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Stability and Stabilization for Discrete-time Markovian Jump Fuzzy Systems 

with Time-varying Delays: Partially Known Transition Probabilities Case 
 

Min Kook Song, Jin Bae Park*, and Young Hoon Joo 

 

Abstract: This paper focuses on the stability analysis and the stabilization problem for a discrete-time 

Markovian jump fuzzy systems (MJFSs) with time-varying delays and partially known transition prob-

abilities. These systems are made more general, by relaxing the traditional assumption in MJFSs that 

all the transition probabilities must be completely known. The class of MJFSs considered is described 

by a fuzzy model composed of two levels: a crisp level that represents the jumps and a fuzzy level that 

represents the system nonlinearities. Based on a stochastic Lyapunov function, stability and stabiliza-

tion conditions for the MJFSs with time-varying delays are derived in both the case of completely 

known transition probabilities and the case of partially known transition probabilities. The derived 

conditions are represented in terms of linear matrix inequalities (LMIs). Finally, a numerical example 

is used to illustrate the effectiveness of the proposed theorem. 

 

Keywords: Linear matrix inequality (LMI), Markovian jump fuzzy systems, probability transition 

matrix, time varying delays. 

 

1. INTRODUCTION 

 

Many practical systems have variable parameters and 

structures subject to random changes, which may result 

from abrupt phenomena such as component failures or 

repairs, changing of subsystem interconnections, and 

abrupt environmental disturbances [1]. These can be 

modeled as hybrid systems with two components in the 

state vector. The first component varies continuously and 

is referred to as the continuous state of the system. The 

second component varies discretely and is referred to as 

the mode assumed by the system. Markovian jump 

systems (MJSs) are a special class of hybrid systems in 

which, the random jumps in system parameters are 

represented by a Markov process that using values with 

in a finite set. 

Over the past decade, some important control issues 

have been studied for Markovian jump linear systems 

(MJLSs) because of the difficulty inherent in the analysis 

of Markovian jump nonlinear systems (MJNLSs) [1,2]. 

However, if nonlinearity is not distinguished from uncer-

tainty, the obtained results are in general conservative. 

Recently, a fuzzy-model-based control technique for a 

class of MJNLS was introduced in [3,4] and [5]. In [4], 

Natache developed a systematic technique to obtain a 

robust stochastic fuzzy controller that guarantees the 
2

L  

gain of the closed-loop system with respect to external 

inputs equal to or less than a prescribed value. Wu 

investigated the robust fuzzy control problem of uncer-

tain discrete-time MJFSs without mode observations in 

[5]. Despite these efforts, the design of a controller for 

MJFSs that can handle model uncertainties has been one 

of the most challenging problems in recent decades. 

It is well known that time-delays occur frequently in 

many practical systems, and they are a significant source 

of instability and poor performance [6,7]. The transition 

probabilities of the jumping process are also important 

yet almost all of the issues on MJFSs have been 

investigated assuming complete knowledge of transition 

probabilities. However, the likelihood of obtaining such 

complete knowledge is questionable, and the cost is 

likely to be high in most cases. To the best of the 

author’s knowledge, the fuzzy control problem for 

discrete MJFSs with time-delay has not been fully 

investigated. This lack suggests a need for the significant 

and challenging investigation of more general MJFSs in 

which transition probabilities are partially known and 

time-varying delays are included.  

In this paper, we are interested in the stability analysis 

and stabilization synthesis problems for a class of MJFSs 

with time-varying delays in which transition probabilities 

are partially known. A fuzzy controller is constructed so 

that the MJFSs with time-varying delays can be stabilized. 

An advancement of the delay-range-dependent concept is 

introduced here and less conservative stability and 
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stabilization conditions for the underlying systems are 

derived by constructing more appropriate Lyapunov 

functional for discrete-time MJFSs in both completely 

and partially known transition probabilities cases. The 

derived conditions are represented in terms of linear 

matrix inequalities (LMIs). Finally, a numerical example 

is presented to illustrate the effectiveness of the 

developed method. 

Notations: :
n

R n= −  dimensional real space, :
T

A =  

Transpose of matrix A, 0,  ( . 0) :P resp P =� ≺ positive 

(resp., negative-definite) symmetric matrix, and * :=  

the transposed element in symmetric positions. 

 

2. PROBLEM FORMULATION AND 

PRELIMINARIES 

 

Consider that a given probability space ( , , )Ω F P -Ω  

is the sample space, where F  is the algebra of events, 

and P  is the probability measure defined on .F  We 

consider a discrete-time MJNLS over the space ( , ,Ω F
 

,)P  which can be described by the following fuzzy 

model: 

1 i1 p ip

0

1

IF z (k) is and  and z (k) is 

THEN ( 1) ( ( )) ( ) ( (

:  

)) ( )

( ( )) ( ( )),

i

i

i

i
x k A k x k B k u k

A k x k

R

k

η η

η τ

Γ Γ

+ = +

+ −

�

 (1) 

where ( ) n

x k ∈�  constitutes the state vector; ( )u k ∈

m

�  is the control input, ,  {1,2, , ,}
i R

R i r∈ = �I  is the 

i th fuzzy rule, ( ),
h
z k {1,2, , },

P
h p∈ = �I  is the h th 

premise variable, ,
ih

Γ ( , ) ,
R P

i h ∈ ×I I
 

is the fuzzy set 

of ( )
h
z k  in Ri, and the system matrices of the i th rule 

are denoted by 
0 1

(A ,  B , A ),
i i i

which are assumed 

known and as some constant matrices of compatible 

dimensions. The time delay is considered to be time-

varying and has lower and upper bounds, 
1

0 ( )kτ τ< �  

which is very common in practice. The random form 

process ( )kη  is a discrete-time Markovian process with 

values in a finite space state denoted by {1,2,=T

, }.� N  The set T  comprises the operation modes of 

the system. The transition probabilities for the process 

( )kη  are defined as 

( ( 1) | ( ) ,)
ls

k s k lη η π+ = = =Pr  

where πls is the transition probability from mode l at time 

k to mode s at time k + 1, and where 0,
ls

π >

1

1,
ls

s

π

=

=∑
N

, .l s∀ ∈T  The transition probabilities matrix is defined 

by 

11 12 1

21 22 2

1 2

.

π π π

π π π

π

π π π

⎡ ⎤
⎢ ⎥…⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

� � �

�

�

�

N

N

N N NN

 

The set T  contains �  modes of system (1) for 

.( )k lη = ∈T  In addition, the transition probabilities of 

the Markov chain in this paper are considered to be 

partially known, namely, some elements in matrix π are 

time-invariant but unknown. We denote 

{s: if  is known},
l

ls
π=

K
T  (2) 

{s: if  is unknown}.
l

ls
π=

UK
T  (3) 

If ,0
l
≠

K
T  it is described as 

1
{ , , ,}, 1l l l

m
m= ≤ ≤� �

K
T E E  (4) 

where l

m
E  represents the m th element with the index 

l

m
E  in the l th row of matrix π.  

Let the mode at k be l. Using the center-average 

defuzzifer, product inference, and singleton fuzzifier, (1) 

is inferred as 

( )(

)

0

1

1

( 1) ( ( )) ( ) ( )

              ( ( )) ( ) ( ( )) ( ( )) ,

r

i i

i

i i

x k z k A k x k

B k u k A k x k k

θ η

η η τ

=

+ =

+ + −

∑
 (5) 

where  

1

( ( )) ( ( )) / ( ( )),
r

i i i

i

z k w z k w z kθ

=

= ∑  

( ( ))
i

w z k =

1

( ( )),
ih

p

h

h

z kµ
Γ

=

∏  

and ( ( )) :
ih h

z kµ
Γ [0,1]hz

U ⊂ →� �  is the membership 

function of zh(k) on the compact set .

hz
U  Some basic 

properties are ( ( )) 0
i
z kθ ≥  and 

1

( ( )) 1.
r

i

i

z kθ

=

=∑
 

The 

initial condition of system (1) is given by 

2 2
( ) ( ), , 1, ,0,x k k kϕ τ τ= = − − + �  (6) 

where ( )ϕ i  is a continuous vector-valued initial func-

tion. 

In the following discussion, for the convenience of 

notations, we will denote 

0 , 0

1

1 , 1

1

,

1

( ) ( ( )) ( ( )),

( ) ( ( )) ( ( )),

( ) ( ( )) ( ( )).

r

i l i i

i

r

i l i i

i

r

i l i i

i

A k z k A k

A k z k A k

B k z k B k

θ η

θ η

θ η

=

=

=

=

=

=

∑

∑

∑

 

Then, the purpose of this paper is to determine the 

feedback gains ( )j RK j∈ I  such that the resulting 

closed-loop system is asymptotically stable via the 

mode-independent fuzzy controller 

1 i1 p ip
: IF z (k) is and  and z (k) is 

THEN ( ) ( ( )) ( ), ,

i

j R

R

u k K k x k jη

Γ Γ

= ∈

�

I
 

whose defuzzified output is given by 
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1

,

( ) ( ( )) ( ( )) ( )

( ) ( ).

r

j j

j

j l

u k z k K k x k

K k x k

θ η

=

=

=

∑
 (7) 

With the mode-independent fuzzy control law (7), the 

overall closed-loop MJFS when ( )k lη = ∈T  can be 

written as 

( )( )0 , , ,

1 ,

( 1) ( ) ( ) ( )

( ) ( ( )).

i l i l j l

i l

x k A k B k K k x k

A k x k kτ

+ = +

+ −

 (8) 

Let 
0 0

( , , )x k x η  denote the trajectory of the state x(k) 

from the initial state x(0) = x0 and the initial mode (0)η  

=
0
.η  To obtain the main results for the feedback 

controller of the delay-dependent MJFSs, we first 

introduce the following definitions of stochastic stability 

of the Markovian jump systems, their proofs can be 

found in the cited references [8,9]. 
 

Definition 1: The unforced Markovian Jump Fuzzy 

system of (8) is said to be stochastically stable if, for any 

initial state x0 and initial mode 
0

,η ∈T  there exists a 

matrix 0
T

= >� �  satisfying 

0 0 0 0 0 0

0

lim ( , , ) ( , , ) | , ,

N
T

N
k

E x k x x k x xη η η
→∞

=

⎧ ⎫⎪ ⎪
< ∞⎨ ⎬

⎪ ⎪⎩ ⎭
∑ �  (9) 

where { }E •  stands for the mathematical expectation. 

 

Definition 2: The unforced MJFS (8) is said to be 

stochastically stabilizable if for any initial state x0 and 

initial mode 
0

,η ∈T  there exists a fuzzy controller of 

the form (7) such that the nominal closed-loop MJFS of 

(8)is stochastically stable. 

In this paper, the problem under consideration is to 

design a fuzzy controller of the form (7) for the MJFSs 

with time-varying delays such that the closed-loop 

MJFSs (8) is stochastically stable. Further, both MJFSs 

for which transition probabilities are completely known 

and for which they are partially known are considered. 

 

3. DELAY-RANGE DEPENDENT STABILITY AND 

FUZZY CONTROLLER DESIGN 

 

3.1. Completely known transition probability case 

In this section, a new delay-range dependent stochastic 

stability condition is developed and a bounded real 

lemma for MJFSs with time varying delays is established.  

The following theorem presents delay-range depend-

ent results in terms of LMIs. In addition, it gives the new 

stability criterion for system (1) with completely known 

transition probabilities, which is dependent not only on 

the delay upper bound τ2, but also on the delay range 

2 1
: .

r
τ τ τ= −  

 

Theorem 1: Consider the unforced MJFS (8) with u(k) 

= 0 and known transition probabilities. The correspond-

ing system is stochastically stable if there exist matrices

,

0,
i l
P � ,

R
i∈ I ,l∈T

1
0,

i
Q �

2
0,Q �

3
0,Q �

1
0,Y �

2
0,Y � M ,

ei
N ,

ei
S ,
ei

G ,
ei

e 1,  2,  3,  4,=  such that the 

following LMIs hold for each l∈T  

11

,

21 22

*
 0   , ,,

itv l R
i g h

Γ⎡ ⎤
Γ = ∈⎢ ⎥Γ Γ⎣ ⎦

≺ I

 (10) 

where 

11 12 13 14

22 23 24

11

33 34

44

0
,

0 0

0 0 0

Ω Ω Ω Ω⎡ ⎤
⎢ ⎥Ω Ω Ω⎢ ⎥Γ =
⎢ ⎥Ω Ω
⎢ ⎥

Ω⎢ ⎥⎣ ⎦

 

22 2 2 2 1 1 2 ,

1

, , , , , , ,
ls g s

s

diag Y Y Y Y Y Y Pπ

=

⎧ ⎫⎛ ⎞⎪ ⎪
Γ = − − − − − − −⎜ ⎟⎨ ⎬

⎪ ⎪⎝ ⎠⎩ ⎭
∑
N

21
Γ =

 

( ) ( )

( ) ( )

1 1 1 2 1 3 1 4

1 2 3 4

1 2 3 4

1 2 3 4

0 , 1 1 , 1

2 0 , 2 2 1 , 2

0 , , 1 , ,

1 1

0 0

0 0

0 0

T T T T
i i i i

T T T T
r i r i r i r i

T T T T
r i r i r i r i

T T T T
r i r i r i r i

r i l r i l

i l i l

T T
i l ls g s i l ls g s

s s

M M M M

S S S S

N N N N

G G G G

A I Y A I Y

A I Y A I Y

A P A P

τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ

τ τ

π π

= =

⎡
⎢
⎢
⎢
⎢

− −

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣
∑ ∑
N N

,

⎤
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

11 , 2 1 1 2 3 1 1
( ,1) T

i l i i i
P Q Q Q M Mτ τΩ = − + − + + + + +  

13 1 1 3
,

T

i i i
M S MΩ = − + +  

14 1 1 4
,

T

i i i
N G MΩ = − − +  

22 1 2 2 2 2 2 2
,

T T T

h i i i i i i
Q S N G S N GΩ = − − + + − + +  

23 2 2 3 3
,

T T T

i i i i i
M S S N GΩ = − + − + +

24 2 2 4 4 4
,

T T T

i i i i i
N G S N GΩ = − − + + +  

33 2 3 3 3 3
,

T T

i i i i
Q M S M SΩ = − − + − +  

34 3 3 4 4
,

T T

i i i i
N G M SΩ = − − − +  

44 3 4 4 4 4
.

T T

i i i i
Q N G N GΩ = − − − − −  

Proof: First, in order to cast our model into the 

framework of the Markov processes, we define a new 

process {( , ( ), 0)}
k
x k kη ≥  by 

).( ()
k
x o x k o= +

 

Then, we can verify that 
2

{( , ( ), )
k
x k kη τ≥  is a 

Markov process with initial state 
0

( ( ), ).ϕ ηi  Now for 

2
,k τ≥  let mode at time k be 1, i.e., ( ) , .k l lη = ∈T  

Choose a stochastic Lyapunov function as 

1 2

3 4

5

( ( ), ( ), ) ( ( ), ( ), ) ( ( ), ( ), )

( ( ), ( ), ) ( ( ), ( ), )

( ( ), ( ), )

V x k k k V x k k k V x k k k

V x k k k V x k k k

V x k k k

η η η

η η

η

= +

+ +

+

 (11) 
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with 

1

1

( ( ), ( ), ) ( ) ( ( )) ( ( )) ( ),
r

T

i i

i

V x k k k x k z k P k x kη θ η

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

2 1

( ) 1

( ( ), ( ), ) ( ) ( ( )) ( ),
k r

T

i i

o k k i

V x k k k x o z o Q x o

τ

η θ

= − =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑

1 2

3

1 1

2 3

( ( ), ( ), )

( ) ( ) ( ) ( ),
k k

T T

o k o k

V x k k k

x o Q x o x o Q x o
τ τ

η

− −

= − = −

= +∑ ∑
 

1

2

4

1

1

1 1

( ( ), ( ), )

( ) ( ( )) ( ),
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T

i i

h o k h i

V x k k k

x o z o Q x o

τ

τ

η

θ
−

=− + = + =

⎛ ⎞
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⎝ ⎠
∑ ∑ ∑

1

2

2

1 1

5 1

1 1

2

( ( ), ( ), ) ( ) ( )

                            ( ) ( ),

k
T

h o k h

k
T

h o k h

V x k k k y o Y y o
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∑ ∑
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where ( ( )) ( ( )) 0,
T

i i
P k P kη η= �

1 1
0,

T

i i
Q Q= �

2 2

T
Q Q=  

0,�
3 3

0,
T

Q Q= �
1 1

0,
T

Y Y= �  and 
2 2

0
T

Y Y= �  are to 

be determined. 

Let A  be the weak infinitesimal generator of the 

random process. The weak infinitesimal operator A  

[10] of the Markov process { , ( )}
k
x kη  is given by 

[ ]1 1

( , ( ) , )

( , | , ) ( , ) .

k

k k k k k k

V x k l k

E V x x V x

η

η η η
+ +
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Then, for each ( ) ,k lη = ,l∈T  it can be seen that 

1

1 1

1

( , ( ) , )
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∑ ∑
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3
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2
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2 1 1

1

1

1 1
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( ) ( ) ( ( )) ( )
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k

r
T

i i

i

k r
T
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o k i

V x k l k

x k z k Q x k

x o z o Q x o

τ

τ

η

τ τ θ
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=
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= − + =

=

⎛ ⎞
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⎝ ⎠
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− ⎜ ⎟
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∑

∑ ∑

A

 

1

2

2

1
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The following equations are true for any matrices Mi, 

Ni, Si, and Gi, ,
R

i∈ I  with appropriate dimensions 

1
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1
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=

− −

= −

⎡ ⎤
× − − − − =⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

 

1

2

1

1

1 2

2 ( ) ( ( ))

( ) ( ) ( ) 0,

r
T

i i

i

k

o k

k z k G

x k x k y o
τ

τ

ζ θ

τ τ

=

− −

= −

⎡ ⎤
× − − − − =⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

 

where 

(1 2( ) ( ) ( ( )) ( ) ) ,
T

T T T T
k x k x k k x k x kζ τ τ τ⎡ ⎤= − − −⎣ ⎦

2 3 4
1

,

T
T T T T

i i i i
i

M M M M M⎡ ⎤=
⎣ ⎦

 

2 3 4
1

,

T
T T T T

i i i i
i

N N N N N⎡ ⎤=
⎣ ⎦

 

2 3 4
1

,

T
T T T T

i i i i
i

S S S S S⎡ ⎤=
⎣ ⎦

 

2 3 4
1

.

T
T T T T

i i i i
i

G G G G G⎡ ⎤=
⎣ ⎦

 

On the other hand, the following equations are also true: 
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1

2

1

2

1

( )

1 1

( )

( ) ( )

( ) ( ) ( ) ( ),

k

T

o k

kk k

T T

o k o k k

y o Y y o

y o Y y o y o Y y o

τ

τ

ττ

τ τ

−

= −

−−

= − = −

= +

∑

∑ ∑

 

2 1

1

2

2 2

( )

2 2

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

k k
T T

o k o k

k k k

T T

o k k o k

y o Y y o y o Y y o

y o Y y o y o Y y o

τ τ

τ τ

τ τ

= − = −

− −

= − = −

=

+ +

∑ ∑

∑ ∑

 

Then calculating the weak infinitesimal operator of

( , ( ), )
k

V x k kηA  the solution of (8) with u(k) = 0 yields, 

( , ( ) , )
k

V x k l kη =A  

0 ,

1 1

( ) ( ) ( ( 1)) ( ( 1))
r

T T

i l ls i i

s i

x k A k z k P kπ θ η

= =

⎛ ⎛ ⎞
+ +⎜ ⎜ ⎟⎜

⎝ ⎠⎝
∑ ∑
N

�  

0 ,

1

( ) ( ( )) ( ( )) ( )
r

i l i i

i

A k z k P k x kθ η

=

⎞
× − ⎟

⎠
∑  

0 ,

1 1

2 ( ) ( ) ( ( 1)) ( ( 1))

r
T T

i l ls i i

s i

x k A k z k P kπ θ η

= =

⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠
∑ ∑
N

 

)

1 ,

1 ,

1 1

1 ,

( ) ( ( ))

( ( )) ( ) ( ( 1))

( ( 1)) ( ) ( ( ))

i l

r

T T

i l ls i

s i

i i l

A k x k k

x k k A k z k

P k A k x k k

τ

τ π θ

η τ

= =

× −

⎛
+ − +⎜

⎝

× + −

∑ ∑
N

 

2 1 1

1

1

1

( 1) ( ) ( ( )) ( )

( ( )) ( ( ( ))) ( ( ))

r

T

i i

i

r

T

i i

i

x k z k Q x k

x k k z k k Q x k k

τ τ θ

τ θ τ τ

=

=

⎛ ⎞
+ − + ⎜ ⎟

⎝ ⎠

⎛ ⎞
− − − −⎜ ⎟

⎝ ⎠

∑

∑

 

2 1 2 1

3 2 3 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

T T

x k Q x k x k Q x k

x k Q x k x k Q x k

τ τ

τ τ

+ − − −

+ − − −

 

2

1

( ) 1

2 1 1 1

1

1 2 2

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k k

T T

o k

k

T T

o k k

y k Y y k y o Y y o

y o Y y o y k Y y k

τ

τ

τ

τ

τ τ

τ

− −

= −

− −

= −

+ − −

− +

∑

∑

 

1

2

1

1( ) 1

2 2

( )

1

2

1

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ( ))

kk k

T T

o k o k k

k r
T T

i i

o k i

y o Y y o y o Y y o

y o Y y o k z k M

ττ

τ τ

τ

ζ θ

− −− −

= − = −

−

= − =

− −

− +

∑ ∑

∑ ∑

 

1

1

1
( ) ( ) ( )

k

o k

x k x k y o

τ

τ

−

= −

⎡ ⎤
× − − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

1

2 ( ) ( ( ))

r

T

i i

i

k z k Nζ θ
=

+ ∑  

2

( ) 1

2( ( )) ( ) ( )
k k

o k

x k k x k y o

τ

τ

τ τ

− −

= −

⎡ ⎤
× − − − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

1

1

1

1

( )

2 ( ) ( ( ))

( ) ( ( )) ( )

r
T

i i

i

k

o k k

k z k S

x k x k k y o
τ

τ

ζ θ

τ τ

=

− −

= −

+

⎡ ⎤
× − − − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

 

2

1

( ) 1

2

2 ( ) ( ( ))

( ( )) ( ) ( ) .

r
T

i i

i

k k

o k

k z k G

x k k x k y o
τ

τ

ζ θ

τ τ

=

− −

= −

+

⎡ ⎤
× − − − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

 

Now, we denote 

,

1

( ) ( ( )) ( ( )),
r

i l i i

i

P k z k P kθ η

=

=∑   

1

,( ) ( ( ))
r

i i i

i

M k z k Mθ

=

=∑   

1

( ) ( ( )) ,
r

i i i

i

N k z k Nθ

=

=∑  

1

,( ) ( ( ))
r

i i i

i

S k z k Sθ

=

=∑  

1

.( ) ( ( ))
r

i i i

i

G k z k Gθ

=

=∑  

Therefore, we obtain 

( ( ), ( ))V x k kηA  

1

1 2
( )[ ( ) ( ) ( ) ( )

T T

l l i i
k k k M k Y M kζ τ

−

Φ +Ψ +�  

1 1

2 1 2 2 1 2
( ) ( ) ( ) ( ) ( ) ( )

T T

i i i i
S k Y S k N k Y N kτ τ τ τ

− −

+ − + −  

1

2 1 1
( ) ( ) ( )] ( )

T

i i
G k Y G k kτ τ ζ

−

+ −  

1

1

1

2 2

2

[ ( ) ( ) ( ) ]

[ ( ) ( ) ( )]

k

T T

i

o k

T

i

k M k y o Y Y

M k k Y y o

τ

ζ

ζ

−

−

= −

− +

× +

∑
 

1

2

1
1

2 2

( )

2

( ) 1
1

2 2

2

[ ( ) ( ) ( ) ]

[ ( ) ( ) ( )]

[ ( ) ( ) ( ) ]

[ ( ) ( ) ( )]

k

T T

i

o k k

T

i

k k

T T

i

o k

T

i

k S k y o Y Y

S k k Y y o

k N k y o Y Y

N k k Y y o

τ

τ

τ

τ

ζ

ζ

ζ

ζ

− −

−

= −

− −

−

= −

− +

× +

− +

× +

∑

∑

 (12) 

2

( ) 1
1

2 2

2

[ ( ) ( ) ( ) ]

[ ( ) ( ) ( )],

k k

T T

i

o k

T

i

k G k y o Y Y

G k k Y y o

τ

τ

ζ

ζ

− −

−

= −

− +

× +

∑
 

where 

1 2

3

2

3

( ) ( ) 0 0

* ( ) 0 0
( )

* * 0

* * *

l l

l

l

k k

k
k

Q

Q

Φ Φ⎡ ⎤
⎢ ⎥Φ⎢ ⎥Φ =
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦
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with 
 

1 0 , , 0 , ,

1

2 1 1 3 2

2 1 0 , 1 0 ,

2 0 , 1 0 ,

( ) ( ) ( 1) ( ) ( )

              ( 1) ( )

              ( )( ( ) ) ( ( ) )

              ( ( ) ) ( ( ) ),

T

l i l ls i s i l i l

s

i

T T

i l i l

T T

i l i l

k A k P k A k P k

Q k Q Q

A k I Y A k I

A k I Y A k I

π

τ τ

τ τ

τ

=

⎛ ⎞
Φ = + −⎜ ⎟

⎝ ⎠

+ − + + +

+ − − −

+ − −

∑
N

 

2 0 , , 1 ,

1

2 1 0 , 1 1 ,

2 0 , 2 1 ,

( ) ( ) ( 1) ( )

              ( )( ( ) ) ( )

              ( ( ) ) ( ),

T

l i l ls i s i l

s

T

i l i l

T

i l i l

k A k P k A k

A k I Y A k

A k I Y A k

π

τ τ

τ

=

⎛ ⎞
Φ = +⎜ ⎟

⎝ ⎠

+ − −

+ −

∑
N

 

3 1 , , 1 ,

1

1 2 1 1 , 1 1 ,

2 1 , 2 1 ,

( ) ( ) ( 1) ( )

              ( ( )) ( ) ( ) ( )

              ( ) ( ).

T

l i l ls i s i l

s

T

i i l i l

T

i l i l

k A k P k A k

Q k k A k Y A k

A k Y A k

π

τ τ τ

τ

=

⎛ ⎞
Φ = +⎜ ⎟

⎝ ⎠

− − + −

+

∑
N

 

 

The following equations are true for any matrices 

1
0,Y �

2
0,Y �  so then the last four parts in (12) are all 

less than 0. Thus, if  

1 1

1 2 2 1 2

1 1

2 1 2 2 1 1

( )

( ) ( ) 0,

T T

l l i i i i

T T

i i i i

M Y M S Y S

N Y N GY G

τ τ τ

τ τ τ τ

− −

− −

Φ +Ψ + + −

+ − + − ≺

 

which is equivalent to (13) by Schur complements, then 
2

( , ( ), ) ( )
k

V x k k x kη < − � �A ε  for a sufficiently small

0,>ε  and ( ) 0.x k ≠  

 

1 2

2 1 2

2 1 2

2 1 1

( ) ( ) * * * *

( ) * * *

( ) 0( ) ( ) 0 * *

( ) ( ) 0 0 *

( ) ( ) 0 0 0

l l

T

i

T

l i

T

i

T

i

k k

M k Y

k S k Y

N k Y

G k Y

τ

τ τ

τ τ

τ τ

⎡ ⎤Φ +Ψ
⎢ ⎥

−⎢ ⎥
⎢ ⎥

Γ = − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥− −⎣ ⎦

�

≺

 (13) 

where 

( ) ([ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] ).

l i i i i

i i i i

i i i i

T

i i i i

k M k S k N k G k

M k S k N k G k

M k S k N k G k

M k S k N k G k

Ψ = − + +

− + − −

+ − + +

− + − −
 

Now, we denote 
 

11

21 22

31 1

41 2

51 55

( ) * * * *

( ) ( ) * * *

( ) ( ) 0 * * 0,

( ) 0 0 *

( ) 0 0 0 ( )

l

k

k k

k k Y

k Y

k k

Γ⎡ ⎤
⎢ ⎥Γ Γ⎢ ⎥
⎢ ⎥Γ = Γ −
⎢ ⎥
Γ −⎢ ⎥
⎢ ⎥Γ Γ⎣ ⎦

≺  

 (14) 

{ }22 2 2 2 1
diag) , , ,( ,k Y Y Y YΓ = − − − −

 

11

, 2 1 1 2 3

1 2 3

( ) ( )

{ ( ) ( 1) ( )

},

l

i l i

i

k k

diag P k Q k Q Q

Q Q Q

τ τ

Γ = Ψ

+ − + − + + +

− − −

21 1 2 1

2 1 2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

i i

T
T T

i i

k M k S k

N k G k

τ τ τ

τ τ τ τ

⎡Γ = −⎣

⎤− − ⎦

 

31 2 1 0 , 1

2 1 1 , 1

( ) ( )( ( ) )

( )( ( ) ) 0 0 ,

i l

i l

k A k I Y

A k I Y

τ τ

τ τ

⎡Γ = − −⎣

⎤− − ⎦

41

2 0 , 2 2 1 , 2

( )

( ( ) ) ( ( ) ) 0 0 ,
i l i l

k

A k I Y A k I Yτ τ

Γ =

⎡ ⎤− −⎣ ⎦

 

51 0 , ,

1

1 , ,

1

( ) ( ) ( 1)

( ) ( 1) 0 0 .

T

i l ls i s

s

T

i l ls i s

s

k A k P k

A k P k

π

π

=

=

⎡ ⎛ ⎞
Γ = +⎢ ⎜ ⎟

⎢ ⎝ ⎠⎣

⎤⎛ ⎞
+ ⎥⎜ ⎟

⎥⎝ ⎠ ⎦

∑

∑

N

N  

55 ,

1

( ) ( 1) ,
ls i s

s

k P kπ

=

⎛ ⎞
Γ = − +⎜ ⎟

⎝ ⎠
∑
N

 

Now, some simple manipulations give 

1 1 1

,

( ) ( ( )) ( ( 1))

            ( ))) .( (

r r r

l i g

i g h

h igh l

k z k z k

z k k

θ θ

θ τ

= = =

Γ = +

× − Γ

∑∑∑
 (15) 

By the Schur complements, it follows from (10) that, for 

each l∈T  

,

0,
igh l

Γ �  , , .
R

i g h∈ I  (16) 

Then, from (15), we have that 

( , ( ), ) 0.
k

V x k kηA �  (17) 

Noting (13), we have 

1
( , ( ), ) ( ) ( ),

T

k
V x k k k kη α ζ ζ−A �  (18) 

where 
1 min

min( ( ( ))) 0.
l
kα λ= −Γ >  By Dynkin’s formula, 

we have for each ( ) ,k lη = ∈T  

0

0

1

0

[ ( ( ), ( ), ) ( , )]

( ( ), ( ), )

( ) ( ) .

k

k

k
T

k

E V x k k k V

E V x k k k

E k k

η φ η

η

α ζ ζ

=

=

−

⎧ ⎫⎪ ⎪
= ⎨ ⎬

⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪
− ⎨ ⎬

⎪ ⎪⎩ ⎭

∑

∑

A

�

 (19) 

From (19), we obtain that 1,T �  

[ ]{

[ ]}

[ ]{ }

10

1

1
( ) ( ) ( ( ),0)

( ( 1), 1)

1
( ( ),0) ,

k
T

k

E k k E V k

E V k k

E V x k

ζ ζ ζ
α

ζ

α

=

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

− + +

∑ �

�

 



Min Kook Song, Jin Bae Park, and Young Hoon Joo 

 

142 

which implies that 

[ ]{ }

1 1

1

( ) ( ) ( ) ( )

1
( ( ),0) .

k k
T T

k k

E x k x k E k k

E V k

ζ ζ

ζ
α

= =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∞

∑ ∑�

� �

 

Thus, the system is stochastically stable, based on 

Definition 1. 

Now let us consider the stabilizing controller design. 

From the above development, it can be seen that the 

system with time-varying delays and completely known-

transition probabilities is simply a general case of MJFSs. 

 

Theorem 2: Consider the MJFSs (8) with completely 

known probabilities (2). There exists a controller (7) such 

that the resulting closed-loop systems are stochastically 

stable if there exist matrices 
,

0,
i l

X � ,
R

i∈ I ,l∈T

1
0,

i
R �

2
0,R �

3
0,R �

1
0,T �

2
0,T � 0,Z >

,

,
i l

W

,
ei

M ,
ei

N ,
ei

S ,
ei

G 1,2,3, 4,e =
R

i∈ I  such that 

11

21 22

, 31 33

41 44

51 55

* * * *

* * *

0 * * 0,

0 0 *

0 0 0

ijgh l

Λ⎡ ⎤
⎢ ⎥Λ Λ⎢ ⎥
⎢ ⎥Λ = Λ Λ
⎢ ⎥
Λ Λ⎢ ⎥
⎢ ⎥Λ Λ⎣ ⎦

≺  (20) 

1 , ,
R

i j r g h≤ ≤ ≤ ∈ I  

where 

11 12 13 14

22 23 24

11

33 34

44

0
,

0 0

0 0 0

⎡ ⎤Ω Ω Ω Ω
⎢ ⎥

Ω Ω Ω⎢ ⎥Λ =
⎢ ⎥Ω Ω
⎢ ⎥

Ω⎢ ⎥⎣ ⎦

� � � �

� � �

� �

�

 

12 1
,

T
T T T T

i r i r i r i
M S N Gτ τ τ τ⎡ ⎤Λ = ⎣ ⎦  

{ }22 2 2 2 1
,diag T T T TΛ = − − − −  

{ }

33 1

44 2

55 ,1 ,2 ,,

,

,

,, ,

T

T

g g g

T Z Z

T Z Z

diag X X X

Λ = − −

Λ = − −

Λ = � N

 

31 0 , , ,

0 , , , 2 1 ,

( )

( ) 0 0 ,

r i l i l j l

r j l j l i l i l

A Z B W Z

A Z B W Z A Z

τ

τ τ

⎡Λ = + −⎣

⎤+ + − ⎦  

41 2 0 , , ,

2 0 , , , 2 1 ,

( )

( ) 0 0 ,

i l i l j l

i l j l i l i l

A Z B W Z

A Z B W Z A Z

τ

τ τ

⎡Λ = + −⎣

⎤+ + − ⎦  

1 0 , , , 0 , , ,

2 0 , , , 0 , , ,

51

0 , , , 0 , , ,

(( ) ( ))

(( ) ( ))

(( ) ( ))

l i l i l j l j l j l i l

l i l i l j l j l j l i l

l i l i l j l j l j l i l

A Z B W A Z B W

A Z B W A Z B W

A Z B W A Z B W

π

π

π

⎡ + + +
⎢
⎢ + + +

Λ = ⎢
⎢
⎢

+ + +⎢⎣

�

N

 

 

1 1 ,

2 1 ,

1 ,

0 0

0 0
.

0 0

l i l

l i l

l i l

A Z

A Z

A Z

π

π

π

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

� � �

N

 

11 , 2 1 1 2 3

1 1

12 1 1 1 2

( 1)

     ,    

,

T

i l i

T

i i

T

i i i i

X Z Z R R R

M M

S N G M

τ τΩ = − − + − + + +

+ +

Ω = − + + +

�

�

 

13 1 1 3

14 1 1 4

22 1 2 2 2 2 2 2

,

,

,

T

i i i

T

i i i

T T T

h i i i i i i

M S M

N G M

R S N G S N G

Ω = − + +

Ω = − − +

Ω = − − + + − + +

�

�

�

 

23 2 2 3 3 3

24 2 2 4 4 4

33 2 3 3 3 3

,

,

,

T T T

i i i i i

T T T

i i i i i

T T

i i i i

M S S N G

N G S N G

R M S M S

Ω = − + − + +

Ω = − − + + +

Ω = − − + − +

�

�

�

 

34 3 3 4 4

44 3 4 4 4 4

,

.

T T

i i i i

T T

i i i i

N G M S

R N G N G

Ω = − − − +

Ω = − − − − −

�

�

 

Furthermore, the desired state-feedback controller is 

given in the form of (7) with fuzzy controller gains as 

follows 

1
, , ,
i l i l

K W Z
−

=  ,
R

i∈ I  .l∈T  (21) 

Proof: Note that, for each ,
R

i∈ I  and ,l∈T  

1
, , ,

1
, ,

( ) ( )

0,

T

i l i l i l

T T

i l i l

X Z X X Z

X Z Z Z X Z

−

−

− −

= − − + ≺

 (22) 

which implies 

1
, , .

T T

i l i l
Z X Z X Z Z

−

− − −≺  (23) 

Similarly, it is clear that 

1

1 1
,

T T
ZY Z Y Z Z

−

− − −≺  (24) 

1

2 2
.

T T
ZY Z Y Z Z

−

− − −≺  (25) 

By using the Schur complement again (�  times), then 

we show that 10) is equivalent to 

11

21 22

31 33

* *

* 0,

0

Γ⎡ ⎤
⎢ ⎥Γ Γ⎢ ⎥
⎢ ⎥Γ Γ⎣ ⎦

≺  (26) 

where Γ11 is defined in Theorem 1 and  

{ }22 2 2 2 1 1 2
,diag , , , , ,Y Y Y Y Y YΓ = − − − − − −  (27) 

1 0 , 1 1 ,

2 0 , 2 1 ,

31

0 , 1 ,

0 0

0 0
,

0 0

T T

l i l l i l

T T

l i l l i l

T T

l i l l i l

A A

A A

A A

π π

π π

π π

⎡ ⎤
⎢ ⎥
⎢ ⎥

Γ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦� �

� � � �
 (28) 
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{ }33 ,1 ,2 ,
, d g ,ia , .

g g g
P P PΓ = − − −

�
�  

Consider the systems with the control input (7), and 

replace 
0 ,i l

A  in (27) 
0 , , ,

,
i l i l j l

A B K+  

ˆ

ijtv
Γ =

11

21 22

31 33

* *

ˆ * 0,

ˆ 0

Γ⎡ ⎤
⎢ ⎥
Γ Γ⎢ ⎥
⎢ ⎥Γ Γ⎣ ⎦

≺  (29) 

where 

( )

( )

( )

1 0 , , , 1 1 ,

2 0 , , , 2 1 ,

31

0 , , , 1 ,

0 0

0 0
ˆ .

0 0

T
l i l i l j l l i l

T
l i l i l j l l i l

T
l i l i l j l l i l

A B K A

A B K A

A B K A

π π

π π

π π

⎡ ⎤+
⎢ ⎥
⎢ ⎥+
⎢ ⎥Γ =
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦� �

� � � �

 

Then, from (20) and (23)-(25), it is clear that 

, ,

,
ijgh l ijgh l

Λ Λ�  (30) 

where 

11

21 22

1
, 31 1

1
41 2

51 55

* * * *

* * *

0 * *

0 0 *

0 0 0

T
ijgh l

T

Z Y Z

Z Y Z

−

−

⎡ ⎤Λ
⎢ ⎥
Λ Λ⎢ ⎥
⎢ ⎥Λ = Λ −
⎢ ⎥
⎢ ⎥Λ −
⎢ ⎥
Λ Λ⎢ ⎥⎣ ⎦

 

with 
11
,Λ

12
,Λ

22
,Λ

31
,Λ

41
,Λ

51
,Λ  and 

55
Λ  defined 

in (21).  

From (20) and (31), we obtain that, for each l∈T  

,

0.
ijgh l

Λ ≺  (31) 

Now we denote, 

1
, , ,i l i l

P X
−

=  1

1 1
,

T

h h
Q Z R Z

− −

=  1

2 2
 ,

T
Q Z R Z

− −

=  

1
,

T

i i
M Z M Z

− −

=  1
,

T

i i
N Z N Z

− −

=  1
,

T

i i
G Z G Z

− −

=  

1
,

T

i i
S Z S Z

− −

=  1
, , ,
i l i l

K W Z
−

=  1

1 1
,

T
T Z Y Z

− −

=  

1

2 2
,

T
T Z Y Z

− −

=  

Pre-and post-multiplying the LMI in (30) by 

{ }1 1
1 2 ,1 ,, , , , , ,

diag

, , , , ,, ,
i i

T

Z Z Z Z Z Z Z Z T T X X
− −

=

�
�

 

and using the Schur complements, it is clear that 

�

.

T
ijghijtv T TΛ = Γ  (32) 

Therefore, if (20) holds, we obtain the condition (10) in 

Theorem 1. We conclude that the underlying system is 

stochastically stable with the fuzzy controller gains in 

(21). This completes the proof. 

3.2. Partially known transition probability case 

The following theorem represents the sufficient 

conditions for the stochastic stability of a system (8) with 

partially known transition probabilities. 

 

Theorem 3: Consider the unforced MJFSs with par-

tially known transition probabilities (3). The correspond-

ing systems is stochastically stable if there exist matrices 

,

0,
i s
P � ,

R
i∈ I ,l∈T

1
0,P �

1
0,

i
Q �

2
0,Q �

3
0,Q �

1
0,Y �

2
0,Y � ,

ei
M ,

ei
N ,

ei
S ,

ei
G 1,2,3,4,  

R
e i= ∈ I

such that the following LMIs hold for each ,l s∈T  

2 , 1

,

0,
*

l

l

l

l ls i s l

s

ls i s

s

P

P

π π

π

∈

∈

⎡ ⎤Ξ Ξ
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
≺

K

K

K

T

T

 , , ,
R

i g h∈ I  (33) 

2 , 1

,

,0
*

l i s l

i s

P

P

Ξ Ξ⎡ ⎤
⎢ ⎥−⎣ ⎦

≺  , , ,
R

i g h∈ I  (34) 

where 

1 0 , 1 ,
0 0 0 0 0 0 0 0 ,

l i l i l
A A⎡ ⎤Ξ = ⎣ ⎦  

11

2

21 22

*
,

l

Γ⎡ ⎤
Ξ = ⎢ ⎥Γ Γ⎣ ⎦

 (35) 

( ) ( )

( ) ( )

21

21 0 , 1 1 , 1

2 0 , 2 2 1 , 2

0 0 ,

0 0

r i l r i l

i l i l

A I Y A I Y

A I Y A I Y

τ τ

τ τ

⎡ ⎤Γ
⎢ ⎥
⎢ ⎥Γ = − −
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

11
Γ  is defined in Theorem 1 and 

22
Γ  are defined in 

(27), with : .

l

l

ls

s

π π

∈

= ∑
K

K

T

 

 

Proof: First of all, we know that the unforced MJFSs 

are stochastically stable if (10) holds. Note that (10) can 

be written as 

2 , 1

2 , 1

,

,,

.
**

l

l

l

l
l ls i s l

s l i s l

igh l ls
i sls i s s

s

P

P

PP

π π

π

π

∈

∈

∈

⎡ ⎤Ξ Ξ
⎢ ⎥ Ξ Ξ⎡ ⎤
⎢ ⎥Γ ≡ + ⎢ ⎥−−⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

∑

∑
∑
K

UK

K

K

T

T

T

 (36) 

Therefore, if 

2 , 1

,

0,
*

l

l

l

l ls i s l

s

ls i s

s

P

P

π π

π

∈

∈

⎡ ⎤Ξ Ξ
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
≺

K

K

K

T

T

 (37) 

2 , 1

,

0,
*

l i s l

i s

P

P

Ξ Ξ⎡ ⎤
⎢ ⎥−⎣ ⎦

≺  (38) 

then 
,

0.
igh l

Γ <  There fore, the system is stochastically 

stable under partially known transition probabilities, 

which is concluded from the clear fact hat no knowledge 
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on ,
ls

π
l

s∀ ∈
UK

T  is required in (37) or (38). Thus, for 

0
l

π ≠
K

 and 0,
l

π =
K

 respectively, one can readily 

obtain (36), since if 0,
l

π =
K

 the conditions (37) and 

(38) will reduce to (36). This completes the proof. 

Now, we give the stabilization conditions of the 

system with partially known transition probabilities as 

generalized results. 

 

Theorem 4: Consider the system (8) with partially 

known transition probabilities (3). There exists a control-

ler (7) such that the resulting closed-loop system is 

stochastically stable if there exists matrices 
,

0,
i s

X >

,
R

i∈ I ,l∈T 0,
l

X >
1

0,
i

R >
2

0,R >
3

0,R >
1

0,T >

2
0,T > 0,Z >

,

,
i l

W ,
lm

M ,
lm

N ,
lm

S ,
lm

G 1,2,3,4,m =

,l∀ ∈T  such that 

2 , 1

,

0,
*

l

l

l

l ls i s l

s

ls i s

s

X

X

π π

π

∈

∈

⎡ ⎤Ξ Ξ
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
≺

K

K

K

T

T

 , , , ,
R

i j g h∈ I  (39) 

2 , 1

,

0,
*

l i s l

i s

X

P

⎡ ⎤Ξ Ξ
⎢ ⎥

−⎣ ⎦
≺  , , , .

R
i j g h∈ I  (40) 

Furthermore, a desired state-feedback controller is given 

in the form of (7) with the fuzzy controller gains as 

follows 

1
, , ,
i l i l

K W Z
−

=  ,
R

i∈ I  .l∈T  (41) 

Proof: Note that (20) can be written as 

,ijgh l
Γ ≡  

2 , 1

2 , 1

,,

+ ,
**

l

l

l

l

l ls i s l

s l i s l

ls

i sls i s s

s

X

X

XX

π π

π

π

∈

∈

∈

⎡ ⎤Ξ Ξ
⎢ ⎥ ⎡ ⎤Ξ Ξ
⎢ ⎥ ⎢ ⎥

−−⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

∑

∑
∑
K

UK

K

K

T

T

T

 (42) 

where 

1

0 , , , 1 , 0 0 0 0 0 0 0 0 ,

l

i l i l i l i l
A Z B W A

Ξ =

⎡ ⎤+⎣ ⎦
 

11

2

21 22

*
,

ˆl

Γ⎡ ⎤
Ξ = ⎢ ⎥

Γ Γ⎣ ⎦
 

( ) ( )

( ) ( )

21

21

0 , , , 1 , 1

2 0 , , , 2 1 , 2

ˆ

0 0 .

0 0

r i l i l j l r i l

i l i l j l i l

A B K I Y A I Y

A B K I Y A I Y

τ τ

τ τ

Γ =

⎡ ⎤Γ
⎢ ⎥
⎢ ⎥+ − −
⎢ ⎥
⎢ ⎥+ − −⎢ ⎥⎣ ⎦

 

Therefore, if  

2 , 1

,

ˆ ˆ

0
*

l

l

l

l ls i s l

s

ls i s

s

X

X

π π

π

∈

∈

⎡ ⎤Γ Γ
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
≺

K

K

K

T

T

, (43) 

2 , 1

,

ˆ ˆ

0
*

l i s l

i s

X

X

⎡ ⎤Γ Γ
⎢ ⎥

−⎢ ⎥⎣ ⎦
≺ , (44) 

then 0.
ijgh

Λ ≺  Note that if 0,
l

π =
K

 then (20) is 

equivalent to (44). Therefore, if (40) holds, we obtain the 

condition (20) in Theorem 2. We conclude that the 

underlying system is stochastically stable with the fuzzy 

controller gains in (41). This completes the proof. 

 

4. SIMULATIONS 

 

In this section, a numerical example is presented to 

verify the proposed design approach of the fuzzy 

controller developed in the previous section. Consider 

the following discrete-time MJNLSs with time-varying 

delays: 

2

1 1 1 1 1

1 2 1

( 1) ( ) ( ) ( ( ))

0.3 ( ) ( ( )) 0.1 ( ),

x k x k a x k x k k

x k x k k u k

τ

τ

+ = − + −

− − +

 (45) 

2

1 1 1 1 1

1 2 1

( 1) ( ) ( ) ( ( ))

0.3 ( ) ( ( )) 0.1 ( ).

x k x k a x k x k k

x k x k k u k

τ

τ

+ = − + −

− − +

 (46) 

The nonlinear system switches between the two modes, 

and the transition probability matrix is given by 

0.75 0.25
.

0.30 0.70
π

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (47) 

Similar to previous results, we assume that 
1
( )x k ∈

 
[ 2,2]−

 
and set the membership functions 

1 1
( ( ))h x k

 
and 

2 1
( ( ))h x k  as obtained as follows: 

( ) ( )1 1 1 2 1 1

1 1
( ( )) 1 0.5 ( ) , ( ( )) 1 0.5 ( ) .

2 2
h x k x k h x k x k= − = +  

Then, we represent the MJNLS in (49)-(50) as the 

following T-S fuzzy model: 

1 i1 p ip

0

1

: IF z (k) is and and z (k) is 

( 1) ( ( )) ( )

( ( )) ( ( ))

( ( )) ( )

 

THEN 

,

i

i

i

i

R

x k A k x k

A k x k k

B k u k

η

η τ

η

Γ Γ

+ =

+ −

+

�

 

where 

01 01

02 02

0.5 0.3 0.5 0.4
(1) , (2) ,

0.1 1.0 0.1 0.06

0.5 0.3 0.5 0.4
(1) , (2) ,

0.1 1.0 0.1 1.06

A A

A A

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

11 11

0.05 0.1 0.07 0.1
(1) , (2) ,

0 0.05 0 0.05
A A

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 
12 12

0.05 0.1 0.07 0.1
(1) , (2) ,

0 0.05 0 0.05
A A

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 
1 1 2 2

0.2 0
(1) (2) (1) (2) .

0 0.7
B B B B

⎡ ⎤
= = = = ⎢ ⎥

⎣ ⎦

 

Using Theorem 2, it can be found that the LMIs of (34) 
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have feasible solutions. We can obtain the following 

state-feedback gain matrices: 

5

1

5

1

5

2

3

2

1.5909 0.8926
(1) 10 ,

1.2542 6.2052

1.3252 0.2501
(2) 10 ,

0.1958 3.3820

1.5909 0.8926
(1) 10 ,

1.2542 6.2052

1.3239 0.2491
(2) 10 .

0.1964 3.3803

K

K

K

K

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

 (48) 

Now, we apply the designed fuzzy static controller in 

the form of (7) to the nonlinear systems in (49)-(50). The 

state responses of the resulting closed-loop system are 

shown in Fig. 1. These results show that the designed 

fuzzy static feedback controller can effectively stabilize 

the MJFSs with time-varying delays in (49)-(50). 

 

Table 1. Modes of the parameters a1, a2 and b. 

Mode I a1 a2 b 

1 0.3 0.1 1.0 

2 0.4 0.12 1.06 

 

 
time 

Fig. 1. State response of the closed-loop system with 

completely known transition probabilities. 

 

 
time 

Fig. 2. State response of the closed-loop system with p 

known transition probabilities. 

Now, we assign fixed values to the unknown elements 

in the partially known transition probability matrix given 

by 

0.75 0.25
,

? ?
π

⎡ ⎤
= ⎢ ⎥
⎣ ⎦  

where “?” represents unknown variables. 

Analogous to the partially known case, an admissible 

controller can be solved by (40) and (41) in Theorem4 

with the following gains: 

5

1

3

1

5

2

3

2

1.6305 0.8415
(1) 10 ,

1.3473 6.3156

1.4781 0.2410
(2) 10 ,

0.2384 3.1854

1.6742 0.9741
(1) 10 ,

1.3215 6.3140

1.2412 0.2974
(2) 10 .

0.1541 3.5412

K

K

K

K

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

−⎡ ⎤
= × ⎢ ⎥−⎣ ⎦

 (49) 

The state responses of the resulting closed-loop system 

are shown in Fig. 2. Despite the partly unknown transi-

tion probabilities, the designed controllers are feasible 

and effective in ensuring the resulting closed-loop 

systems are stable. 

 

5. CONCLUSIONS 

 

The stability analysis and stabilization problem for a 

class of discrete-time MJFS with time varying delays in 

which transition probabilities are partially known have 

been investigated in this paper. Based on a stochastic 

Lyapunov function, stability and stabilization conditions 

for the MJFS with time-varying delays have been 

derived in both completely known transition probabilities 

and partially known transition probabilities cases. The 

derived conditions have been represented in terms of 

LMIs. Finally, the effectiveness of the proposed design 

method has been demonstrated numerically by simula-

tion results. 
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