Since the initial position and the 

destination are far apart, at the initial time the actual 

position of the end point extends far over the desired one. 

However, after about 1.25 seconds, the robot tracks to 

the reference stably. In the actual tracking control of the 

arm, the motion command of each motor can be 

precalculated from the path planning result of the end-

effector during the remaining time of the previous 

sampling period as a background job, but to see the 

effect of computational time in this paper, we calculate 

motion commands (using inverse kinematics) and 

controller outputs consecutively during the present 

sampling period, and simulate the dynamics of the robot 

arm. Fig. 8(a) shows the results using the proposed 

analytic inverse kinematics algorithm, and Fig. 8(b) 

Fig. 5. Validation process for the inverse kinematics 

algorithm. 

 

Table 1. Coordinates of thee points and position errors.

  Point 1 Point 2 Point 3 

Coordinates 

x 

y 

z 

0 

-400 

0 

100.89 

-450.45 

300.42 

50.76

-330.13

100.74

Position 

errors 

x 

y 

z 

2.84e-14 

0 

-1.42e-14 

4.26e-14 

-5.68e-14 

5.68e-14 

-7.11e-15

5.68e-14

-1.42e-14

 

Fig. 6. Simulink and VisualNastran screens. 

 

Fig. 7. Schematic diagram of a control system for robot 

arms. 
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shows the results using the existing slower pseudoinverse 
kinematics algorithm. Although the tracking perform-
ance mostly depends on the control algorithm, it can also 
be affected by the inverse kinematics computation as 
shown in Fig. 8. These demonstrations clarify that the 
proposed inverse kinematics algorithm is fast and 
accurate enough to implement in the actual feedback 
control system of the robot arm at a high sampling 
frequency. 

Recently, another approach to avoid computational 
load of inverse kinematics has been tried for motion 
control of a robotic manipulator, which has doubtful 
practicability for fast and accurate motion control [14]. 

 
5. CONCLUSIONS 

 
We presented a fast closed-form solution for the 

inverse kinematics of a 6-DOF arm with a specific 
structure similar to the human arm. A closed-form 
solution is obtained by geometric approach with a novel 
assignment of coordinate systems and geometric 
relationships, and is verified by C++ programs. The 
calculation time of this inverse kinematics algorithm is 
about 1.5 microseconds under a PC environment with 
Microsoft Windows XP and a 2.4Ghz Intel CPU, which 
is faster than the previous algorithms. The proposed 
inverse kinematics algorithm is computationally fast 

enough to be applied for real-time control with a high 
sampling frequency. The limitation of the proposed 
algorithm is only to be applicable to 6-DOF robots with 
the specific configuration shown in Fig. 1.  

In this paper, furthermore, visualization modules for 
verifying inverse kinematics of the arm, and for 
demonstrating the motion tracking control of the arm 
including arm dynamics are developed. Using these 
visualization modules, the validity of the proposed 
inverse kinematic solution (analytic) is demonstrated.  
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