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Abstract: Fault detection observer and fault estimation filter are the main tools for the model based 

fault diagnosis approach. The dimension of the observer gain normally depends on the system order 

and the system output dimension. The fault estimation filter traditionally has the same order as the mo-

nitored system. For high order systems, these methods have the potential problems such as parameter 

optimization and the real time implementation on-board for applications. In this paper, the system dy-

namical model is first decomposed into two subsystems. The first subsystem has a low order which is 

the same as the fault dimension. The other subsystem is not affected by the fault directly. With the new 

model structure, a fault detection approach is proposed where only the residual of the first subsystem is 

designed to be sensitive to the faults. The residual of the second subsystem is totally decoupled from 

the faults. Moreover, a lower order fault estimation filter (with the same dimension of the fault) design 

algorithm is investigated. In addition, the design of a static fault estimation matrix is presented for fur-

ther improving the fault estimation precision. The effectiveness of the proposed method is demonstrat-

ed by a simulation example. 
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1. INTRODUCTION 

 

Model based fault detection has received much 

attention and significant progress has been achieved, see 

[1-12] and the references therein. One of the particular 

interesting techniques among all the model based 

techniques is the observer based fault detection filter 

design. It has been shown that it is very effective in 

detecting sensor, actuator, and system component faults. 

However, finding systematic design methods for systems 

subjected to unknown disturbances and model 

uncertainties has been proven to be difficult [1,13]. Since 

both disturbance and faults contribute to the residual 

generated by the observer, it is essential to isolate their 

effects to the residual. A fault detection observer should 

be robust to the disturbance but sensitive to the faults [1]. 

Some recent results aiming at this goal for LTI systems 

are reported in [9-11,14] and the references therein. 

For linear time invariant systems, fault detection 

observer and fault estimation filter are the main tools for 

the model based fault detection approach. The dimension 

of the observer gain normally depends on the system 

order and the dimension of the system output. The fault 

estimation filter traditionally has the same order as that 

of the monitored system. They are successfully used for 

many systems in different areas. However, most of them 

are for lower order systems. For high order systems, the 

observer-based fault detection and fault estimation 

method have potential problems such as parameter 

optimization in the design step. Normally, it takes a long 

time to obtain a solution and numerical problem occurs 

frequently. In the step of their implementation on-board 

for real plants, high order observers and filters exhaust 

the limited hardware sources (such as the computation 

burden) of the online monitoring device. It is very 

desirable to develop innovative method for designing 

fault detection observer and fault estimation filter for 

high order systems. 

Aiming at designing lower order fault estimation filter, 

in this paper, the high order dynamical model is first 

decomposed into two subsystems. The first one is 

directly related to the faults which needs to be detected 

and reconstructed. It has the same order as the fault 

dimension. The second subsystem does not directly 

relate to the faults. After the model decomposition, a new 

observer structure is proposed, where one observer gain 

is designed to detect the faults in the first subsystem and 

the other observer gain is designed to attenuate the 

disturbances of the second subsystem. With the new 

model and with the help of the proposed observer 

structure, only the residual of the first subsystem is 

related to the fault. Furthermore, a lower order fault 

estimation filter (with the same dimension of the fault) 

design approach is investigated. We propose a fault 

estimation filter design algorithm in the finite frequency 

domain. In addition, the design of a static fault estima-
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tion matrix is presented for further improving the fault 

estimation precision. The effectiveness of the proposed 

methods is demonstrated by a simulation study. 

This paper is organized as follows. The model 

decomposition and the problem statement are presented 

in Section 2. In the third section, the fault detection 

observer structure and its design are presented at first. 

After that, a fault estimation filter design in the finite 

frequency is presented. A simulation example is shown 

in Section 4. Finally, some conclusions are given in 

Section 5. 

Notations: The notations used in this paper are quite 

standard. For a matrix R ,
m n

A
×

∈
'

,A
*

,A ,A
⊥  and A-1 

denote its transpose, complex conjugate transpose, 

orthogonal complement and inverse respectively. Aλ（ ） 

stands for the eigenvalue of matrix A. ( )A'Aσ λ=  

denotes the largest singular value of A and σ =  

( )( ( ))A'A AA'λ λ  denotes the smallest singular value 

of A if (m n),m n< ≥  where ( )( )A Aλ λ（ ） stands for 

the largest (smallest) eigenvalue of A. det(A) denotes the 

determinant of matrix A. The Hermitian part of a square 

matrix M is denoted by He(M):=M + M*. The symbol H
n
 

stands for the set of n×n Hermitian matrices. Re(s) 

denotes the real part of complex number s. The time 

mean norm of a signal vector u is defined as 

2,

1 t T

T t
u u udt

T

+

′= ∫ , (1) 

where T is a large enough time constant [9]. 

The H∞ norm of transfer function G(s) over a finite 

frequency range [ω1, ω2] is defined as 

1 2 1 2
[ , ] [ , ]

( ) ( ( ))G s G j
ω ω ω ω ω

σ ω
∈

∞
= . (2) 

The H_ index of transfer function G(s) over a finite 

frequency range [ω1, ω2] is defined as 

1 2 1 2
[ , ] [ , ]

( ) ( ( ))G s G j
ω ω ω ω ω

σ ω
∈

−
= . (3) 

 

2. PRELIMINARIES AND PROBLEM 

STATEMENT 

 

Consider a linear dynamical system with unknown 

disturbances described by  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

u f d

u

x t Ax t B u t B f t B d t
S

y t Cx t D u t

= + + +⎧⎪
⎨

= +⎪⎩

�

：  (4) 

where n

x∈R  is the state vector, dnd ∈R  is the 

unknown input vector including modeling error, 

uncertain disturbances, process and measurement noises, 
yn

y R∈  is the measurement vector and fnf ∈R  is 

the fault vector. 

Assumption 1: For the considered system (4), we 

have  

( ) ( )f f frank CB rank B n= = , (5) 

( )
0

n f

f

sI A B
rank n rank B

C

−⎡ ⎤
= +⎢ ⎥

⎣ ⎦
. (6) 

Lemma 1 [15]: Given the system (4), we have 

( ) ( )f f frank CB rank B n= = , (7) 

if and only if there exist nonsingular transformation 

matrices T and S such that 

11 21

3 4

111

24

1

2

,   ,
0

0
,   ,

0

,

f

f

d
d

d

u
u

u

BA A
TAT TB

A A

BC
SCT TB

BC

D
TD

D

−

−

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

where 
1

,

f fn n

A R
×

∈

( - ) ( - )

4 ,

f fn n n n

A R
×

∈
1

,

f fn n

C R
×

∈
4

C  
( ) ( )

,

y f fn n n n

R
− × −

∈
1

( )f frank B n=  and C1 is invertible. 

In the following, we provide an algorithm of comput-

ing the T and S. 

Applying the SVD decomposition to Bf, we obtain 

,

f ff

T
f B BB

B U V= ∑  

where 
f

n n

B
U R

×

∈  is a unitary matrix. Let -1

1

,

fB
T U=  

then we obtain 

1

1

0
ff

fT
f BB

B
T B V

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∑ , 

where 
1

fn n

fB R
×

∈  and 
1

rank( ) .f fB n=  The matrix 

CT1

-1 can be partitioned as follows: 

1

1 1 2
CT C C

− ⎡ ⎤= ⎣ ⎦
� � , 

where 
1

.

y fn n

C
×

∈
� R  Note that 

-1

1 1 1 1

( )( )f f fCB CT T B C B= =
� . 

By the hypothesis of Lemma 1, 

rank( ) ( ) .f f fB rank CB n= =  

Hence 

1
( ) frank C n=
� . 

Applying the SVD decomposition to 
1

C�  yields 

1 11
1

,

T

C CC
C U V= ∑� �

�

�  

where 

11

1

1
,    det( ) 0.

0

T

CC

C
V C

⎡ ⎤
= ≠⎢ ⎥
⎣ ⎦

∑ �
�

 

Note that 
1

R .y fn n
C

×

∈
�  Let 

1

1
,

C
S U

−

=
�

 then 
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1 21

1

4
0

C C
SCT

C

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

Define 

1

1 21

2

0

nf

n nf

I C C
T

I

−

−

−

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and we have 

11

4

0

0

C
SCT

C

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

where 
2 1

.T T T=  

It can be verified that 

1

1 2

2

-
0

nf

n nf

I C C
T

I

−⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

hence 

1

0

f

f

B
TB

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

In the new coordinates T

1 2
: ( , )

T T
x x x Tx= =�  and :y =�  

T

1 2
( , ) ,T T
y y Sy=  the system state space description is as 

follows: 

1 1 1 2 2 1 1 1

1

1 1 1 1

  

,

u f d

u

x A x A x B u B f B d
S

y C x D u

= + + + +⎧⎪
⎨

= +⎪⎩

�

：  (8) 

2 3 1 4 2 2 2

2

2 4 2 2

  

.

u d

u

x A x A x B u B d
S

y C x D u

= + + +⎧
⎨

= +⎩

�

：  (9) 

The observer used in this paper is as follows: 

1 1 1 2 2 1 1 1 1 2 2

1

1 1 1 1

ˆ ˆ ˆ ˆ( )
  

ˆ ˆ ,

u

u

x A x A x B u L y y L y
O

y C x D u

⎧ = + + + − +⎪
⎨

= +⎪⎩

�

：  (10) 

2 4 2 2 3 1 4 2 2

2

2 4 2 2

ˆ ˆ ˆ
  

ˆ ˆ .

u

u

x A x B u L y L y y
O

y C x D u

⎧ = + + + −⎪
⎨

= +⎪⎩

� （ ）
：  (11) 

The observer gain L�  for the fault detection is 

described in the following: 

1 2

3 4

:

L L
L

L L

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� . (12) 

The first problem considered in this paper is that how 

to design the observer gain L�  to achieve the following 

goals. 

1)  Observer O2 is totally decoupled from the faults. 

2)  The change caused by the fault is only related to 

residual 
1 1 1

.r y y= − �  

3)  The state estimation error 
2 2 2

x̂e x= −  is bounded. 

The second problem is how to design a lower order 

fault estimation filter F to reconstruct the fault f. The 

state space description of the filter F is given as follows. 

1

1

:   
ˆ ,

c c c c

c c c

x A x B r
F

f C x D r

= +⎧⎪
⎨

= +⎪⎩

�

 (13) 

1
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d f
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F
s
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y

2
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1
r ˆf 0

ˆf

2
r

 

Fig. 1. Fault detection and estimation system. 

 

where R
fn

c
x ∈  is the state of the fault estimation filter 

F, ˆ R
fnf ∈  is the output of the filter. ,

c
A ,

c
B ,

c
C

c
D  

are parameter matrix of the fault estimation filter. The 

proposed fault detection and fault estimation framework 

is shown in Fig. 1. F
s
 is a static filter for improving the 

fault estimation accuracy which is stated in the next 

section in details. 

Remark 1: In this paper, the high order system is 

transformed into two subsystems. The first subsystem 

has an order same as that of the dimension of the fault. 

Generally, it has a much lower order than the original 

system. The second subsystem is not connected to the 

fault directly and by choosing a special observer gain, 

the residual of the second observer can be totally 

decoupled from the faults. Furthermore, a low order fault 

estimation is developed by using only the residual of the 

first subsystem. The idea to transform the monitored 

system into two or more subsystems is also found in 

some previous fault diagnosis papers. In [2] and [6], the 

authors transferred the monitored system into three 

subsystems and furthermore, a fault detection observer 

and isolation approach are proposed. However, the 

proposed approach is quite different from the one in this 

paper. In [12], a similar transformation is used to 

separate the system into two subsystems. Nevertheless, 

the problem considered in the paper is the sensor fault 

detection for a class of nonlinear systems. 

 

3. FAULT DETECTION OBSERVER AND FAULT 

ESTIMATION FILTER DESIGN 

 

3.1. Fault detection observer design 

Define 
1 1 1̂

,e x x= −
2 2 2

ˆ ,e x x= −
1 1 1

ˆr y y= −  and 
2
r =  

2 2
ˆ ,y y−  the derived state estimated error equations are 

stated as follows: 

1 1 1 2 2 1 1

1 1 1 1 2 2

1 1 1

ˆ:   ( )

,

f de A e A e B f B d

E L y y L y

r C e

= + + +⎧
⎪

+ − +⎨
⎪ =⎩

�

 (14) 

2 3 1 4 2 2 3 1

2 4 2 2

2 4 2

ˆ:   ( )

.

d
e A x A e B d L y

E L y y

r C e

= + + −⎧
⎪

+ −⎨
⎪ =⎩

�

 (15) 

Notice that the state estimation error e2 is coupled with 

the fault f by term A3x1. Let 
-1

3 3 1
L A C= (C1 is invertible), 

then we have 

3 1 3 1
L y A x= . (16) 
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Now the fault is totally decoupled from the observer O2. 

For simplicity, in this paper, the observer gain L2 is set to 0. 

Remark 2: By using 
3 1 3 1

,L y A x=  the residual r2 is 

totally decoupled from the fault f and state x1. y2 in (14) 

does not have any effect on the state estimation of 

system E2. Hence, L2 can be set to 0. The price paid for 

this simplification is that the pair (A4,C4) should be 

detectable. In the case that this condition cannot be met, 

the approach proposed in this paper does not work 

anymore. 

The fault detection observer design problem is 

transferred to two sub-problems: 

1)  Design L4 such that the model uncertainty and 

disturbance part d is attenuated as much as possible. 

2)  Design L1 such that the residual r1 is sensitive to 

the fault and robust to the disturbances d and the 

estimation error e2. 

The following lemma is necessary for designing the 

observer gain L4. 

Lemma 2 [16]： The pair (A4, C4) is detectable if and 

only if 

0

n f

f

sI A B
rank n n

C

−⎡ ⎤
= +⎢ ⎥

⎣ ⎦
. (17) 

There are quite a lot approaches to obtain L4. For 

example, H∞ observer proposed in [17] and [8], pole 

placement method and the method proposed in [10]. For 

the observer gain L1, there are also many solutions. In 

this paper, the observer presented in our former work [10] 

is applied. 

 

3.2. Fault estimation filter design 

In the light of the state estimate error equations 

described by 

1 1 1 1 1 2 2 1 1 1

1

1 1 1

( )
:   

.

f de A L C e A e B f B d
E

r C e

= − + + +⎧⎪
⎨

=⎪⎩

�

 (18) 

The objective of the fault estimation filter is to optimize 

the parameter matrices Ac, Bc, Cc, Dc such that the fault 

estimation error ef (see Fig. 2) is minimized. 

Define 
1 1 1

( )
e

A A L C= −  and ˆ ,fe f f= −  combine 

the fault estimation filter (13), then the overall dynamic 

equations for the fault estimation system are 

11 1 2 1

2

0
,

0 0 0

fe d

c c c c

Be A e A B
e d f

x B C A x

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

�

�

1
( ) .f c c

c

e
e D C C f

x

⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠
 

 

E
1

d

f F

ˆf

-

f
e

2
e

1
r

 

Fig. 2. The fault estimation filter. 

Define the following matrices: 

0
e

c c

A

B C A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

A , 

12 1
,

0 0 0

fd
d f

BA B ⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

B B , 

( ) , .
c c f

D C C I= − − =C D  

The transfer function from 
2

( )d e d '=  and f to ef is 

_

( ) ( )
fff e fe d

e G z d G z f= + , (19) 

where 

1( )
f de d

G sI
−

= −C A B , (20) 

1( ) +
fe f f f

G sI
−

= −C A B D . (21) 

We use the H
∞
 norm in the finite frequency domain as 

the performance criterion. The objective of the fault 

estimation filter is to minimize the estimated error ef as 

much as possible such that the following criteria are 

satisfied:  

[ ] ( ),

( )dl dh

f ede d
G j

ω ω

σ ω γ<  (22) 

for attenuating the disturbances and 

[ , ]
( ( ))fl fh

fe f ef
G j

ω ω

σ ω γ<  (23) 

for the fault estimation. The frequency ranges are 

specified for the considered intervals [ , ]
dl dh

ω ω  for 

disturbance signal d  and [ , ]fl fhω ω  for fault signal f, 

respectively. An LMI solution to the frequency 

performance requirements stated by (22) and (23) is 

presented in the following lemmas. Here the techniques 

in [18] are applied to convert the problem to LMIs 

optimization problem. 

Define the new variables: 

' ' 1

' ' 1

( )( )
,

( )

: ,

X I XY V
W

U UY V

Z YX VU

−

−

⎛ ⎞−
= ⎜ ⎟
⎜ ⎟−⎝ ⎠

= +

 (24) 

0 0

0 0

0
.

c c

c c

M G YAX V

H L I I

A B U

C D CX I

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 (25) 

These variables are used in the lemmas in the following. 

Lemma 3: The fault estimation filter (19) meets the 

disturbances attenuation specification (22) if there exist 

matrices X, Y, Z, M, G, H, L and Pd, Qd∈Hn satisfying Qd 

> 0, and 

111, 112, 12,

'

12,

0
d d d

d
I

Φ −Φ Φ⎛ ⎞
<⎜ ⎟⎜ ⎟Φ −⎝ ⎠

, (26) 
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where 

111,

2

0

: 0

0 0

d dc d

d dc d dl dh d

ed

Q P j Q

P j Q Q

ω

ω ω ω

γ

⎛ ⎞− +
⎜ ⎟

Φ = −⎜ ⎟
⎜ ⎟

−⎝ ⎠

, 

112, 12,

0

: ,
d d d d

d d

He R

⎛ ⎞− ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

Φ = Φ =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

W

E F

G J

, 

where Rd is a multiplier, ( ) / 2
dc dl dh

ω ω ω= +  and the 

other matrices are defined as follows: 

:

X I

Z Y

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

W , 

:
e e

e

A X A

M YA GC

⎛ ⎞
= ⎜ ⎟

+⎝ ⎠
E , 

( ) ( )1 1
: , : ,

: .

d d f d d

d d

B YB GD H LC

LD

= + = − −

= −

F G

J
 

Proof: Let 
2

0

0
d

ed

I

Iγ

⎛ ⎞
∏ = ⎜ ⎟⎜ ⎟

⎝ ⎠
 and 

d d dc d

d

d d d dl dh d

Q P j Q

P j Q Q

ω

ω ω ω

− +⎛ ⎞
Ξ = ⎜ ⎟

−⎝ ⎠
. 

Using Lemma 6 in the appendix, the disturbances 

attenuation condition (22) is equal to (50). The condition 

(50) becomes 

'
111, 112, 12, 12, 0

d d d d
Φ −Φ +Φ Φ < . (27) 

Using Schur complement formulation, we have 

111, 112, 12,

'

12,

0
d d d

d
I

Φ −Φ Φ⎛ ⎞
<⎜ ⎟⎜ ⎟Φ −⎝ ⎠

. (28) 

Remark 3: Lemma 3 provides an LMI solution for the 

disturbance attenuation criteria (22). For the disturbance 

d  located in the frequency interval [ + ]
dl dh

ω ω , the H∞ 

norm in the frequency interval is minimized to smaller 

than γed. Since we only optimize the parameters in the 

frequency interval rather than in the whole frequency 

domain used in the classical H∞ norm criteria, a less 

conservative solution can be obtained. The physical 

meaning of this lemma is further explained by using Fig. 

3. The H∞ norm (the maximum singular value 

( ( ))
fe d

G jσ ω ) from d  to ef for two different fault 

estimation filters F1 and F2 are shown with bold and dash 

line, respectively. If the disturbance d  is located in the 

frequency interval [ω1 ω2], then fault estimation filter F2 

is a better solution for disturbance attenuation. In the 

case that the disturbance d  is located in the frequency 

interval [ω3 ω4], F1 achieves better performance. 

Lemma 4: The system (19) meets the fault estimation 

specification (23) if there exist matrices X, Y, Z, M, G, H, 

L and Pf, Qf∈Hn satisfying Qf > 0, and 

0

ω

σ

1
ω

2
ω

3
ω

4
ω

1
F

2
F

 

Fig. 3. The physical meaning of Lemma 3. 

 

11, 12,

'

12,

0,
f f

f I

Ψ Ψ⎛ ⎞
⎜ ⎟ <
⎜ ⎟Ψ −⎝ ⎠

 (29) 

where 

11,

2

0

: 0

0 0

f fc f

f fc f fl fh f

ef

Q P j Q

P j Q Q

ω

ω ω ω

γ

⎛ ⎞− +
⎜ ⎟
⎜ ⎟Ψ = − − ϒ
⎜ ⎟
⎜ ⎟−⎝ ⎠

, (30) 

12,

0

f f

f

⎛ ⎞
⎜ ⎟

Ψ = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

F

J

, (31) 

where Rf is a multiplier, ( ) / 2fc fl fhω ω ω= +  and 

f

f

He R

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟

ϒ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

W

E

G

, 

( ) ( )1
: , : ,

: .

f
f f e f f

f f

B YB GD H LC

I LD

= + = −

= −

F G

J
 

The proof of this lemma is omitted since it is similar to 

that of Lemma 3. 

Remark 4: The physical meaning of this lemma can 

be explained in a similar way as that of lemma 3. LMI 

(29) is a sufficient condition for the fault estimation 

accuracy (23), that is, it provides a solution to minimize 

the H
∞
 norm ( ( ( )))

fe f
G jσ ω  in the finite frequency 

interval [ , ].fl fhω ω  Due to ˆ ,fe f f= −  a smaller 

( ( ))
fe f

G jσ ω  means that the fault estimation accuracy 

is higher in the considered frequency interval. 

Lemmas 3 and 4 presented before only guarantee the 

H
∞
 performance of the fault estimation filter F. Besides 

these two performances, the stability of the fault 

estimation system should be satisfied. In the following 

lemma, the eigenvalues of the fault estimation system are 

placed to the left of a vertical line ( ) ( 0)Re s α α< − >  

on the complex plane. This avoids the problem that the 

poles are too close to the right half-plane. 

Lemma 5: Consider the system (19), the following 

statements are equivalent: 
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(i) The eigenvalues of A  are to the left of a vertical 

line ( ) ( 0)Re s α α< − >  on the complex plane. 

(ii) There exist W  and 0
c c
P P′= >  such that 

( )
0

,
0

c

c

P I
He W qI pI

P Iα

⎛ − ⎞⎛ ⎞ ⎛ ⎞
< −⎜ ⎟⎜ ⎟ ⎜ ⎟

+⎝ ⎠⎝ ⎠ ⎝ ⎠A
 (32) 

where p, nf are arbitrary fixed real numbers satisfying pq 

< 0. 

(iii) There exist X, Y, Z, M, G and 0
t t

′= >P P  such 

that 

( )
0

,
0

t

t

I
He qI pI

⎛ − ⎞⎛ ⎞ ⎛ ⎞
< −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠A

P
W

P
 (33) 

where 

( )

( )
e e

e e

A I X A

M Z Y A I GC

α

α α

⎛ ⎞+
= ⎜ ⎟⎜ ⎟+ + +⎝ ⎠
A , 

X I

Z Y

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

W . 

Proof: Using the fact that ( ) ( )Iλ α λ α+ = +A A  

and Lyapunov inequality, ( ( ))Re λ α< −A  is equiva-

lence to 

( ) ( ) 0
c c

I P P Iα α
′+ + + <A A , (34) 

where 0,
c c
P P′= >  that is 

( ) ( )0
0

0

c

c

P I
I I

P I

α
α

⎛ ⎞′⎛ ⎞ ++ <⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

A
A . (35) 

Notice that 

( )
0

2 0
0

c

c

c

P pI
pI qI pqP

P qI

⎛ ⎞⎛ ⎞
= <⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. (36) 

Using the following facts 

( ) 0
qI

pI qI
pI

⎛ ⎞
=⎜ ⎟

−⎝ ⎠
, (37) 

( )
( )

0
I

I I
I

α

α

⎛ ⎞
+ =⎜ ⎟

− +⎝ ⎠
A

A
, (38) 

and Lemma 7 in the appendix, one obtains 

( )
0

0

c

c

P I
He W qI pI

P Iα

⎛ − ⎞⎛ ⎞ ⎛ ⎞
< −⎜ ⎟⎜ ⎟ ⎜ ⎟

+⎝ ⎠⎝ ⎠ ⎝ ⎠A
. (39) 

The equivalence between (i) and (ii) is proven. A similar 

result can be found in [19]. 

Define nonsingular matrix 

0I

Y V

⎛ ⎞
Γ = ⎜ ⎟

⎝ ⎠
. (40) 

Multiply ( , )diag Γ Γ  to the left side of the inequality 

(32) and ( , )diag ′ ′Γ Γ  to the right side. We obtain 

inequality (33). 

Now the existence of the fault estimation filter is 

discussed here. The transfer function from f to residual r1 

is 

( )( )
1

1

1 1 1 1 1
( )

r f f
G s C sI A L C B

−

= − − . 

The transfer function of the fault estimation filter is 

( )
1
ˆ

( ) c c c cfr
G s C sI A B D= − + . 

Notice that the fault can be precisely estimated if the 

1
ˆ

( )
r f

G s  is the inverse of 
1
( ),

r f
G s  at least when the 

disturbance disappears totally. 

Define a rational transfer function ( ) (
F c

G s C sI=  

) ,
c c

A B−  then 
1
ˆ

( ) ( ) .F cfr
G s G s D= +  In the case that 

1
ˆ

( )
fr

G s  is the inverse of 
1
( ),

r f
G s  we have 

( )
1

( ) ( ) .
F c r f

G s D G s I+ =  (41) 

It is clearly seen that the above equation is undetermined. 

We need more constraints to achieve a solution for the 

filter. 

To achieve a feasible solution, a small direct fault 

transfer matrix 1

1 1 1 1
( )f fD C A L C Bβ −

= − +  (β is a small 

constant) is added into the state estimation error equation 

(42). That is 

( )1 1 1 1 1 2 2 1 1

1 1 1

,

.

f d

f

e A L C e A e B f B d

r C e D f

= − + + +

= +

�

 (42) 

Now we have 

( ) ( )1
.

fe f f c f
G sI I D D

−

= − + −C A B  (43) 

To minimize 
[ , ]

( ( )),fl fh

fe f
G j

ω ω

σ ω
c

D  is optimized 

to minimize ( )
c f

I D Dσ − which results in 1
.

c f
D D

−

→  

The achieved D
c
 decouples the different faults at static 

state since 

1
(0) .

c fr c f
D G D Dβ=  

Define the obtained filter as ( ).F s  The fault estimation 

filter F(s) can be yield by using the following equation: 

( )
1 1

( ) ( ) ( ) ,
r f fr f

F s G F s G s D= +  (44) 

that is 

1 1

1( ) ( )( ( ) )( ( )) .
r f f r f

F s F s G s D G s
−

= +  (45) 

Notice that 1

1 1 1 1
( )

c f
D C A L C Bβ −

= − +  (β is a small 

constant), at the low frequency domain, one yields 

( ) ( ).F s F s≈  Now we present the filter design algo-

rithm in the following. 

Algorithm 1 (Fault estimation filter design algorithm): 

Given β, L1 and Df, choosing multipliers Rd and Rf, the 

fault estimation filter design can be obtained by solving 

the following optimization problem in terms of LMIs: 
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min d ed f efα γ α γ+  
           . .s t  

0, 0, 0,t d fP Q Q> > >  (26),(29),(33), 

where αd and αf are two weighting constants. 
Once the matrices X, Y, Z, M, G, H, L are solved, the 

fault estimation filter can be recovered by using (25). 
Notice that the matrices U and V in (24) are unknown. 
We can make a decomposition (such as QR or SVD) of 
(Z – YX) to obtain V and U (VU Z XY= − ). Then the 
fault estimation filter matrices can be recovered by: 

cD L= , (46) 
1( )c cC H D CX U −= − , (47) 

1
cB V G−= , (48) 

1 1( )c cA V M YAX VB CX U− −= − − . (49) 
 

3.3. Design of the static matric Fs 
The proposed fault estimation filter reaches an 

accuracy to some extend. However, it is found that, in 
some cases, the static precision is not good enough. To 
improve the static estimation performance, a constant 
matrix Fs is designed in the following. 

11

1
ˆ( (0) (0))r ffrF G G −= , 

where 

1
1

1 1 1 1 1(0) ( )r f fG C A L C B−= − + , 

1

1
ˆ (0) ( )c c c cfrG C A B D−= − + . 

 
4. SIMULATION 

 
Example 1: Consider the longitudinal dynamics of the 

VTOL aircraft with a state space model 

u d fx Ax B u B d B f= + + + , 
y Cx= . 

The system parameters are given as follows: 

9.9477 0.7476 0.2632 5.0337
52.1659 2.7452 5.5532 24.4221
26.0922 2.6361 4.1975 19.2774

0 0 1.0000 0

A

− −⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟− −
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

0.4422 0.1761
3.5446 7.5922

,
5.5200 4.4900

0 0

uB

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

 

0
0
1
0

dB

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

,f uB B=  

1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

C

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

The transformation matrices T and S are given as 
follows: 

0.0409 0.5361 0.8436 0.1025
0.0557 0.8484 0.5403 0.4629
0.9823 0.1118 0.1505 0

0 0 0 1.0000

T

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

0.0644 0.5163 0.8040 0.2877
0.0914 0.6320 0.1269 0.7590
0.8250 0.3423 0.3748 0.2484
0.5539 0.4656 0.4438 0.5286

S

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟− −⎝ ⎠

. 

The observer gains achieved: 

1
4.2547 0.0415

,
3.4283 2.0069

L
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
3

0.2161 0.0133
0.8040 0.1269

L
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 

4
3565 1688
1.50 2.40

L ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

. 

The fault estimation filter matrices: 

50.8661 0.0397
0.0458 50.9297cA

− −⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, 

3220.58 12.16
10

0.89 202.23cB
−⎛ ⎞

= ×⎜ ⎟
⎝ ⎠

, 

21.647 1.707
10

0.005 1.869cC −− −⎛ ⎞
= ×⎜ ⎟− −⎝ ⎠

, 

7.2599 7.3121
0.0052 7.5694cD

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. 

Finally, the static gain matrix is given as follows: 

1.0196 0.0003
0.0003 1.0198sF

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

. 

The simulation result for the first actuator fault is shown 
in Fig. 4. The disturbances are simulated by filtered 

white noise. The actuator fault is 
0.1

( )
0

f t ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 since 

 

Fig. 4. The evolution of the norm mean of the residuals 
r1 and r2 when the first actuator occurs a fault 3s 
after the simulation starts. 
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and f = 0, elsewhere. It can be seen that r2 does not have 
any clear change when the fault occurs since it is 
decoupled from the faults. The residual r1 is sensitive to 
the fault and the small fault is detected just 1s after the 
fault occurs. In Fig. 5, the case for the fault occurring in 

the second actuator 
0.0

( )
0.1

f t ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 is shown. 

 

 
Fig. 5. The evolution of the norm mean of the residuals 

r1 and r2 when the second actuator occurs a fault 
5s after the simulation starts. 

 

 
Fig. 6. The fault estimation result by the designed filter F. 
 

 
Fig. 7. The fault estimation results improved by the 

static matrix Fs.  

The fault signal and estimated fault by the filter F and 
Fs are shown in Figs. 6 and 7, respectively. It can be seen 
that the fault estimation filter achieves a good estimation 
performance. 

 
5. CONCLUSIONS 

 
Based on a model decomposition algorithm proposed 

in this paper, a novel fault detection system is designed 
such that only the residuals with the same dimension as 
the dimension of the faults are sensitive to the faults. The 
rest residuals are totally decoupled from the faults. A 
lower order fault estimation filter design approach is 
proposed. In addition, the design of a static fault 
estimation matrix is presented for further improving the 
fault estimation precision. The effectiveness of the 
proposed methods are validated by a simulation example. 

 
APPENDIX 

Lemma 6: The considered system in (19) meets the 
specifications: 

( ( ) ) ( ( ) ) 0k kG j I G j Iω ω ∗Π < , 

where ( )kG jω  can be replaced by any ( )
fe dG jω  or 

( ),
fe fG jω  if there exist matrices X, Y, Z, M, G, H, 

L n n×∈R  and ,k k nP Q H∈  satisfying 0kQ >  and 

'0
( )

0 0
k

k k k kHe R
Ξ⎛ ⎞

+ Π <⎜ ⎟
⎝ ⎠

H H L , 

where (2 ) (2 )yn n nR × +∈R  is a multiplier need to be 
chosen, kΞ  is defined as follows 

1 2
,k k c k

k c k k

Q P j Q
P j Q Q

ω
ω ω ω

− +⎛ ⎞
Ξ = ⎜ ⎟− −⎝ ⎠

 1 2( )
2c

ω ωω +
=  

and 

0 0
: 0k k

k I

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

H F

J

, :k

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

W

L E

J

, :
X I
Z Y

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

W , 

: e e

e

A X A
M YA GC

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

E , ( ): H LC= − −G , 

where the lower index k can be replaced by d for 
disturbance attenuating cases and the corresponding 
matrices are as follows: 

2 0 ,
0f

I
I

β⎛ ⎞
Π = ⎜ ⎟⎜ ⎟

⎝ ⎠
( ) ,d d

d e e dB YB GD= +F :d dLD= −J  

and the lower index k can be replaced by f or attenuating 
the fault f to the estimated error ef case: 

2

0
,

0d
I

Iγ
⎛ ⎞

Π = ⎜ ⎟⎜ ⎟−⎝ ⎠
( ): ,f f

f e e fB YB GD= +F : .f fI LD= −J  

Proof: This lemma is a corollary of Theorem 2 in [18]. 
Lemma 7 [20]: Let matrices ,n mB ×∈C k nC ×∈C  

and n nQ Q∗ ×= ∈C  be given. Then the following 
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statements are equivalent: 

(i) There exists a matrix X satisfying 

( ) 0.BXC BXC Q
∗

+ + <  

(ii) The following two conditions hold 

0,B QB
⊥ ⊥∗

<  (50) 

0.C QC
∗⊥ ∗⊥∗

<  (51) 
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