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Abstract: The recognition of a person from his or her gait has been a recent focus in computer vision 

because of its unique advantages such as being non-invasive and human friendly. However, gait recog-

nition is not as reliable an identifier as other biometrics. In this paper, we applied a hierarchical fair 

competition-based parallel genetic algorithm and a neural network ensemble to the gait recognition 

problem. A diverse set of potential neural networks are generated to increase the reliability of the gait 

recognition, not only the best ones. Furthermore, a set of component neural networks is selected to 

build a gait recognition system such that generalization errors are minimized and negative correlation 

is maximized. Experiments are carried out with the NLPR and SOTON gait databases and the effec-

tiveness of the proposed method for gait recognition is demonstrated and compared to previous me-

thods. 
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1. INTRODUCTION 

 

A person’s gait is a characteristic feature that is 

determined by an individual’s weight, limb length, 

footwear, and posture combined with their characteristic 

motion [1]. The unique advantages of gait as a biometric 

are that it is non-invasive, easily acquired at a distance, 

and can be measured even at low resolution. For these 

reasons, the recognition of a person from his or her gait 

has become a recent focus in the computer vision and 

pattern recognition community. However, gait recogni-

tion is not as reliable an identifier as other biometrics are 

[2].  

Neural networks can construct nonlinear decision 

boundaries without prior assumptions about the 

statistical distribution of input data. In particular, they 

represent implicit knowledge of the given data. 

Nevertheless, a single neural network of finite size often 

loads a particular mapping incompletely and the mapping 

is often generalized poorly [3]. Even increasing the size 

and number of hidden layers of the single network does 

not necessarily improve the mapping. Therefore, neural 

network ensembles are important as a new direction for 

the development of high-performance systems [4,5]. The 

neural network ensemble is a learning paradigm in which 

a collection of neural networks are trained for a task and 

the system performance can be significantly improved by 

combining a number of neural networks [2]. Neural 

network ensembles have recently gained popularity and 

have already been successfully applied to various 

applications. For these reasons, we applied a neural 

network ensemble to gait recognition in our previous 

work [6] because although gait recognition is a human-

friendly and convenient biometric, it is not yet 

sufficiently reliable. We previously selected the neural 

network components based on generalization error for 

the implementation of the gait recognition system [6]. 

However, in the context of ensembles, the system 

diversity has been acknowledged as equally important as 

generalization ability [7]; we thus proposed a new design 

method for a neural network ensemble in such a way that 

the generalization error is minimized while the system 

diversity is maximized [8]. In this previous work [8], the 

candidate neural networks for an ensemble are first 

generated using a hierarchical fair competition-based 

parallel genetic algorithm (HFC-PGA) [9] to increase the 

diversity of the networks. Furthermore, each candidate 

neural network is trained to use an appropriate set of 

features selected by the HFC-PGA rather than all of them. 

Finally, once the candidate neural networks have been 

designed, a set of component neural networks is selected 

such that the generalization error is minimized while the 

negative correlation is maximized. Since the negative 

correlation is beneficial in achieving component diver-

sity, which then translates into a higher classification rate, 
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the proposed method shows an increased effectiveness 
compared with conventional neural network ensembles 
[5,6]. Therefore in this paper, the neural network ensem-
ble proposed previously [8] is employed for the gait 
recognition problem to improve accuracy and reliability. 

This paper is organized as follows: In Section 2, we 
provide a new gait recognition system that includes 
image preprocessing, gait feature extraction, and recog-
nition methods. In Section 3, the proposed scheme is 
applied to the NLPR and SOTON gait databases and its 
effectiveness is demonstrated by comparing it with other 
methods. Finally, conclusions are outlined in Section 4. 

 
2. GAIT RECOGNITON SYSTEM 

 
2.1. Preprocessing 

We first generate silhouette images from the image 
sequences by background subtraction [10]. A bounding 
box is then built around the contour of the silhouette and 
the contour is resized to a fixed size to eliminate scaling 
effects. Fig. 1 shows examples of the original image, 
background subtraction image, and normalized silhouette 
image. 

 
2.2. Feature extraction 

We use the motion silhouette images (MSIs) [11] from 
normalized silhouette images as a gait feature. The MSI 
is a grayscale image where the pixel intensity represents 
the temporal motion history of motion of that pixel. It 
possesses the critical spatial and temporal information 
and is defined as 

( , , )
255   ( , , ) 1

max[0, ( , , 1) 1] ,

MSI x y f
if S x y f

MSI x y f otherwise
=⎧

= ⎨ − −⎩

 (1) 

 

(a) (b) (c) 
Fig. 1. Examples of (a) original image (b) background 

subtraction image (c) normalized silhouette im-
age. 

 

(a) Lateral view 
(0°). 

(b) Oblique view 
(45°). 

(c) Frontal view 
(90°). 

Fig. 2. Motion silhouette images. 

where S is the silhouette image, f is the frame number, 
and (x, y) are the coordinates of the image. Fig. 2 shows 
examples of MSIs in lateral, oblique, and frontal views. 

Then, for low-dimensional features, principal compo-
nent analysis (PCA) [12] is employed. The i th MSI is 
represented by ,qi ∈ℜm  where q is the number of MSI 
pixels. mi is projected into the eigenspace by 

i i 1 2 p i[ ... ]T T= =x P m P  P P m , (2) 

where { | 1, 2,  ...,  }t t p=P  is the set of q dimensional 
eigenvectors of the covariance matrix corresponding to 
the p( p q) largest eigenvalues. xi is the i th low dimen-
sional MSI and .pi ∈ℜx  

 
2.3. Gait recognition system based on a neural network 

ensemble 
As mentioned above, we proposed a new design method 
for a neural network ensemble [8] and it is here em-
ployed for gait recognition to improve the accuracy and 
reliability of the gait recognition. Our neural network 
ensemble design method consists of two phases. In the 
first phase, the multiple neural networks are trained using 
HFC-PGA [13] such that each of them comes with an 
appropriate set of features, optimal structures, and ad-
justed parameters. In the second phase, a set of compo-
nents is selected from the multiple neural networks 
available to build an ensemble 

 
2.3.1 Hierarchical fair competition-based parallel genetic 

algorithm (HFC-PGA) 
System diversity is a very important factor in the context 
of ensembles [7,8]. A simple genetic algorithm (GA) 
might therefore not be a good choice for the training of 
multiple neural networks because  

1)  premature convergence is likely occur and the al-
gorithm gets trapped in local optima and  

2)  an individual with the highest fitness dominates the 
entire population in the last generation [8]. 

Both cases will make the components similar to each 
other; making them of limited use when forming an en-
semble of networks. The HFC-PGA [13] is employed to 
address this issue, to decrease the possibility of prema-
ture convergence and maintains the diversity of the 
population of individuals. The HFC model allows the 
young but promising individuals from early competition 
to grow up in different populations. In due time, the 
model lets them join in the cruel competition process. 
The HFC-PGA has multiple subpopulations organized in 
a hierarchy, and each subpopulation accommodates indi-
viduals within a specified range of fitness [13]. The HFC 
model maintains multiple different subpopulations, 
thereby providing diverse solutions, in addition to the 
best one. 

For the first phase, in which the individual neural net-
works are generated using HFC-PGA, each component 
neural network is encoded as a chromosome shown in 
Fig. 3. The chromosome consists of two subchromo-
somes: one deals with feature selection and the other is 
aimed at the structural and parametric optimization of the 
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neural network. As shown in Fig. 4, the first subchromo-

some is encoded as a binary string in which each bit is 

associated with a corresponding feature indicating 

whether the corresponding feature has been selected (‘1’) 

or not (‘0’); p indicates the number of features in a low-

dimensional MSI. 

The second subchromosome represents the structure 

and parameters of the neural network and is encoded as 

shown in Fig. 5. In this figure, whi and woh indicate the 

weights between the input and the hidden layers and hid-

den and output layers, respectively, and wb represents the 

bias. p, h, and o indicate the number of input, hidden, 

and output nodes, respectively. Because p and o are 

known parameters and h should be determined, it is con-

tained in the chromosome and specified as being be-

tween 1 and nmh, where nmh is the maximum number of 

allowed hidden nodes. Fig. 6 shows an example of the 

encoding of the neural network for a two-class and four-

feature problem. Since there are three selected features 

and two classes, the neural network has three input nodes, 

four hidden nodes, and two output nodes, and the lengths 

of whi, woh and wb are twelve, eight, and six, respectively. 

Crossover and mutation are used in HFC-PGA as ge-

netic operators. One-point crossover and bit-flip muta-

tion are used at the subchromosome for feature selection. 

Arithmetic, simple and heuristic crossovers and uniform 

and boundary mutations are employed at the second sub-

chromosome. In particular, the number of neurons in the 

hidden layer is determined by applying the greatest in-

teger function to the corresponding genes. 

 

Fig. 6. An example of a neural network representation. 

 

2.3.2 Neural network ensemble 

A neural network ensemble is then built by combining 

the multiple neural networks designed in the previous 

subsection. To build an efficient ensemble, a set of indi-

vidual neural networks with uncorrelated errors should 

be selected while maintaining good generalization capa-

bilities of the ensemble. In other words, the selected in-

dividual networks should be diverse among themselves. 

The negative correlation forces the ensemble to select 

different individual networks, which learn different parts 

or focus on different aspects of the training data. There-

fore, we select the neural network components based not 

only on the learning error but also on the correlation 

among the components [8]. Let us assume that a set of 

low dimensional MSI pairs 

{ }( , ) | 1, , , p
i i ic i N= ∈ℜx x�  (3) 

and 

{1,2,3, , }ic C∈ �  (4) 

are given, where ci denotes the label of the associated 

class. 
 

Theorem 1: Assume that a neural network ensemble 

with J components is given. If another neural network 

component is presented and is added to the ensemble, the 

generalization error of the new ensemble with J +1 

components 
1

ˆ( )
J

E
+

 is determined to be in the form 
 

2 2

1

( 1) ( 1) ( 1)

1

1
ˆ ˆ

1 1

2

J J

J

j J j J J

j

J
E E

J J

C K Eλ

+

+ + +

=

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎡ ⎤− +⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠
∑

 (5) 

2 2

1

( 1) ( 1) ( 1)

1

1ˆ

1 1

2 ,

J

J

j J j J J

j

J
E

J J

C K Eλ

+

+ + +

=

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎡ ⎤− −⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠
∑

 

Fig. 3. GA chromosome used in the proposed method. 

 

Fig. 4. Feature selection chromosome. 

 

Fig. 5. Genes for the structural and parametric design of 

the neural network. 
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where E(J +1) is the error of the J +1th neural network 

component, λ is the controllable variable, and Cjt and Kjt 

are defined as 

( )( ) ( )( )
1 1

N C
k k k k

jt j i i t i i

i k

C f y f y

= =

⎡ ⎤= − −
⎣ ⎦∑∑ x x  (6) 

and 

( )( )
1 1 1

( ) ( ) ( ) ( )
N C J

k k k k
jt j i r i t i r i

i k r

K f f f f

= = =

⎡ ⎤= − −
⎣ ⎦∑∑∑ x x x x , 

 (7) 

where : [0,1]
k p
jf ℜ →  indicates the k th output of the 

j th neural network and 1 2( )C

i i i i
y y y=y �  is the 

target representation of ci. The proof of Theorem 1 can 

be found in our previous work [8]. The decision regard-

ing whether a new neural network component should be 

added to the ensemble or not is accomplished with the 

recursive error equation (5) in Theorem 1, because the 

error of the new ensemble with J +1 components can be 

computed by combining the errors of the ensemble with 

J components and J +1th neural network component. If 

1
ˆ

J
E

+
< ˆ ,

J
E  the (J +1)th neural network component 

should be added. However, if 
1

ˆ

J
E

+
≥ ˆ ,

J
E  the (J +1)th 

neural network component should be discard. Therefore 

according to this error recursive equation, we can decide 

whether we will add the new neural network component 

to the ensemble and obtain a superior ensemble for the 

given problems. 

 

3. EXPERIMENTAL RESULTS 

 

3.1. NLPR database 

To show the effectiveness of the suggested method 

and its applicability to gait recognition, we use the NLPR 

database [14] for our experiments. This database is 

widely used to benchmark algorithms in gait recognition 

and is also known as the CASIA gait database. A digital 

camera fixed on a tripod captured gait sequences on two 

different days in an outdoor environment was used to 

construct NLPR database. All subjects walked along a 

straight-line path at free cadences in three different views 

with respect to the image plane: lateral (0°), oblique 

(45°) and frontal (90°) views. Fig. 7 shows example 

images of the three different views. 

The database includes twenty subjects, and each 

subject has four sequences for each viewing angle: two 

sequences in one direction and two in the reverse 

direction. The database thus includes a total of 20×4×3 

= 240 gait sequences. In this experiment, the twenty 

principal components for the MSI images are used and 

the leave-one-out cross validation to show the general 

performance of the algorithm. The parameter values used 

in the evolutionary optimization are summarized in 

Table 1. 

The forty independent neural networks are built by 

hierarchical neural network evolution. The neural 

network components are then selected based on the 

proposed method and used to build an ensemble. We 

show the performance of the proposed method at three 

viewing angles in terms of cumulative match scores 

(CMS) summarized in Table 2 where the rank K means 

that a test sample is considered correctly classified if any 

of the top K matches are correct. It can be seen that the 

recognition accuracy of rank 1 is more than 91% for all 

three angles. We show the performance of the proposed 

method and compare it to that of existing gait recognition 

methods in Table 3. 
The proposed method provides better performance 

than the other gait recognition systems. From the tables, 
it can be seen that a neural network ensemble is a good 
choice for gait recognition because it makes gait a more 
reliable biometric. 

 
(a) Lateral (0°) view. 

 
(b) Oblique (45°) view. 

 
(c) Frontal (90°) view. 

Fig. 7. Examples. 

 

Table 1. Evolution optimization parameters. 

Parameter Value 

Crossover rate 0.60 

Mutation rate 0.05 

Population size 40 

Negative correlation coefficient 0.50 

Maximum size of the hidden layer 100 

Number of subpopulations 4 

 

Table 2. Results of the proposed methods. 

 Rank 1 (%) Rank 5 (%) Rank 10 (%)

lateral 97.50 100.00 100.00 

blique 96.25 100.00 100.00 

frontal 91.25 98.75 100.00 
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Table 3. Comparison of several algorithms on the NLPR 

database in the lateral view. 

Methods Rank 1 Rank 5 Rank 10 

Lee et al. [15] 87.50 98.75 100.00 

Phillips et al. [16] 78.75 91.25 98.75 

Wang et al. [14] 82.50 100.00 100.00 

Kale et al. [17] 82.50 92.50 96.25 

Zhang et al. [18] 84.60 89.40 95.10 

Hong et al. [19] 91.25 96.25 98.75 

Lee et al. [6] 91.25 98.75 100.00 

Proposed method 97.50 100.00 100.00 

 

Table 4. Results of the proposed method. 

Rank Correct Classification Rate (%) 

Rank 1 98.45 (0.45) 

Rank 5 98.90 (0.45) 

Rank 10 99.56 (0.51) 

 

Table 5. Comparison of several algorithms of the 

SOTON database. 

Methods Correct Classification Rate (%) 

Boyd et al. [21] 85.80 

Chen et al. [22] 86.56 

Chen et al. [23] 87.59 

Lam et al. [24] 88.95 

Bazin et al. [25] 92.70 

Veres et al. [26] 96.67 

Lee et al. [2] 96.43 

Proposed method 98.45 

 

3.2. SOTON database 
In this subsection, we employ the larger SOTON 

database [20] to make a generalized statement 
concerning the validity of the proposed method in gait 
recognition. It consists of more than 100 subjects. The 
gait sequences of each subject in the SOTON database 
are divided into four subsets. Three subsets are used for 
training and the remaining one is used for testing. We 
make four independent runs and compute the 
performances of the proposed algorithm. Table 4 gives 
the average correct classification rates (CCR) for the four 
runs using the proposed method. The numbers in the 
parentheses indicated the standard deviation of four runs. 
In Table 5, the performance of the proposed method is 

compared with those of previous methods for the 
SOTON database. The performances of the previous 
methods are directly cited from previous research [2,21-
26]. It can be observed from Table 5 that our gait 
recognition system demonstrates a significant perform-
ance improvement over previous methods, thereby, 
increasing the reliability of gait recognition systems. 
 

4. CONCLUSION 

 

Gait recognition is unreliable compared with other 

biometrics such as face, iris, and finger-print recognition. 

To solve this problem, we apply a neural network 

ensemble and HFC-PGA to gait recognition in order to 

obtain a high recognition accuracy. HFC-PGA is 

employed to generate the diverse individual neural 

networks. The neural network components are then 

selected in such a way that the generalization error is 

minimized and the correlation among components is 

negative. The experiments performed with the NLPR and 

SOTON databases show the performance of the proposed 

method, demonstrating that it outperforms other variable 

gait recognition methods available in the literature. 

 

REFERENCES 

[1] H. Lee, S. Hong, I. F. Nizami, and E. Kim, “A 

noise robust gait representation: Motion Energy 

Image,” International Journal of Control Automa-

tion and Systems, vol. 7, no. 4, pp. 638-643, August 

2009. 

[2] H. Lee, S. Hong, and E. Kim, “Neural network en-

semble with probabilistic fusion and its application 

to gait recognition,” Neurocomputing, vol. 72, pp. 

1557-1564, March 2009. 

[3] S. Cho, “Pattern recognition with neural networks 

combined by genetic algorithm,” Fuzzy Sets and 

Systems, vol. 103, pp. 339-347, April 1999. 

[4] H. Lee, S. Hong, and E. Kim, “A new genetic fea-

ture selection with neural network ensemble,” In-

ternational Journal of Computer Mathematics, vol. 

86, no. 7, pp. 1105-1117, July 2009.  

[5] L. Hansen and P. Salamon “Neural network en-

sembles,” IEEE Trans. on Pattern Analysis and 

Machine Intelligence, vol. 12, pp. 333-342, 1992. 

[6] H. Lee, S. Hong, and E. Kim, “An efficient gait 

recognition based on a selective neural network en-

semble,” International Journal of Imaging Systems 

and Technology, vol. 18, no. 4, pp. 237-241, Octo-

ber 2008. 

[7] K.-J. Kim and S.-B. Cho, “Evolutionary ensemble 

of diverse artificial neural networks using specia-

tion,” Neurocomputing, vol. 71, no. 7-9, pp. 1604-

1608, 2008. 

[8] H. Lee, E. Kim, and W. Pedrycz, “A new selective 

neural network ensemble with negative correla-

tion,” Applied Intelligence, vol. 37, pp. 488-498, 

December 2012. 

[9] J. Choi, S. Oh, and W. Pedrycz, “Structural and 

parametric design of fuzzy inference systems using 

hierarchical fair competition-based parallel genetic 

algorithms and information granulation,” Interna-

tional Journal of Approximate Reasoning, vol. 49, 

pp. 631-648, 2008. 

[10] T. Horpraser, D. Harwood, and L. Davis, “A statis-

tical approach for real-time robust background sub-

traction and shadow detection,” Proc. International 

Conference on Computer Vision, 1999. 

[11] T. Lam and R. Lee “A new representation for hu-

man gait recognition: motion silhouettes image 

(MSI),” Proc. International Conference on Biome-

tric, pp. 612-618, 2006. 

[12] H. Lee, S. Hong, and E. Kim, “An efficient gait 

recognition with backpack removal,” EURASIP 

Journal on Advances in Signal Processing, vol. 

2009, Article ID 384384, p. 7, 2009. 

[13] J. Choi, S. Oh, and W. Pedrycz, “Identification of 

fuzzy models using a successive tuning method 



A New Gait Recognition System based on Hierarchical Fair Competition-based Parallel Genetic Algorithm and Selective… 

 

207

with a variant identification ratio,” Fuzzy Sets and 

Systems, vol. 159, pp. 2873-2889, 2008. 

[14] L. Wang, T. Tan, H. Ning, and W. Hu, “Silhouette 

analysis-based gait recognition for human identifi-

cation,” IEEE Trans. on Pattern Analysis and Ma-

chine Intelligence, vol. 25, pp. 1505-1518, 2003. 

[15] L. Lee and W. Grimson, “Gait analysis for recogni-

tion and classification,” Proc. International Confe-

rence on Automatic Face and Gesture Recognition, 

pp. 155-162, 2002. 

[16] P. Phillips, S. Sarkar, I. Robledo, P. Grother, and K. 

Bowyer, “Baseline results for challenge problem of 

human ID using gait analysis,” Proc. International 

Conference on Automatic Face and Gesture Rec-

ognition, pp. 137-142, 2002. 

[17] A. Kale, N. Cuntoor, B. Yegnanarayana, A. N. Ra-

jagopalan, and R. Chellappa, “Gait analysis for 

human identification,” Proc. International Confe-

rence on Audio- and Video-Based Biometric Person 

Authentication, pp. 706-714, 2003. 

[18] E. Zhang, J. Lu, and G. Duan, “Gait recognition via 

independent component analysis based on support 

vector machine and neural network,” Proc. Interna-

tional Conference on Advances in Natural Compu-

tation, pp. 640-649, August 2005. 

[19] S. Hong, H. Lee, K.-A. Toh, and E. Kim, “Gait 

recognition using multi-bipolarized contour vec-

tor,” International Journal of Control, Automation, 

and Systems, vol. 7, no. 5, pp. 799-808, October 

2009. 

[20] J. Shutler, M. Grant, M. Nixon, and J. Carter, “On a 

large sequence-based human gait database,” Proc. 

International Conference on Recent Advances in 

Soft Computing, pp. 66-71, 2002. 

[21] J. Boyd, “Synchronization of oscillations for ma-

chine perception of gaits,” Computer Vision and 

Image Understanding, vol. 96, pp. 35-59, 2004. 

[22] S. Chen and Y. Gao, “Stride history image: a new 

feature representation for pedestrian identification,” 

Proc. IEEE Workshop on Signal Processing Sys-

tems, pp. 543-547, October 2007. 

[23] S. Chen, W. Huang, T. Ma, and L. Dong, “Towards 

feature fusion for human identification by gait,” 

Proc. 4th International Conference on Image and 

Graphics, pp. 678-682, August 2007. 

[24] T. H. W. Lam, R. S. T. Lee, and D. Zhang, “Human 

gait recognition by the fusion of motion and static 

spatio-temporal templates,” Pattern Recognition, 

vol. 40, no. 9, pp. 2563-2573, September 2007. 

[25] A. Bazin and M. Nixon, “Gait verification using 

probabilistic methods,” Proc. IEEE Workshop on 

Applications of Computer Vision, pp. 60-65, 2005. 

[26] G. V. Veres, L. Gordon, J. N. Carter, and M. S. 

Nixon, “What image information is important in 

silhouette-based gait recognition?,” Proc. IEEE 

Conference on Computer Vision and Pattern Rec-

ognition, vol. 2, pp. 776-782, July 2004. 
 

 

 

Heesung Lee received his B.S., M.S., 

and Ph.D. degrees in Electrical and Elec-

tronic Engineering from Yonsei Univer-

sity, Seoul, Korea, in 2003, 2005, and 

2010, respectively. He is currently a 

Managing Researcher of Image Sensing 

Lab. in Samsung S1 Co., Ltd. His current 

research interests include computational 

intelligence, visual surveillance, pattern 

recognition, biometrics, and neural networks. 

 

Heejin Lee received his B.S., M.S., and 

Ph.D. degrees in Electronic Engineering, 

from Yonsei University, Seoul, Korea, in 

1987, 1989, and 1998, respectively. He 

was a Researcher in Daewoo Telecom 

Ltd., Seoul, Korea, from 1989 to 1993. 

He is currently a Professor in the Dept. of 

Electrical, Electronic and Control Engi-

neering, Hankyong National University, 

Gyeonggi-do, Korea. His current research interests include 

fuzzy control theory, fuzzy application system, adaptive and 

robust control, robotics and automation. 

 

Euntai Kim received his B.S., M.S., and 

Ph.D. degrees in Electronic Engineering 

from Yonsei University, Seoul, Korea, in 

1992, 1994, and 1999, respectively. He 

was a full-time lecturer with the Depart-

ment of Control and Instrumentation En-

gineering, Hankyong National University, 

Gyeonggi-do, Korea from 1999 to 2002. 

Since 2002, he has been with the faculty 

of the School of Electrical and Electronic Engineering, Yonsei 

University, where he is currently a Professor. He was a visiting 

researcher at Berkeley Initiative in Soft Computing, UC at 

Berkeley, Berkeley, CA, USA. His current research interests 

include computational intelligence and statistical machine 

learning and their application to intelligent robot, vehicle, and 

machine vision. 


