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Abstract: The average consensus problem of high-order multi-agent systems with multiple time-

varying communication delays is investigated in this paper. By using the idea of state decomposition, 

the condition for guaranteeing average consensus is converted into verifying the stability of zero equi-

librium of disagreement system. Considering multiple time-varying communication delays, Lyapunov-

Krasovskii approach in time-domain is employed to analyze the stability of zero equilibrium. With the 

help of Free-weighting Matrices (FWM) approach, the tolerant upper bounds on communication delays 

can be obtained through solving feasible linear matrix inequalities (LMIs). Delay-dependent stability 

criteria for both strongly-connected fixed and switching topologies are provided in the main results. 

Further, the conclusion is extended to the case of jointly-connected switching topologies. Numerical 

examples and simulation results are given to demonstrate the effectiveness and the benefit on reducing 

conservativeness of the proposed method. 

 

Keywords: Average consensus, free-weighting matrices, linear matrix inequality, Lyapunov-

Krasovskii functional. 

 

1. INTRODUCTION 

 

Distributed consensus problem becomes an interesting 

and important topic in the field of multi-agent 

coordination in recent years. The tasks of consensus are 

to make each agent achieve agreement based on different 

input, and make sure the same upper and lower bounds 

on coordination number. Many researchers paid much 

attention to the theory of distributed consensus for the 

merits of decentral control, local information exchange 

and simple behavior coordination. So far, it has been 

widely used in the areas of formation control [1], 

flocking [2], rendezvous [3] in multi-agent systems, 

fusion estimation [4], collaborative decision-making [5] 

and coupled oscillator synchronization [6].  

Convergence property is one of the focused topics in 

distributed consensus theory. In many applications, 

communication delays should be considered in 

consensus problem because of agents moving, 

communication congestion, or finite transmission 

distance. Many works in the literature focused on the 

stability conditions for guaranteeing that the agents 

achieve consensus with time-delays, see e.g., [7-14]. One 

is the analysis methodologies in frequency domain, 

where the stability criterion can be derived from the 

distribution of the eigenvalues in complex plane, e.g., 

[7,8]. They provided sufficient and necessary conditions 

for the upper bounds of both uniform and non-uniform 

time-varying delays. However, it is difficult to find the 

common or multiple Lyapunov functionals in the case of 

switching topologies [9]. Therefore, they are only valid 

for fixed topology in most cases.  

Another familiar methodology is the time domain 

analysis through building Lyapunov-Krasovskii or 

Lyapunov-Razumikhin functional. The convergence 

property or the stability can be judged from the negative 

definite of the Lyapunov functional derivative, e.g., [10-

13]. However, it is still possible to improve the criteria in 

time domain because they are all sufficient conditions to 

achieve average consensus. Recently, [14] discussed the 

consensus for high-order dynamics systems with uniform 

communication delays and strongly-connected switching 

topologies.  

Although a large body of work has been produced to 

the convergence property of the average consensus 

problem, there are still some topics which deserve further 

research by the analysis methodologies in time domain. 

These aspects include: (i) Agent’s Dynamics. The 

literature aforementioned only focused on the average 

consensus for first-order or second-order dynamic, e.g., 

[11-13]; (ii) Communication Conditions. There are 

rigorous restrictions to the communication delay such as 

uniform delay [14] or strongly connected topologies 

[11,12,14]; (iii) Conservativeness. The stability criteria 

have higher conservativeness, e.g., the “basic inequality” 

was adopted in [11-13] to justify the negative definite of 
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the Lyapunov functional derivative.  

The aim of this paper is to provide the stability criteria 

for average consensus with multiple time-varying delays. 

This criteria can be employed to justify the convergence 

property with the consideration of the multiple time-

varying communication delays and fixed/switching 

topologies. They can be regarded as the generalization of 

the work [11-14]. Different from the existing results, the 

proposed stability criteria mainly focuses on the 

following aspects: (i) discuss the multi-agent systems 

with high order chain integrator dynamics; (ii) relax the 

restrictions to the communication conditions, including 

multiple time-varying communication delays and jointly-

connected switching topologies; (iii) obtain the lower 

conservativeness criterion with the help of FWM method 

[15-17]; and find the ultimate criteria with brief 

expression, which can be solved conveniently by 

mathematical tool.  

This paper is organized as follows. In Section 2, we 

give the background and necessary mathematical 

preliminaries. Section 3 describes the problem and 

consensus protocol. In Section 4, the main theoretical 

results including delay-dependent stability criteria for 

fixed and switching topologies are presented. Numerical 

examples and discussion are given in Section 5, and 

concluding remarks are stated in Section 6  

Throughout this paper, the notation �  represents the 

symmetric part in a symmetric matrix; ( , , )0> ≥ < ≤D  

denotes that the matrix D  is positive definite(positive 

semidefinite, negative, negative semidefinite); 1 repre-

sents [1,1,...,1]T  with appropriate dimensions and 0 or 0 

denotes zero value or zero matrix with appropriate 

dimensions. ⊗  denotes the Kronecker product. 

 

2. BACKGROUND AND PRELIMINARIES 

 

2.1. Graph theory 

Let ( , , )G = V E A  denote the relationship between 

multiple agents with the set of nodes 
1

{ , , ,}
n

υ υ= …V  

the set of edges ⊂ ×E V V  and adjacent matrix 

.[ ]ija=A  The node indices belongs to a finite index set 

{1,2, , }.n= …I  The edge can be depicted by ( ),,i jυ υ  

and the value of aij corresponds to the edge of the graph, 

i.e. ( , ) .0i j ijaυ υ ∈ ⇔ >E  The neighbors of node υi is 

defined by { : ( , ) }.i j i jυ υ υ= ∈ ∈N V E  Let [ ]ijl=L  

denote the Laplacian matrix corresponding to the 

topology of the graph, where 
1

n

ii ijj
l a

=

=∑  and 

, .ij ijl a i j= − ≠  Let dN

i
x ∈�  represent the state value 

of node υi with Nd dimensions(such as position or 

temperature etc.), and the multi-agent systems with the 

state vector 
1

( , , )T
n

x x x= …  and the topology G can be 

described by Gx=(G, x) (usually denote G for 

compactness). We say nodes υi and υj agree in multi-

agent systems if and only if .i jx x=  The nodes achieve 

consensus if and only if i jx x=  for all , , .i j i j∈ ≠I  

Whenever the nodes are all in agreement, the common 

value of all nodes is called the group decision value [7]. 

 

2.2. Several definitions and lemmas 

Before giving the main results, we introduce some 

definitions and lemmas which play an important role in 

the proof of our main theoretical results. 

Definition 1 (Strongly Connected) [7]: If there is a 

directed path from every node to every other node, the 

graph is said to be strongly connected (connected for 

undirected graph). 

Definition 2 (Balanced Graphs) [7]: We say the node 

i
υ  of a digraph ( , , )G = V E A  is balanced if and only 

if its in-degree and out-degree is equal, i.e., ( )
out i

deg υ = 

( ).
in i

deg υ  A graph ( , , )G = V E A  is called balanced if 

and only if all of nodes are balanced, or ijj
a∑ = ,jij

a∑  

.i∀ ∈ I  

Definition 3 (Balanced Matrix) [12]: A square matrix 
n n×

∈F �  is said to be a balanced matrix if and only if 

0
T

n
=1 F  and 0.

n
=F1  

Definition 4 (Jointly-connected) [18]: By the union of 

a collection of simple graphs 
1 2

{ , ,.. },.,
ss

N
G G G  each 

with nodes set ,V  is meant the simple graph G with 

nodes set V  and edges equaling the union of the edge 

sets of all of the graphs in the collection. We say that 

such a collection is jointly-connected if the union of its 

members is a strongly connected graph (connected for 

undirected graph). 

Lemma 1 [7]: If the graph G of multi-agent systems is 

strongly connected, then its Laplacian L satisfies: 

1) rank(L)= n-1; 

2) zero is one eigenvalue of L, and 1
n
 is the 

corresponding eigenvector, i.e., 0;
n
=L1  

3) the rest n-1 eigenvalues all have positive real-

parts. Particularly, if the graph G is undirected, they are 

all positive and real. 

Lemma 2 [12]: Consider the Laplacian matrix of 

complete graph 

1 1 1

1 1 1
.

1 1 1

n

n

n

− − − 
 − − − 
 
 
− − −  

�

�

� � � �

�

 

If E
c
 is the matrix of eigenvectors of the Laplacian 

matrix of complete graph, it is an orthogonal matrix. 

Given any positive semi-definite balanced matrix 

,

n n×

∈F �  the following holds, 

�
( 1) ( 1) 0

,
0 0

n nT

c c

− × −
 

=  
 

F
E FE  

where �
1 1

T

c c
=F E FE  is a positive semi-definite matrix, 

E
c1 is the matrix of the eigenvectors corresponding to the 
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non-zero eigenvalues of the Laplacian of complete graph. 

Lemma 3 [19]: For given symmetric matrix Z with 

the form ,[ ]ijZ=Z
11

,

r r

Z
×

∈�
( )

12 ,
r n r

Z
× −

∈�
22

Z ∈  
( ) ( )

,

n r n r− × −

�  then 0<Z if and only if 
11

0,Z <  
1

22 21 11 12 0Z Z Z Z
−

− <  or 
22

0,Z <
1

11 12 22 21
0.Z Z Z Z

−

− <  

 

3. PROBLEM DESCRIPTION 

 

In this paper, we will discuss the dynamics of agent 

i described by high order chain integrator in continuous-

time domain 

(0) (1)

( 2) ( 1)

( 1)

( ) ( ),

( ) ( ),

( ) ( ),

i i

l l

i i

l

i i

x t x t

x t x t

x t u t

− −

−

=

=

=

�

�

�

�

  (1) 

where ( ) ( )k
ix t  is the high order state of agent i  and 

ui(t) is the consensus protocol. 

For the purpose of reaching average consensus, the 

consensus protocol with multiple communication delays 

is adopted as follows: 

1
( )

1 1

(0) (0)
0

( )

[ ( ( )) ( ( ))],

i

l m
p

i p i ij

p q j N

j q i q

u t x a

x t t x t t

β

β τ τ

−

= = ∈

= − −

× − − −

∑ ∑ ∑
 (2) 

where ,pβ 0,1,..., 1p l= −  are the positive constant 

coefficients and τq(t), 1,2,...,q m=  are the communica-

tion delays. Suppose that for m  given communication 

delays such that 

0 ( ) 1,2, ..., ,
i i
t i mτ τ≤ ≤ =  (3) 

and their derivatives 

0 1,2, ..., .,
i i

i mµ µ≤ ≤ =  (4) 

Therefore, the collective dynamics of the multi-agent 

system with m communication delays can be depicted in 

matrix form under fixed communication topology 

1

( ) ( ) ( ) ( ) ( ),
m

n q q

q

t t t τ

=

= ⊗ + ⊗Γ −∑x I H x L x�  (5) 

where 

1
( ) [ ( ), , ( )] ,T T T

n
t t t=x x x�

(0) ( 1)( ) [ ( ), , ) , ,( ]l T

i i i
t x t x t i

−

= ∈x � I  

1

0
,

0
l

l l
β

−

×

 
=  − 

I
H  

0
0

,

l l
β

×

 
Γ =  − 

0 0
 

1 1
[ , ].

l
β β β

−

= �  

Lq is the corresponding Laplacian matrix of the 

communication topology for the q-th delay, and it 

satisfies that 
1

.

m

qq=
=∑ L L  

Replace Lq by Lσq, then the dynamics for switching 

communication topologies can be described as follows 

1

( ) ( ) ( ) ( ) ( ),
m

n q q

q

t t t
σ

τ

=

= ⊗ + ⊗Γ −∑x I H x L x�  (6) 

where Lσq is the topology determined by switching 

signal with successive times ( ) : [0, ] {1,2,..., }
ss

t Nσ ∞ →  

(σ in short). If the protocol (2) asymptotically solves the 

average consensus of multi-agent systems with high 

order dynamics if and only if ( ) ( )lim ( ) ( ) 0,k k
i j

t
x t x t

→∞

− =  

,i j∀ ∈ I  and ( ) ( )

1

1
lim ( ) (0),

n
k k

i i
t

i

x t x i
n→∞

=

= ∀ ∈∑ I  for k =  

0,1,..., 1.l −  

 

4. MAIN RESULTS 

 

In this section,we will give the delay-dependent 

stability criteriafor multi-agent system under strongly-

connected fixed/switching topologies. Then the 

conclusion is extended to the case of jointly-connected 

switching topologies which has a week assumption on 

the connectivity of the interconnection among agents. 

 

4.1. Strongly-connected fixed topology 

Before giving the main results of stability, we have the 

following assumption: 

Assumption 1:  the topology of multi-agent systems is 

strongly connected; 

Assumption 2:  its corresponding graph is balanced; 

Assumption 3:  the parameter 
0 1 1
, , ,

l
β β β

−

�  make 

the polyno-mial 1 2

1 2 1 0

l l

l l
s s sβ β β β− −

− −

+ + + +�  

Hurwitz stable. 

Theorem 1: Consider the multi-agent systems with m 

communication delays under Assumptions 1, 2 and 3 

hold. Given the upper bound on communication delays 

i
τ  and the upper bound on their derivative ,

i
µ  

1,2,. ,..,i m=  the protocol (2) globally asymptotically 

solves the average consensus of multi-agent systems (5) 

if there exist matrices with proper dimension 

0,
T

= >P P  

(1) (1)
0,

T

i i
 = ≥ Q Q  

(2) (2)
0,

T

i i
 = ≥ Q Q  

(1) (1)
0,

T

i i
 = ≥ R R  

(2) (2)
0,

T

i i
 = ≥ R R  1,2,...,i m=   

and free-weighting matrices 

(1) (2) (3)
, ,,

T

i i i i
 =  N N N N  (1) (2) (3)

, ,,

T

i i i i
 =  M M M M  

(1) (2) (3)
, ,,

T

i i i i
 =  S S S S  1,2,...,i m=  

such that the following LMI hold: 

1

0,
m

i

i=

Θ <∑  (7) 

where 
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(1) (2) (3)

(4)

(1)

(1)

(2)

0 0 0

,0 0

0

i i i i i i i i i

i

i i i

i i

i i

τ τ τ

τ

τ

τ

 Θ +Θ Θ
 

Θ 
 

Θ = − 
 

− 
 − 

N S M

R

R

R

�

� �

� � �

� � � �

� � (1) (2)

(1) (1)

(2)

0

(1 ) 0 ,

T

i i i

i i i

i

µ

 + + + Γ
 
 Θ = − −
 
 −
 

PH H P Q Q P

Q

Q

�

�

� �

[ ]

[ ]

(2)
, ,

,, ,

i i i i i i i

T

i i i i i i

Θ = + − + − −

+ + − + − −

N M N S S M

N M N S S M

 

�(3) (1) (2)[ , ,0] ( ,)T

i i i i i
τΘ = Γ +H R R�  

(4) (1) (2)( ,)
i i i i

τΘ = − +R R  

�
1 1 1

, ( ,)T

n i c i c−

= ⊗ Γ = ⊗ΓH I H E L E�  

and E
c1 is the matrix of the eigenvectors corresponding 

to the non-zero eigenvalues of the Laplacian of complete 

graph with dimension .n n×  

Proof: According to conditions of multi-agent systems 

achieving average consensus, ( )

1

1
n

k

i

i

x

n
=

∑  for 0,1,...,k =  

1l −  are invariance vectors. Hence, using the 

decomposition idea in [7,20], x(t) can be expressed as a 

combination of the following two decoupled subspaces 

�0

1

( ) ( (0)) ,[ ,0...0] ( )T

n

l

t Ave tβ δ
−

= ⊗ +x x 1  (8) 

where 
1

1
( (0)) (0)

n

i

i

Ave
n

=

= ∑x x  and ( )tδ  denotes the 

disagreement systems. 

That means the stability problem of collective 

dynamics systems(5) can be transformed into verifying 

whether systems (9) has a stable zero equilibrium 

1

( ) ( ) ( ) ( ) ( ).
m

n q q

q

t t tδ δ δ τ

=

= ⊗ + ⊗Γ −∑I H L�  (9) 

Denote 
1 0 1

{ , ] [ , }T

n l
span β β ⊥

−
⊗1� �M  and 

2
�M  

0 1

( 1)

{[ , , ,0, 0 ., ] }T
l

l n

span β β ⊥

−

−

� �
���

 By Lemma 1 and 

Lemma 2, the following relationship holds [14] 

1 2
( ) .

c l
= ⊗E IM M  

Then, for any δ
1
,∈M  there exists 

1 2 2
[ , ]

T T T
δ δ δ= ∈
� � � M  

such that ( )
c l

Iδ δ= ⊗E �  with the definitions as follows 

(0) ( 1)
1 1 1 ,[ , , ]

l T
δ δ δ

−

=
� � ��  

(0) ( 1) (0) ( 1)
2 2 2[ , , , , , , .]

l l T

n n
δ δ δ δ δ

− −

=
� � � � �� � �  

According to the dynamics (9), we have 

1 1
( ) ( ),t tδ δ= H

�� �  (10) 

2 1 2 2

1

( ) ( ) ( ) ( ) ( ),
m

n q

q

t t tδ δ δ τ
−

=

= ⊗ + ⊗Γ −∑ q
I H L

�� � ��  (11) 

where 
1 1

,

T

c c
=

q q
L E L E� ,1, ,q m= �  and 

1c
E is the 

matrix of eigenvectors of the Laplacian matrix of 

complete graph with dimension .n n×  

For any 
2
,δ ∈

� M  we have 
(0) ( 1)

0 11 1,...,

l

l
β δ β δ

−

−

+ +
� �  

=0. From the assumption that the parameter 
0 1
, , ,β β �  

1l
β

−

 make the polynomial 1 2

1 2

l l

l l
s sβ β− −

− −

+ + +�  

1 0
sβ β+  Hurwitz stable, the conclusion can be achieved 

that subsystem (10) is globally asymptotically stable. 

Next, the remaining work is to prove the stability of 

subsystem (11). 

Define the following candidate quadratic Lyapunov-

Krasovskii functional 

(1)
2 2 2 2 2( )

1

(2)
2 2

1

0 (1) (2)
2 2

1

( , ) ( ) ( ) ( ) ( )

( ) ( )

( )( ) ( ) ,

i

i

i

m
t

T T

i
t t

i

m
t

T

i
t

i

m
t

T

i i
t

i

V t t t s s ds

s s ds

s s dsd

τ

τ

τ θ

δ δ δ δ δ

δ δ

δ δ θ

−

=

−

=

− +

=

= +

+

+ +

∑∫

∑∫

∑∫ ∫

P Q

Q

R R

� � � � �

� �

� �� �

 

 (12) 

where P=PT
0,>

(1) (1)
[ ] 0,

T

i i
= ≥Q Q

(2) (2)
[ 0,]

T

i i
= ≥Q Q  

(1) (1)
[ ] 0,

T

i i
= ≥R R

(2) (2)
[ ] 0,

T

i i
= ≥R R 1,2,...,i m=  are 

all balanced matrices with appropriate dimension to be 

determined. 

By Newton-Leibniz formula 

t

( ) ( ) ( ) .
t r

f t f t r f s ds
−

− − = ∫ �  (13) 

Hence, given any free-weighting matrices with proper 

dimension 

(1) (1) (1)

(2) (2) (2)

(3) (3) (3)

, , ,

1,2,..., ,

i i i

i i i i i i

i i i

i m

     
     

= = =     
     
          

=

N M S

N N M M S S

N M S

 

we have 

2 2 2( )
1

2 ( ) [ ( ) ( ( )) ( ) ] 0,
i

m
t

T

i i i
t t

i

t t t t s ds
τ

ξ δ δ τ δ
−

=

− − − =∑ ∫N
�� � �  

( )

2 2 2

1

2 ( ) [ ( ( )) ( ) ( ) ] 0,
i

i

m
t t

T

i i i i
t

i

t t t t s ds
τ

τ

ξ δ τ δ τ δ
−

−

=

− − − − =∑ ∫M
�� � �

2 2 2

1

2 ( ) [ ( ) ( ) ( ) ] 0,
i

m
t

T

i i i
t

i

t t t s ds
τ

ξ δ δ τ δ
−

=

− − − =∑ ∫S
�� � �  (14) 

where 
2 2 2

( ) [ ( ), ( ( , )] .)) (T T T T

i i i
t t t t tξ δ δ τ δ τ= − −

� � �  

Calculate the derivative of 
2

( , )V t δ�  
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(1)
2 2 2 2 2

1

(1)
2 2

1

(2) (2)
2 2 2 2

1

(1) (2)
2 2

1

(1)
2

( , ) 2 ( ) ( ) ( ) ( )

(1 ( )) ( ( )) ( ( ))

[ ( ) ( ) ( ) ( )]

( )( ) ( )

( )(

m

T T

i

i

m

T

i i i i

i

m

T T

i i i i

i

m

T

i i i

i

T

i

V t t t t t

t t t t t

t t t t

t t

s

δ δ δ δ δ

τ δ τ δ τ

δ δ δ τ δ τ

τ δ δ

δ

=

=

=

=

= +

− − − −

+ − − −

+ +

− +

∑

∑

∑

∑

P Q

Q

Q Q

R R

R R

�� � � � ��

� ��

� � � �

� �� �

�� (2)
2

1

) ( ) .
i

m
t

i
t

i

s ds
τ

δ
−

=

∑∫
��

 

By (4) and (14), we get 

(1) (2)
2 2 2 2 2

1

(1)
2 2

1

(2)
2 2

1

(1) (2)
2 2

1

(1)
2 2( )

( , ) 2 ( ) ( ) ( )( ) ( )

(1 ) ( ( )) ( ( ))

( ) ( )

( )( ) ( )

( ) ( )
i

m

T T

i i

i

m

T

i i i i

i

m

T

i i i

i

m

T

i i i

i

t
T

i
t t

i

V t t t t t

t t t t

t t

t t

s s ds
τ

δ δ δ δ δ

µ δ τ δ τ

δ τ δ τ

τ δ δ

δ δ

=

=

=

=

−

=

≤ + +

− − − −

− − −

+ +

−

∑

∑

∑

∑

∫

P Q Q

Q

Q

R R

R

�� � � � ��

� �

� �

� �� �

� �� �

1

( ) (1)
2 2

1
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t

i

m

T
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t
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m

T
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i
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t
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i
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t

τ

τ

τ

τ

τ
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δ δ
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δ
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δ
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−

−

=

−

=

=

−

=

−

−

−
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−
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−
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∑

∑∫

∑∫

∑

∫

∑

∫

R
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N
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� �� �
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1
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i

m
t
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t

i
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τ
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−

=
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Consequently, substituting (11) yield 

1

(1) (1) 1
2( )

1

(1)
2

( ) (1) (1) 1
2

1

( ) ( )

[ ( ) ( ) ][ ]

[ ( ) ( )]

[ ( ) ( ) ][ ]

i

i

i

m

T

i i i

i

m
t

T T

i i i i
t t

i

T

i i i

m
t t

T T

i i i i
t

i

t t

t s

t s ds

t s

τ

τ

τ

ξ ξ

ξ δ

ξ δ

ξ δ

=

−

−

=

−
−

−

=

≤ Θ

− +

× +

− +

∑

∑∫

∑∫

N R R

N R

S R R

��

��

��
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2
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2

1
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2
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i

T

i i i

m
t

T T

i i i i
t

i

T

i i i

t s ds

t s

t s ds

τ

ξ δ

ξ δ

ξ δ

−

−

=

× +

− +

× +

∑∫

S R

M R R

M R

��

��

��

 

where ( 1, , )
i
i mΘ = �  follows the definition in LMI (7). 

Note that 
i

Θ  expressed by LMI is obtained by applying 

Lemma 3. Obviously, the last three items of (15) are less 

than zero. Therefore, we can conclude that if exists 

matrices ,P
(1)
,

i
Q

(2)
,

i
Q

(1)
,

i
R

(2)
,

i
R 1,2,...i m=  and 

free-weighting matrices ,
i

N ,
i

M ,
i

S 1,2,...i m=  with 

proper dimension such that LMI (7) holds, a positive 

constant c0 > 0 can be found that satisfying 
2

( , )V t δ ≤��  

2

0 2
( .)c tδ−

�� �  So, the subsystem (11) is asymptotically 

stable. Further, the zero equilibrium of (9) is 

asymptotically stable. As a result, the multi-agent 

systems asymptotically achieve average consensus. The 

proof of Theorem 1 is complete. � 

 

4.2. Strongly-connected switching topologies 

Theorem 2: Consider the multi-agent systems with m 

communication delays under the assumption that the 

topology determined by any switching signal : [0, )σ ∞  

{1,2... }
ss

N→  satisfying Assumptions 1, 2 and 3. Given 

the upper bound on communication delays 
i

τ  and the 

upper bound on their derivative ,
i

µ 1,2,. ,..,i m=  the 

protocol (2) globally asymptotically solves the average 

consensus of multi-agent systems (6) if there exist 

common matrices with proper dimensions 

0,
T

= >P P  

(1) (1)
0,

T

i i
 = ≥ Q Q  

(2) (2)
0,

T

i i
 = ≥ Q Q  

(1) (1)
0,

T

i i
 = ≥ R R

(2) (2)
0,

T

i i
 = ≥ R R 1,2,..., ,i m=   

and common free-weighting matrices 

(1) (2) (3)
, ,,

T

i i i i
 =  N N N N  (1) (2) (3)

, ,,

T

i i i i
 =  M M M M  

(1) (2) (3)
, ,,

T

i i i i
 =  S S S S  1,2,...,i m=  

such that the following LMI hold: 

1

0, : [0, ] {1,2,..., },
m

i ss

i

N
σ

σ

=

Θ < ∀ ∞ →∑  (16) 

where 

(1) (2) (3)

(4)

(1)

(1)

(2)

0 0 0

,0 0

0

i i i i i i i i i

i

i i i

i i

i i

σ σ σ

σ

σ

τ τ τ

τ

τ

τ

 Θ +Θ Θ
 

Θ 
 

Θ = − 
 

− 
 − 

N S M

R

R

R

�

� �

� � �

� � � �
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� � (1) (2)

(1) (1)

(2)

0

(1 ) 0 ,

T

i i i

i i i

i

σ

σ
µ

 +

=

+ + Γ
 
 Θ − −
 
 −
 

PH H P Q Q P

Q

Q

�

�

� �

[ ]

[ ]

(2)
, ,

, , ,

i i i i i i i

T

i i i i i i

σ
Θ = + − + − −

+ + − + − −

N M N S S M

N M N S S M

 

�(3) (1) (2)[ , ,0] ( ),T

i i i i i
R

σ σ
τΘ = Γ +H R�  

(4) (1) (2)( ),
i i i iσ

τΘ = − +R R  

�
1 1 1

, ( ) ,T

n i c i cσ σ−

= ⊗ Γ = ⊗ΓH I H E L E�  

and E
c1 is the matrix of the eigenvectors corresponding 

to the non-zero eigenvalues of the Laplacian of complete 

graph with dimension .n n×  

Proof: Similar to the procedure of Theorem 1, two 

subsystems can be obtained as follow 

1 1
( ) ( ),t tδ δ= H

�� �  (17) 

2 1 2 2

1

( ) ( ) ( ) ( ) ( ),
m

n q

q

t t t
σ

δ δ δ τ
−

=

= ⊗ + ⊗Γ −∑ q
I H L

�� � ��  (18) 

where 
1 1

,

T

c cσ σ
=

q q
L E L E� ,1, ,q m= �  H and Γ  follow 

the definitions in (6). 

It is clear that subsystem (17) is asymptotically stable 

with Assumption 3 for any switching signal σ. Therefore, 

if common quadratic Lyapunov-Krasovskii (CQLK) 

functional like (12) can be found for subsystem (18), 

then the stability criterion can be obtained for strongly-

connected switching topologies. We omit the detailed 

procedure because it is similar to that in Theorem 1. � 

 

4.3. Extension to jointly-connected topologies 

The above conclusion derived from Theorem 2 is also 

valid for the jointly-connected switching topologies case 

with the assumption as follows 

Assumption 4:  the switching topologies of multi-

agent systems are jointly connected; 

Assumption 5:  for all jointly-connected topologies 

determined by switching signal σ, the sum of the in-

degree or out-degree of all nodes equals with each other. 

Corollary 1: Consider the multi-agent systems with m 

communication delays under the assumption that the 

switching topologies determined by all switching signal 

: [0, ) {1,2... }
ss

Nσ ∞ →  satisfying Assumptions 2 to 5. 

Given the upper bound on communication delays 
i

τ  

and the upper bound on their derivative ,
i

µ 1,2,i =  

..., ,m  the protocol (2) globally asymptotically solves the 

average consensus of multi-agent systems (6) if there 

exist common matrices with proper dimensions 

0,
T

= >P P  (1) (1)
[ 0,]

T

i i
= ≥Q Q  (2) (2)

[ 0,]
T

i i
= ≥Q Q  

(1) (1)
[ 0,]

T

i i
= ≥R R  (2) (2)

[ 0,]
T

i i
= ≥R R  1,2,...,i m=  

and common free-weighting matrices 

(1) (2) (3)
, ,,

T

i i i i
 =  N N N N  (1) (2) (3)

, ,,
T

i i i i
 =  M M M M  

(1) (2) (3)
, ,,

T

i i i i
 =  S S S S  1,2,...,i m=  

such that the following LMI hold: 

1

0, : [0, ] {1,2,..., },
m

i ss

i

N
σ

σ

=

Θ < ∀ ∞ →∑  (19) 

where , 1, ,
i
i m

σ
Θ = �  follows the definition in (16) 

except that �
κ

= ⊗H I H  and ( ) .T

i c i cσ κ σ κ
Γ = ⊗ΓE L E�  

Here, 
1

( ,)
m

ii
rank

σ
κ

=

= ∑ L
cκ

E  is the matrix composed 

of κ  columns of matrix E
c1. 

Proof: Similar to the procedure of state decomposition 

aforementioned, the disagree system can be obtained as 

follows 

1

( ) ( ) ( ) ( ) ( ).
m

n q

q

t t t
σ

δ δ δ τ

=

= ⊗ + ⊗Γ −∑ q
I H L�  (20) 

According to Definition 4, jointly-connected switching 

topologies do not require each topology having a 

spanning tree structure. With the assumption that (A5) 

holds, we have 

1

( ) , : [0, ] {1,2,..., }.
m

i ss

i

rank N
σ

κ σ

=

= ∀ ∞ →∑L  (21) 

Different from the case of strongly-connected fixed and 

switching topologies, define new † † †
1 2[( ) , ( ) ]T T T

δ δ δ=
� � �  

as follows 

(0)† ( 1) (0) ( 1)
1 1 1[ , , , , , , ] ,

l l T

n nκ κ
δ δ δ δ δ

− −

− −

=
� � � � �� � �  

(0) ( 1) (0) ( 1)
2 1 1
†

[ , , , , , , ] .
l l T

n nn nκ κ
δ δ δ δ δ

− −

− + − +
=

� � � � �� � �  

Then the stability of (20) is equivalent to the stabilities of 

the following two subsystems 

1
† ( )tδ
�� = 1

†( ) ( ),
n

t
κ

δ
−

⊗I H �  (22) 

2
† ( )tδ
�� = 2

†( ) ( )t
κ

δ⊗I H � + �

1

†
2( ) ( ).

m

q q

q

tσ δ τ
=

⊗Γ −∑ L �  (23) 

Here .

T

c cσ κ σ κ
=

q q
L E L E�  Analogously, assumption (A3) 

assures the Hurwitz stability of subsystem (22). Then, if 

there exist a common jointly quadratic Lyapunov-

Krasovskii(CJQLK) functional for subsystem (23) 

determined by all switching signal : [0, ) {1,2σ ∞ →  

... ,}
ss

N  the multi-agent systems with jointly-connected 

topologies achieve average consensus.  � 

Remark 1: There is no assumption on the derivative 

of communication delays in Theorem 1, Theorem 2 and 

Corollary 1. The conclusions can be obtained for any 

, 1,2,. ...i i mµ =  Therefore, the criteria derived from this 

paper generalize the work in [11-13]. If a new 

Lyapunov-Krasovskii functional is built includes the first, 



Average Consensus Seeking of High-order Continuous-time Multi-agent Systems with Multiple Time-varying... 

 

1215

the third and the fourth items of (12), we can obtain the 

delay dependent/derivative independent criteria. 

Remark 2: Stability criteria derived from Theorem 1, 

Theorem 2 and Corollary 1 are also valid for the agent 

with first-order or second-order dynamics when l=1 or 

l=2. We will illustrate the comparison results with the 

existing conclusions in Section 5. Moreover, the 

conclusions of Theorem 2 and Corollary 1 are valid for 

any switching signal σ because of the existence of CQLK 

or CJQLK functional for disagreement system. 

 

5. EXAMPLES AND DISCUSSIONS 

 

5.1. Illustrative example and simulation 

We now offer an illustrative example and simulation 

to show the effectiveness of the proposed method. Select 

Ga in Fig. 1 as the communication interconnection of 

third-order multi-agent systems with double communica-

tion delays. For simplicity, suppose that their adjacency 

matrices are limited to 0,1 matrices. 

Let 

1 2

1 1 0 1 0 1

0 1 1 , 1 1 0

1 0 1 0 1 1

− −   
   = − = −   
   − −   

L L  

denote the topology associated with two communication 

delays respectively. Assume that 
1

5,0.µ =
2

0.9µ =  

and 
1

1.0.0τ =  The coefficients in consensus protocol (2) 

are 
0

10,β =
1

10β =  and 
2

0.1β =  

With the above parameters and by using Matlab LMI 

Toolbox, we can obtain 
2

0.084τ =  through solving the 

feasible solution of (7). Numerical simulation further 

confirms the obtained result. It is clear from Fig. 2 that 

multi-agent systems achieve average consensus 

asymptotically. Plenty of experiment results show that 

the protocol with bigger coefficients or the topology with 

higher connectivity allows larger communication delays 

emphatically. 

 

5.2. Conservativeness comparisons 

In order to show the benefit of our results, we will 

compare the conservativeness of criteria with the existing 

Fig. 1. Six balanced digraphs (topology Ga, Gb, Gc is 

strongly connected, and the union of topology 

Gd, Ge and Gf is jointly connected). 

 

Table 1. Allowable upper bound on communication 

delay for first-order multi-agent systems with 

fixed topology Ga. 

 0µ = 0.5µ =  0.9µ =  any µ

[11] Theorem 1 0.471 0.408 0.349 - 

[11] Corollary 2 - - - 0.333 

Theorem 1 0.471 0.419 0.408 0.408 

 

Table 2. Allowable upper bound on communication 

delay for first-order multi-agent systems with 

strongly-connected switching topologies {Gb, 

Gc}. 

 0µ = 0.5µ =  0.9µ =  any µ

[12] Theorem 1 0.499 - - - 

[12] Theorem 2 0.499 0.249 0.049 - 

Theorem 2 0.577 0.540 0.540 0.540 

 

Table 3. Allowable upper bound on communication 

delay for first-order multi-agent systems with 

jointly-connected switching topologies {Gd, Ge, 

Gf}. 

 0µ = 0.5µ =  0.9µ =  any µ

[13] Theorem 1 0.499 0.249 0.049 - 

Corollary 1 0.625 0.590 0.584 0.584 

 

Fig. 2. State evolvement of multi-agent systems with double time-varying communication delays 
1
( ) 0.01tτ =

0.5
| sin( ) |

0.01
t⋅  and 

2

0.9
( ) 0.084 | sin( ) |

0.084
t tτ =  when 

0 1 2
1 .0β β β= = =  
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results for first-order [11-13] and high-order [14] multi-

agent systems with uniform communication delay. 

Tables 1 to 3 list the allowable upper bounds on 

communication delay for first-order multi-agent systems 

when β0=1, and Table 4 gives the results for third-order 

multi-agent systems when β0=1, β1=10 and β2=10.  

Remark 3: The comparison results show that the 

criterion derived from this paper are better than [11-14]. 

Moreover, the upper bound on the delay for any µ  can 

be achieved. There are two reasons which contributed to 

this. One is the term (2)

1

( ) ( )
i

m
t

T

i
t

i

s Q s ds
τ

δ δ
−

=

∑∫  added in 

Lyapunov-Krasovskii functional comparing with [12,13], 

which widens the range of the integral for 

communication delay; The other one is the FWM 

introduced in this paper which did not magnify the 

derivative of ( , ( ))V t tδ  unnecessarily. 

Table 4. Allowable upper bound on communication 

delay for third-order multi-agent systems with 

fixed topology Ga. 

 0µ =  0.5µ =  0.9µ =  any µ

[14] Theorem 1 3.616 3.479 3.191 - 

Theorem 1 4.129 3.635 3.613 3.613

 

Fig. 3. State evolvement of multi-agent systems with uniform communication delay ( ) 0.351stτ =  when the switching

interval is 1s for jointly-connected topologies , .,d e fG G G  

 

Fig. 4. State evolvement of multi-agent systems with uniform communication delay ( ) 0.351stτ =  when the switching

interval is 2s for jointly-connected topologies , .,d e fG G G  

 

Fig. 5. State evolvement of multi-agent systems with uniform communication delay ( ) 0.351stτ =  when the switching

interval is 3s for jointly-connected topologies , .,d e fG G G  
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5.3. Relationship between switching interval and 

convergence time 

As Theorem 2 and Corollary 1 mentioned, the criteria are 

valid for any switching signal σ because of the existence 

of CQLK or CJQLK functional for disagreement system. 

However, the switching interval for switching graphs is 

important to guarantee the convergence time of the 

consensus of multi-agent systems. Next, the simulation 

results will be given to illustrate the relationship between 

switching interval and convergence time for switching 

topologies. Select Gd, Ge, Gf in Fig. 1 as the jointly-

connected communication interconnections of third-

order multi-agent systems with uniform communication 

delay. Let 
0 1 2

1 ,0β β β= = =  the upper bound on 

communication equals to 0.351 by Corollary 1. The 

simulation results for different switching interval (1s, 2s 

and 3s) are given in Figs. 3 to 5. The conclusion can be 

obtained that higher ratio of the delay and the switching 

interval results in longer convergence time. Moreover, 

the vibration for high-order state is acute and getting 

worse. 
 

6. CONCLUSIONS 

 

The stability criteria for average consensus of high-

order multi-agent systems with multiple time-varying 

communication delays were provided in this paper. It can 

be used to justify the convergence property of multi-

agent systems with multiple time-varying communica-

tion delays and fixed/switching topologies. Mainly, the 

following contributions were concluded in this paper:  

1) Through justifying the existence of Lyapunov-

Krasovskii or common Lyapunov-Krasovskii functional, 

the stability criteria can be obtained to determine the 

average consensus for fixed and switching topologies. 

Further, the stability conclusion is extended to the case 

of jointly-connected interconnections. 

2) The existence of Lyapunov-Krasovskii or common 

Lyapunov-Krasovskii functional is equivalent to solving 

feasible solution of LMI. Meanwhile, FWM method was 

employed to justify whether the Lyapunov-Krasovskii 

functional derivative is negative definite to assure lower 

conservativeness than the existing results [11-14]. 

3) Moreover, the conclusions derived from Theorem 1, 

Theorem 2 and Corollary 1 also characterized the rela-

tionship among communication delays, their derivative 

and the coefficient of the consensus protocol. It can be 

regarded as an important basis to depress the influence of 

limited communication conditions effectively. 

Although the method proposed in this paper has less 

conservativeness, it is possible to improve the stability 

criteria and reduce the dimensions of the free weighting 

matrices to be determined. Suitable Lyapunov-

Krasovskii functional may be a possible way to achieve 

that goal, which deserves further research. 
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