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for Switched Uncertain Nonlinear Systems 
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Abstract: In this paper, a robust adaptive H∞ control scheme is presented for a class of switched un-

certain nonlinear systems. Radical basis function neural networks (RBF NNs) are employed to approx-

imate unknown nonlinear functions and uncertain terms. A robust H∞ controller is designed to enhance 

robustness due to the existence of the compound disturbance which consists of approximation errors of 

the neural networks and external disturbance. Adaptive neural updated laws and switching signals are 

deducted from multiple Lyapunov function approach. It is proved that with the proposed control 

scheme, the resulting closed-loop switched system is robustly stable and uniformly ultimately bounded 

(UUB) such that good capabilities of tracking performance is attained and H∞ tracking error perfor-

mance index is achieved. A practical example shows the effectiveness of the proposed control scheme. 
 

Keywords: Radical basis function neural networks, robust adaptive H∞ control, switched uncertain 

nonlinear systems, tracking performance. 

 

1. INTRODUCTION 

 

Switched systems are dynamical systems consisting of 

a collected of continuous-time subsystems and a 

switching rule that orchestrates the switching among 

them, which have attracted much attention in the last 

decades. For control analysis and synthesis of switched 

systems, most of the proposed results are considering the 

linear subsystems case, see [1-4] and references therein. 

A few results which are of practical interest on control 

synthesis of switched nonlinear systems are introduced 

[5-8]. 

It’s known that stability, robustness, and performance 

properties of the switched nonlinear systems are affected 

seriously by the existence of uncertainty which is 

inherent in practical controlled systems. However, there 

are some controlled systems that are not only 

characterized by the unstructured uncertainties, but also 

represented by the terms which cannot be 

modeled .When the system nonlinearities are not known 

completely but some bounds on them are known, the 

nonlinearities can be approximated either by neural 

networks or by fuzzy systems [9-13,19,21]. Liu and 

Tong [9] have developed an adaptive control scheme by 

the universal approximation theorem of the fuzzy logic 

systems. The back propagation (BP) learning algorithm 

is presented for stable and efficient online control [10]. 

In addition, several other papers such as [11-13] which 

have been widely used in the identification and control of 

complex systems, are also demonstrated that the RBF 

NNs and multiplayer feed-forward networks can 

approximate arbitrary nonlinear continuous function to a 

given accuracy. 

On the other hand, most of adaptive control methods 

are proposed for nonlinear systems with the condition 

that an accurate model of the plant is available, and an 

approximator is used as a tool for modeling nonlinear 

unknown functions [14-17]. Adaptive neural control 

schemes have been found to be particularly useful for the 

control of highly uncertain, nonlinear and complex 

systems [14]. However, at present, the researches on 

adaptive neural control for switched nonlinear systems 

are rare. Few attempts have been made (and are being 

made) to pursue this novel idea. Han, Ge and Lee [18] 

have presented an adaptive neural control for a class of 

switched triangular systems with switching jumps. They 

utilize discontinuous adaptive NNs control for dealing 

with the discrepancy between control gains, and use the 

classical adaptive control for handling NNs 

approximation errors in dealing with switching jumps. In 

this paper, a robust adaptive H∞ control scheme is 

presented for a class of switched uncertain nonlinear 

systems. The principal contribution described here are: 

(i) This work considering the existence of uncertainties is 

an extension of reference [7]. Also, a practical example 

which has good capabilities of tracking performance 
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shows that the control scheme proposed in this paper is 

suit for practical implementation. (ii) The switching 

signals have been derived from the multiple switched 

Lyapunov function method and the adaptive neural 

updated laws in terms of projection approach are given. 

(iii) A robust H∞ compensator is introduced to enhance 

the robustness of switched uncertain nonlinear systems 

and improve the tracking error attenuation quality. 

Finally, the robust adaptive H∞ control scheme proposed 

can guarantee the resulting close-loop switched system is 

robustly stable such that the actual output follows the 

desired output and the H∞ tracking performance from 

the compound disturbance to the tracking error is 

achieved. 

The rest of the paper is organized as follows. In Sec-

tion 2, a class of switched uncertain nonlinear systems 

and the control objective are introduced. In Section 3, a 

control scheme of robust adaptive H∞ control using RBF 

NNs is presented. A numerical example is treated to illu-

strate the effectiveness of the design approach in Section 

4. Finally, a conclusion is given in Section 5. 
 

2. PROBLEM FORMULATION & 

PRELIMINARIES 
 

Consider a class of switched uncertain nonlinear 

systems which can be expressed in the following form: 

1

( ) ( ) ( )

( )

1

( ) ( ) (1 1)

( ) ( ( )) ( ( )) ( ( ( ))

( ( ))) ( ) ( )

( ) ( ),

i i

n t t t

t

x t x t i n

x t f x t f x t g x t

g x t u t d t

y t x t

σ σ σ

σ

+
= ≤ ≤ −


= + ∆ +


+∆ ⋅ +

 =

�

�

 (1) 

where 0,t ≥
T

1 2
( , , , ) n

n
x x x x R= ∈�  denotes the state 

vector of the systems, which is available. ,u R∈ y R∈  

are the control input and the control output, respectively, 

and 
2
[0, )d L∈ ∞  is the external disturbance. ( ) : [0,tσ  

) {1,2, , }
def

N+∞ → Ξ = � is a piecewise constant function 

called switching signal (or law), which takes values in 

the compact set .Ξ  If ( ) ,t iσ =  then we say the i-th 

subsystem ( ) ( ) ( ( ) ( ))
n i i i i
x f x f x g x g x u d= + ∆ + + ∆ ⋅ +�  

is active on and the remaining subsystems are inactive. 

The functions ( ),
i
f x ( ) : ( )n n

i
g x R R i→ ∈Ξ  are both 

smooth functions that are known, and ( ), ( ) :
i i
f x g x∆ ∆  

R
n→R

n represent the uncertainties of ( ),
i
f x ( ),

i
g x  

respectively.  

The control objective in this paper is to design a robust 

adaptive control scheme such that the actual output y of 

system (1) follows the any given bounded desired output 

signal while all the signals in the resulting closed-loop 

switched system remain bounded. To achieve the 

proposed control objective, we have the following 

assumptions. 

Assumption 1: The desired signal yd is continuously 

differentiable in the interval [0, ∞) and up to its n-th time 

derivative. Define the trajectory ( , , ,
d d d

Y y y= � � yd
(n-1))T 

which is continuous and available, and n

d d
Y R∈Ω ∈  

with Ωd known compact set, then the output tracking 

error is ( 1)
0 1 1( , , , ) ( , , , )T n T

d n
e Y x e e e e e e

−

−

= − = = �� �  

,

n

R∈ i.e.,
0 1

,
d

e y x= −
1 2d
e e y x= = −� �  ,…, ( 1)

1
n

n
e e

−

−

=  

( 1)
,

n

d n
y x

−

= −  also ( ) ( )
.

n n

n d n
e e y x= = − �  Define K = 

1 2
( , , , ),

n
k k k�  where K is Hurwitz vector. 

Assumption 2: The nonlinear functions ( )
i

g x  and 

( ) ( )
i i

g x g x+ ∆  satisfied ( ) 0,
i l

g x g≥ > ( ) ( )
i i

g x g x+ ∆  

0,
L

g≥ >  i.e., ( ), ( ) ( )
i i i

g x g x g x+ ∆  can be either 

positive or negative, where gl, gL are the lower bounded 

of gi (x) and ( ) ( ),
i i

g x g x+ ∆  respectively. In many of 

the earlier works it is assumed that ( ) 0,
i

g x >  but in 

this paper, the assumption has been relaxed by 

considering ( ) 0.
i

g x >  

 

3. DESIGN OF ROBUST ADAPTIVE H∞ 

CONTROL USING RBF NNS 

 

The purpose of this section is to develop a novel 

design procedure for robust adaptive H∞ control using 

RBF NNs for switched uncertain nonlinear systems 

(1).To achieve the proposed control objective in the 

aforementioned section, it’s satisfied that tracking error 

converges to 0, i.e., 0.e→  If ( ),
i
f x ( ),

i
g x ( ),

i
f x∆  

∆gi(x) are both known and disturbance vector d=0, 

according to the feedback linearizable techniques 

[17,20,21], define the control law as follows: 

1
( ) ( )

1
( )

( ) ( )

1

( ( ) ( ))

( ) ( ) .

t t

n
n

d t t i i

i
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−
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 

∑
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Substituting (2) into (1), we obtain: 

1 1
( )

1 1

0.

n n
n

n d i i n i i

i i

x y k e e k e
− −

= =

= + ⋅ ⇒ + ⋅ =∑ ∑�  (3) 

From (3) we get lim ( ) 0,
t

e t
→∞

=  the control objective is 

achieved. 

However, the robustness and stability are affected 

seriously by the existence of nonlinear systems with 

unmodeled dynamics, external disturbance and uncertain 

terms in practical control systems. If these uncertain 

terms and nonlinear terms are bounded, different 

function approximators like neural networks or fuzzy 

systems can be used to estimate these nonlinear functions. 

In control engineering, RBF NNs are usually used as a 

tool for modeling nonlinear functions up to a small error 

tolerance because of their good capabilities in function 

approximation. In this paper we use RBF NNs to 

approximate unknown functions ( ),
i
f x ( )

i
g x  and the 

uncertain nonlinear terms, ( ),
i
f x∆ ( )

i
g x∆  considering 

the existence of approximation error of the neural 

networks δi (x), for solving the restraints of feedback 
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linearizable techniques which need exact models.  

When ( ),
i
f x ( )

i
g x  are known, using RBF NNs to 

approximate the uncertain terms ( ),
i
f x∆ ( ),

i
g x∆  we 

define as follows: 

( ) ( , ) ( ) ( )

( ) ( , ) ( ) ( ),

T
i i f f fi f

T
i i g g gi g
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 (4) 

where ,i∈Ξ x∀ ∈Ω  for some compact set Ω ,

n

R⊆  

,fW
∆ g

W
∆

 are vectors of adjustable weights: 
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( ) : ,pfiS x x R
∆

→ ( ) : q
giS x x R

∆
→  denote vectors of 

Gaussian basis function, defining as: 
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where 
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stand for Gaussian basis function, and ( , ),fij fijµ η
∆ ∆

 

( , )gij gijµ η
∆ ∆

 are, respectively, center vectors and width 

of the hidden element for RBF NNs to approximate the 

functions ( )
i
f x∆  and ( ).

i
g x∆   

We define the estimate value of the unknown 

nonlinear functions ( )
i
f x∆  and ( ),ig x∆  respectively, 

as follows: 

Tˆ ˆ( ) ( ),i f fif x W S x
∆ ∆

∆ = ⋅  ˆˆ ( ) ( ),T
i g gig x W S x

∆ ∆
∆ = ⋅  (7) 

where ˆ ,fW
∆

ˆ
g

W
∆

 are the estimate value of weights 

vector ,fW
∆

,
g

W
∆

 then weights vector errors of RBF 

NNs are described by: 

ˆ ,f f fW W W
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�  (8) 

Respectively, the optimal weights and reconstruction 

approximate errors of RBF NNs are defined in the 

following: 
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where Ω∆f and Ω∆g are known compact subsets of Rp and 

Rq, respectively. 

However, in many practical systems, the control 

accuracy is influenced seriously by the existence of 

external disturbance d(t) and approximation errors δi (x) 

of RBF NNs. Define ( )
i i

x dω δ= +  as the compound 

disturbance of system (1), where 
2
[0, ],i L tω ∈ [0, ).t∈ ∞  

When ωi ≠ 0, the robust H∞ compensator is introduced 

to enhance the systems’ robustness and improve the 

tracking error attenuation quality, satisfying the H∞ 

tracking error performance index [19,22]: 

1
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where Qi are symmetrical positive semi-definite 

matrices; Γ∆f and Γ∆g which are both positive constants 

denote the adaptive gains; γ is disturbance attenuation 

level. 

When (0) 0,e = (0) 0,fW
∆

=
� (0) 0,

g
W

∆
=

�  the H∞ 

tracking error performance index (11) can be written in 

another form: 
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According to the feedback linearizable technique and 

the approximation property of RBF NNs, the robust 

adaptive H∞ control law is designed as follows: 

1

1
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1
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where uh is the control law of robust H∞ compensator. 

Substituting (13) into (1), we obtain: 
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From (14) and Assumption 1, the output tracking error 

dynamic equation of switched uncertain nonlinear 

system (1) is given by: 
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where the matrix 

1 2 1

0 1 0 0 0

0 0 1 0 0
,

1
n n

A B

k k k k
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Lemma 1 [19,24]: For the output tracking error 

dynamic equation (15), given a positive constant 0,γ >  

if there exists matrices 0,
i

T

i
P P= > 0,

i i

T
Q Q= >  and 

exists a constant 2
2 ,ξ γ≥  the necessary and sufficient 

condition for the stability of the resulting closed-loop 

system satisfies two conditions as follows: (i) matrices Pi 

are the positive definite solutions of Ricatti inequality 

A
T
Pi + 2 1( 2 ) 0;T

i i i i
P A Q PBB Pγ ξ

− −

+ + − ⋅ ≤  (ii) there 

exists a state feedback controller uh=
1 T

i
B P eξ −

− ⋅ ⋅ ⋅  

satisfying the H∞ control performance index. 

Remark 1: Based on Schur’s lemma, above Ricatti 

inequality in Lemma 1 can be converted into a linear 

matrix inequality (LMI): 

2 1
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2
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Then, the switching signal σ(t) is designed as: 
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where 
0 0 1

{ } : { , , , , }
k k k
t t t t

∞

=
= � � is said to be the 

sequence of switching times, t0 is the initial time, and tk 

is the k-th switching time. Also, for , ,i j∈Ξ  we define 

the following matrix inequality: 

,
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where Π i, j are known n n×  constant matrices. In 

general, when Π i, i =0 means that there is no switched 

jump when a subsystem is remaining active. 

To guarantee the weights of RBF NNs bounded, from 

Assumption 2 the adaptive neural updated laws (i.e.,the 

weights update laws) in terms of projection approach 

[24] are addressed as: 
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where Γ∆f and Γ∆g which are both positive constant in 

general denote the adaptive gains. Also, M∆f and M∆g are 

positive design parameters.  

According to the above analysis, for the switched 

uncertain nonlinear system (1), we have the following 

results. 

Theorem 1: Supposed that Assumptions 1, 2, and 

Lemma 1 hold for the system (1). The proposed robust 

adaptive H∞ control law (13), adaptive neural laws (19) 

and (20) , together with switching signal (17) guarantee 

that the resulting closed-loop switched system is robustly 

stable and uniformly ultimately bounded (UUB) while 

the actual output follows the desired output signal and 

H∞ tracking error performance index is achieved. 

Proof: Consider the multiple Lyapunov function 

candidate: 
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Then, for 
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1

1

1
[ 2 ]

2

k k

k k k k

k k

T T T
r r f f f

T
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T T T
r r r r

T T
r r

V e P e e P e W W

W W

e A P P A P BB P e

B P e

ξ

ω

−

∆ ∆ ∆

−

∆ ∆ ∆

−

= + + Γ ⋅ ⋅

+ Γ ⋅ ⋅

= + −

+

�� � �� �

�� �

�

 (23) 
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−

∆ ∆ ∆ ∆
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From (17), (22) and (23), we have ( ) 0,V t <
�  i.e., the 

resulting closed-loop switched system is stable. Then, 

integrating the above inequality from 0 to t yields:  

2

0 0 0

2 22

min
( ) (0) .

k k k

k

t t t
T T

r r r

r

Vdt dt e Q edt

V t V e

γ ω ω

γ ω

≤ ⋅ −

⇒ − ≤ −

∫ ∫ ∫�

 (24) 

From (24) and Barbalat’s Lemma [24,25], we get: 

lim ( ) 0.
t

e t
→∞

=  Therefore, it implies that the tracking error 

e is UUB. From Assumptions 1, 2, and (13), the control 

law u is bounded. Furthermore, controller (13) does not 

depend on the system model, which implies that the 

controller is strongly robust with respect to the unknown 

nonlinear functions and bounded disturbance. 

( ) 0, (0) 0,V t when V> =∵  we obtain: 

2

min

[0, ]

sup .
rk k

L t
r

e

ω

γ

ω∈

>  (25) 

So far, the proof of Theorem 1 and the controller 

design have been completed.  

Remark 2: The conditions (17)-(20) reflect the 

conservativeness of adaptive control in switched systems. 

For improving accuracy, small Γ∆f and Γ∆g, leading to 

small M∆f and M∆g, are desired. However, (17) shows that 

the property of the switching signals and the gain must 

be taken into account in selecting γ. Thus, given a 

switching signal, arbitrary control accuracy cannot be 

achieved for switched systems. Instead, the smaller M∆f 

and M∆g are, the better the achievable control accuracy is. 

Remark 3: The control law uh of robust H∞ 

compensator is used to improve the robustness of the 

controller in the presence of the reconstruction 

approximate errors of RBF NNs. For the (19) and (20), it 

is not recommended to use very large positive design 

parameters M∆f and M∆g because this may lead to a high-

gain control and increase the bandwidth of the closed-

loop system. In addition, large adaptation gain also 

results in a high-gain control. Therefore, in practical 

applications the parameters should be adjusted carefully 

for achieving suitable performance and control action. 

 

4. DESIGN EXAMPLE 

 

The performance of the proposed control scheme is 

demonstrated through simulation results. In this section, 

consider switched uncertain nonlinear systems (1) of two 

inverted pendulum systems [24,25]:  
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Suppose that the trajectory-planning problem for a 

weight-lifting operation is considered and this inverted 

pendulum system suffers from uncertainties and 

exogenous disturbances. The design of control objective 

is the actual output 1y x=  follows the desired output 

signal 0.5 sin(1.5 ) sin(0.5 ).
d
y t t= ⋅ ⋅ + ⋅  According to the 

design procedures in Section 3, we select: the mass of the 

pendulum
1 2

( , ) (1, 2),
c c c

m m m= =  the mass of the 

pendulum, the mass of the vehicle 
1 2

( , )m m m= = (0.1, 

0.2), the length of the pendulum 0.5 m,l =
1 2

( , )µ µ µ=  

(0.3, 0.5),= 1.05,ξ =
1 2

( , ) (0.2, 0.2),ρ ρ ρ= = 0.75,γ =  

0.11,f∆Γ = 0.04,
g∆

Γ = 1,2

1 0
,

1 1

 
Π =  

 
2,1

1 1
.

0 1

 
Π =  

 
 

Also, we choose K=(k1, k2) = (3, 2) which is Hurwitz 

vector, so from (15) we get matrix A=[0 1; –3 –2], B=[0 

1]T. Choosing that the parameter matrices Q1 and Q2 are 

taken as diagonal matrices with diagonal elements 3 and 

5, respectively, i.e., 
1

3 0
,

0 3
Q

 
=  
 

2

5 0
,

0 5
Q

 
=  
 

 from 

(16) and (18), we have: 
1

88.24 4.63
,

4.63 30.43
P

 
=  
 

2
P =  

7.75 1.16
.

1.16 2.30

 
 
 

 The switching signal is designed from 
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(17). The initial values of state vectors is (0) [1 1] ,T
x =  

and the initial weights values of RBF NNs are chosen 

randomly between 0 and 1. The number of hidden units 

for the RBF NNs is taken as 32.  

The simulation results are shown in Figs. 1 and 2. 

From Fig. 1 which denotes the output error tracking 

performance, the tracking objective is well obtained. So 

the satisfactory tracking performance is obtained, and the 

tracking error performance 
0 1

e [ ] [
T

d
e e y y= = −  

2
]
T

d
y x−�  is well-achieved in Fig. 2. It is observed that 

using the proposed control scheme in this paper there has 

good capabilities of tracking performance.  

Remark 4: In general, the larger the number of 

neurons is, the smaller the approximation accuracy is 

achieved. As we know, the number of hidden units in the 

neural networks is a very important parameter of the 

proposed control scheme. Namely, the larger it is the 

more complexities the controller will contain. Thus, the 

design of the controller and the error indirectly 

determines the number of neurons. A point to note is that 

the direct determination of the number is still an open 

problem in control. Therefore, how to select the optimal 

number of hidden units remains an open research 

problem for the switched nonlinear systems, the results 

in [26] could be very useful for this problem in the future 

work. 
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Fig. 1. Tracking performance. 

 

0 5 10 15 20 25
-3

-2

-1

0

1

2

3

time(sec)

tracking error e
0

tracking error e
1

 

Fig. 2. Tracking error. 

5. CONCLUSION 

 

In this paper, a robust adaptive control scheme 

including the control laws, the adaptive neural updated 

laws and the switching signals has been presented for a 

class of switched uncertain nonlinear systems. To 

overcome the influences of nonlinear uncertainty and 

external disturbance, RBF NNs have been utilized to 

approximate unknown functions and uncertain nonlinear 

terms. A robust H∞ controller mainly using feedback 

linearizable technique has been designed to enhance 

robustness. Moreover, the resulting closed-loop switched 

system is robustly stable such that the actual output of 

follows the desired output signal and the H∞ tracking 

performance from the compound disturbance to the 

tracking error has been achieved. Finally, simulation 

results show the satisfactory performance of the control 

scheme. 
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