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Abstract: This paper is devoted to the robust H∞ consensus control of multi-agent systems with model 

parameter uncertainties and external disturbances. In particular, switching networks of multiple agents 

with general linear dynamics are considered, and uncertain communication delays are also taken into 

account. It shows that a sufficient condition in terms of linear matrix inequalities (LMIs) is derived for 

the robust consensus performance with a given H∞ disturbance attenuation level, and meanwhile the 

unknown feedback matrix of the proposed distributed state feedback protocol is also determined. A 

numerical example is included to validate the theoretical results. 
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1. INTRODUCTION 

 

During the past decade, the decentralized cooperative 

control of multi-agent systems has been widely studied, 

such as flocking or swarming behaviors [1,2], formation 

control [3], and path planning [4], in which the 

consensus problem is commonly accepted as one of the 

most important and fundamental issues. For a multi-

agent system, consensus means that the states of all 

agents are driven to a common value by implementing 

distributed protocols, based on the communication 

networks. 

Recently, some researchers have solved the consensus 

problem of multi-agent systems with various external 

disturbances and random communication noises [11-18], 

on the basis of prior results for the determined systems 

[5-10]. For example, Li et al. considered the disturbance 

rejection problem arising in the coordination control of 

multi-agent systems with external disturbances in [13], 

and proved that this problem could be solved by 

analyzing the H∞ problem of a set of independent 

subsystems. In [14], Lin et al. studied the consensus 

problem of first-order multi-agent systems with external 

disturbances and communication uncertainties for 

directed networks with zero and nonzero time delays. It 

turned out that this problem could be transformed into a 

robust H∞ control problem. Furthermore, in [16], the 

consensus problem was solved for switching networks of 

multiple agents with linear coupling dynamics and 

subject to external disturbances, and a distributed 

dynamic output feedback protocol was proposed. 

However, the unavoidable model and parameter 

uncertainties in the agents’ dynamic equations, resulting 

from modeling errors and varying environmental 

parameters, are not considered in the existing work. This 

motivates us to investigate the consensus problem of 

multi-agent systems with both model uncertainties and 

external disturbances. 

In this paper, the consensus control problem is 

considered for switching networks of multiple agents 

modeled by general linear differential equations with 

both model uncertainties and external disturbances, and 

time delays arising from communication among agents 

are also taken into account. By reformulating the 

consensus control problem as a robust H∞ control 

problem, a distributed protocol using the local delayed 

state information is proposed with an undetermined 

feedback matrix, and then sufficient conditions in terms 

of LMIs are given to ensure the consensus performance 

with a given H∞ index and meanwhile determine the 

system matrix of the proposed protocol. Finally, 

simulation results show that under the proposed protocol, 

an uncertain multi-agent system with switching topology 

can reach the desired consensus performance in the 

presence of communication delays. 

 

2. PROBLEM REFORMULATION AND 

PROTOCOL DESIGN 

 

2.1. Problem statement and preliminaries 

Consider a multi-agent system consisting of n identical 

agents with the ith one modeled by the following linear 

dynamics 

1 2
( ) ( ) ( ) ( ),
i i i i
x t Ax t B t B u tω= + +�  (1) 

where ( ) m

i
x t ∈� is the state, 2( )

m

i
u t ∈�  is the control 

input or protocol, and 1( )
m

i
tω ∈� is the external 

disturbance that belongs to L2[0,∞), the space of square-
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integrable vector functions over [0,∞). If system matrices 

A, B1, B2 are uncertain, they are assumed to take the 

following forms: 

0 1 10 1

2 20 2

( ), ( ),

( ),

A A A t B B B t

B B B t

= + ∆ = + ∆

= + ∆

 (2) 

where 
0
,A

10
,B

20
B  are constant matrices, and ( ),A t∆  

1
( ),B t∆

2
( )B t∆  are time-varying uncertain matrices 

satisfying 

1 2 1 2 3
[ ( ) ( ) ( )] ( )[ ].A t B t B t E t F F F∆ ∆ ∆ = Σ  (3) 

In (3), E and ( 1,2,3)
i

F i =  are constant matrices of 

appropriate dimensions, and Σ(t) is an unknown time-

varying matrix that satisfies ( ) ( ) .t t I
Τ

Σ Σ ≤  It is also 

assumed that 
0 20

( , )A B  is stabilized. A protocol ( )
i
u t is 

said to asymptotically solve the consensus problem, if 

and only if the states of agents satisfy 

lim( ( ) ( )) , , {1, , } .i j
t

x t x t i j n N
→∞

− = ∀ ∈0 � �  (4) 

Undirected graphs are used to model the interaction 

topologies among agents. Let ( , , )G V E Γ=  be an 

undirected weighted graph of order n with the set of 

nodes 
1

{ , , },
n

V v v= �  the set of undirected edges E ⊆  

,V V×  and a symmetric adjacency matrix [ ]ijaΓ =  

with weighting factors 0.ija ≥  It is stipulated that the 

adjacency elements associated with edges are positive, 

i.e., ( , )i jv v E∈  or ( , )j iv v E∈  if and only if aij jia=  

> 0. In particular, it is assumed that 0
ii
a =  for .i N∀ ∈  

In graph G, node vi represents the ith agent, and edge (vi, 

vj) represents that information is exchanged between 

agents i and j. Then the set of neighbors of vi is denoted 

by { : ( , ) }.i j i jN v V v v E= ∈ ∈  The Laplacian matrix of 

a weighted graph G is defined as ,L D Γ= −  where 

diagonal matrix 
1

diag{ , , }
n

D d d= � is named the 

degree matrix of G, whose diagonal elements are 

1
,

n
i j ijd a

=
= Σ 1, , .i n= �  An undirected path is a 

sequence of ordered edges of the form 
1 2

( , ),
i i
v v  

2 3
( , ),

i i
v v � in an undirected graph, where .

ji
v V∈  If 

there is an undirected path from every node to every 

other node, the graph is said to be connected. 

To describe the variable topologies, a piecewise-

constant switching signal function ( ) : [0, )tσ ∞ �  

{1,2, , }M Ω� �  is defined, where M
+

∈�  denotes 

the total number of all possible interaction undirected 

graphs. Then the interaction graph at time instant t is 

denoted by Gσ(t), and the corresponding Laplacian matrix 

is Lσ(t). In this paper, the switching graph Gσ(t) is assumed 

to be always connected for ( ) .tσ∀ ∈Ω  

Lemma 1 [6]: Let L be the Laplacian matrix 

associated with an undirected graph G. Then L has at 

least one zero eigenvalue and all of the nonzero 

eigenvalues are positive. Furthermore, matrix L has 

exactly one zero eigenvalue if and only if the undirected 

graph G is connected, and the eigenvector associated 

with zero is 1. 

Lemma 2 [8]: Let [ ]
ij

n n

c c
L L

×

= ∈�  be a symmetric 

matrix with 

( 1) / ,

1/ , ,ijc

n n i j
L

n i j

− =
= 

− ≠
 (5) 

then the following statements hold: 

1)  The eigenvalues of Lc are 1 with multiplicity 1n −  

and 0 with multiplicity 1. The vectors 1T and 1 are the 

left and the right eigenvectors of Lc associated with the 

zero eigenvalue, respectively. 

2)  There exists an orthogonal matrix ,

n n

U
×

∈�  

whose last column is ,n1/  such that 
c

U L U
Τ

=  

1
0

0 0

n
I

−
 
 
 

 holds. Let n n

X
×

∈�  be the Laplacian 

matrix of any given undirected graph, then 

1
0

0 0

X
U XU

Τ  
=  
 

 holds, where ( 1) ( 1)
1

n n

X
− × −

∈� is 

positive definite if and only if the graph is connected. 

 

2.2. Problem reformulation 

According to [16], we define controlled output func-

tions 

1

1
( ) ( ) ( ), 1, , ,

n

i i j

j

z t x t x t i n
n

=

= − =∑ �  (6) 

to reformulate the consensus control problem of multi-

agent system (1) as the following H∞ control problem: 

1 2
( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

n n n

c m

x t I A x t I B t I B u t

z t L I x t

ω= ⊗ + ⊗ + ⊗

= ⊗

�

 (7) 

where 
1

( ) [ ( ) ( )] ,mn

n
x t x t x t

Τ Τ Τ
= ∈� �

1
( ) [ ( )t tω ω

Τ
= �  

1( )] ,
m n

n
tω

Τ Τ
∈� 2

1
( ) [ ( ) ( )] ,

m n

n
u t u t u t

Τ Τ Τ
= ∈� � ( )z t =

1
[ ( ) ( )] ,mn

n
z t z t
Τ Τ Τ

∈� �  and 
c

L  is defined in (5). Then, 

the objective is to design distributed protocols 

( )
i
u t ( 1, , )i n= �  such that 

2

2

( ) [0, ) 2

|| ( ) ||
|| ( ) || sup ( ( j )) sup ,

|| ( ) ||
z z

v t L

z t
T s T v

t
ω ω

ω

σ γ

ω
∞

∈ ≠ ∈ ∞

= = <

0�

 

where Tzω(s) represents the closed-loop transfer function 

matrix from ( )tω  to z(t), 0γ > is a given H∞ perfor-

mance index, and ( )σ i  denotes the largest singular 

value. Equivalently, the closed-loop system satisfies the 

following dissipation inequality 

2 2 2

2
0 0
|| ( ) || d || ( ) || d , ( ) [0, ).z t t t t t Lγ ω ω

∞ ∞

< ∀ ∈ ∞∫ ∫  

 

2.3. Protocol design 

Using the neighbors’ local information, the protocol of 
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agent i is designed as 

( )

( ) ( )[ ( ( )) ( ( ))],

i

i ij i j

j N t

u t K a t x t d t x t d t

∈

= − − −∑  (8) 

where d(t) ≥ 0 is the time-varying communication delay 

and d(t)≡0 holds in non-delayed networks, Ni(t) is the 

neighbor set of agent i at time instant t, aij(t) are 

adjacency elements of the corresponding interaction 

graph, and K is an undetermined feedback matrix. 

Substituting protocol (8) into the system (7) results in the 

following closed-loop system 

( ) 2

1

( ) ( ) ( ) ( ) ( ( ))

( ) ( ),

( ) ( ) ( ).

n t

n

c m

x t I A x t L B K x t d t

I B t

z t L I x t

σ

ω

= ⊗ + ⊗ −

+ ⊗

= ⊗

�

 (9) 

 

3. CONDITIONS OF ROBUST H
∞
 CONSENSUS 

 

In this section, the robust H∞ theory is employed to 

investigate the robust H∞ performance of switched 

system (9), and sufficient conditions in terms of LMIs 

are derived to ensure the desired consensus performance 

of multi-agent system (1) with switching topology. In the 

following, we assume that the time-varying 

communication delay in (8) satisfies 

(C1)  0 ( ) ,d t d≤ ≤ ( )d t h≤�  for 0,t ≥  where 0d >  

and 0,h ≥  or 

(C2)  0 ( )d t d≤ ≤  for 0,t ≥  where 0.d >  

Note that the concerned state solution of system (9), 

implying the strict consensus of all agents, is x(t)= c⊗1  

with .

m

c∈�  In order to apply the existing robust H∞ 

theory, the obove nonzero solution must be transformed 

to be zero by some equivalent model transformations, 

which will be presented in the first subsection. 

 

3.1. Model transformation 

By Lemma 2, there exists an orthogonal matrix 
n n

U
×

∈�  such that 

1

1 ( )

( ) ( )

0
,

0 0

0
,

0 0

n

c c

t

t t

I
U L U L

L
U L U L

σ

σ σ

−Τ

Τ

 
=  
 

 
=  
 

�

�

 (10) 

where 1 ( )tL
σ

 is positive definite since the graph 

( )tG
σ

is connected. For the convenience of discussion, 

denote 
1 2

[ ]U U U=  with 
2

U n= 1/  being its last 

column. Let 

1

1

2

2

ˆ( ) ( ) ( )
ˆ( ) ( ) ( ) ,

ˆ( ) ( ) ( )

m

m

m

U I x t x t
x t U I x t

U I x t x t

Τ

Τ

Τ

   ⊗
= ⊗ =    

⊗     
�  

1

1

1

1
1

2

2

( ) ( ) ˆ ( )
ˆ ( ) ( ) ( ) ,

ˆ( ) ( ) ( )

m

m

m

U I t t
t U I t

U I t t

ω ω

ω ω

ω ω

Τ

Τ

Τ

 ⊗  
 = ⊗ =  
 ⊗    

�  

1

1

2

2

( ) ( ) ˆ ( )
ˆ( ) ( ) ( ) ,

ˆ( ) ( ) ( )

m

m

m

U I z t z t
z t U I z t

U I z t z t

Τ

Τ

Τ

   ⊗
= ⊗ =    

⊗     

�  (11) 

where 

1

( ) ( ) ( ( )) ( ) ( ).
n

j c m

j

x t x t x t L I x t
n

=

= − ⊗ = ⊗∑
1

 (12) 

From (9), (10), (11), and (12), we have 

( ) 2

1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ))

ˆ( ) ( ),

ˆˆ( ) ( ) ( ),

c c t

c

c m

x t L A x t L L B K x t d t

L B t

z t L I x t

σ

ω

= ⊗ + ⊗ −

+ ⊗

= ⊗

�

 (13) 

which can be divided into the following two subsystems: 

1 1 1
1 1 ( ) 2

1
1 1

1 1 1
( )

1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ))

ˆ( ) ( )

ˆˆ ˆ( ) ( ( )) ( ),

ˆˆ ( ) ( ),

n t

n

t

x t I A x t L B K x t d t

I B t

Ex t F x t d t G t

z t x t

σ

σ

ω

ω

−

−

= ⊗ + ⊗ −

+ ⊗

+ − +

=

�

�
 (14) 

and 2ˆ ( ) 0,x t =
� 2ˆ ( ) 0.z t =  Obviously, || ( ) ||

z
T s

ω ∞
=  

1 1ˆˆ ˆˆ
|| ( ) || || ( ) ||

z
z

T s T s
ω

ω
∞ ∞
=  holds by the definition of H∞ 

norm. Therefore, we can analyze the H∞ performance of 

the reduced-order system (14) instead of (9). To 

summarize, the robust consensus performance of the 

closed-loop multi-agent system (9) is achieved with H∞ 

disturbance attenuation index γ, if the system (14) is 

asymptotically stable and satisfies the H∞ performance 

level γ. 

 

3.2. Condition establishment 

Rewrite the equivalent form of (14) as 

1ˆ ( )x t
� = 1

1 1 ( ) 2 1 ( ) 2ˆ( ) ( ) ( )
n t t
I A L B K x t L B K

σ σ−

⊗ + ⊗ + ⊗  

1 1 1
1 1

1 1
( ) ( )

1 1

ˆˆ ˆ( ( ( )) ( )) ( ) ( )

ˆˆ ( ) ( ) ( ),

ˆˆ ( ) ( ),

n

t t

x t d t x t I B t

H x t F t G t

z t x t

σ σ

ω

η ω

−

⋅ − − + ⊗

+ +

=

�  (15) 

i.e., 1ˆ ( ( ))x t d t− – 1ˆ ( ) ( ).x t tη�  To analyze the H∞ 

performance of the delayed system (15), we introduce 

the following lemmas. 

Lemma 3 (Schur Complement Formula): Let F= 
2
, 1[ ]

n n
ij i jF

×

=
∈� be a symmetric matrix in the partitioned 

form, where 
11

,r r

F
×

∈�
( )

12
r n r

F
× −

∈�  and 
22

F ∈  

( ) ( )
.

n r n r− × −

�  Then 0F <  if and only if 
11

0,F <  F22– 

1

21 11 12
0F F F

−

<  or equivalently 
22

0,F <
1

11 12 22 21
F F F F

−

−  

0.<   

Lemma 4 [9]: For any real differentiable vector 

function ( ) n

x t ∈�  and any n n×  constant matrix W= 

0,W
Τ
>  we have 
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1

( )

[ ( ) ( ( ))] [ ( ) ( ( ))]

( ) ( )d , 0,
t

t d t

d x t x t d t W x t x t d t

x s Wx s s t

− Τ

Τ

−

− − − −

≤ ∀ ≥∫ � �

 (16) 

where d(t) satisfies (C1) or (C2). 

Lemma 5: For any given index 0,γ >  the system 

(15) is asymptotically stable and 1 1
ˆˆ

|| ( ) ||
z

T s
ω

γ
∞
<  holds 

for any d(t) satisfying (C1) or (C2), if there exist positive 

definite matrices ( 1) ( 1)
,

n m n m

R S
− × −

∈�  such that 

( ) ( ) ( ) ( )

( ) ( )

2

( ) ( )

0 0

0
0 0

0

0 0 0

t t t t

t t

t t

RH H R RF RG dH S I

F R S dF S

G R I dG S

dSH dSF dSG S

I I

σ σ σ σ

σ σ

σ σ

γ

Τ Τ

Τ Τ

Τ Τ

 +
 
 −
 

< −
 

− 
 −  

 (17) 

holds for ( ) .tσ∀ ∈Ω  

Proof: Firstly, we study the stability of system (15) 

without external disturbances. Define a common 

Lyapunov function as 

1 1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )d ,
t

t d
V t x t Rx t d t d x Sxτ τ τ τ

Τ Τ

−
= + − +∫ � �  

where ( 1) ( 1), n m n m

R S
− × −

∈�  are positive definite. The 

time derivative of V(t) is 
 

1 1 1
( ) ( ) ( )

2 1 1 1 1

( )

1 1 1
( ) ( ) ( )

2 1 1

1
( ) (

ˆ ˆ ˆ( ) ( )( ) ( ) 2 ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )d

ˆ ˆ ˆ( )( ) ( ) 2 ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

ˆ ( )(

t t t

t

t d t

t t t

t t

V t x t RH H R x t x t RF t

d x t Sx t d x Sx

x t RH H R x t x t RF t

d x t Sx t t S t

x t RH H

σ σ σ

σ σ σ

σ σ

η

τ τ τ

η

η η

Τ Τ Τ

Τ Τ

−

Τ Τ Τ

Τ Τ

Τ

≤ + +

+ −

≤ + +

+ −

= +

∫

�

� � � �

� �

1 1
) ( )

2 1 1
( ) ( ) ( )

( )

( ) ( ) ( )1

( )

1
( ) 1

( ) ( )

( )

ˆ ˆ) ( ) 2 ( ) ( )

ˆ ˆ[ ( ) ( )] [ ( )

( )] ( ) ( )

ˆ[ ( ) ( )]

ˆ (
[ ]

t

t t t

t

t t t

t

t

t t

t

R x t x t RF t

d H x t F t S H x t

F t t S t

RH H R RF

x t t

F R S

dH S x t
S dSH dSF

dF S

σ

σ σ σ

σ

σ σ σ

σ

σ

σ σ

σ

η

η

η η η

η

Τ Τ

Τ

Τ

Τ

Τ Τ

Τ

Τ

−

Τ

+

+ +

+ −

  +
  =
  − 

 
 +
 

  

)
,

( )tη

 
 
 

 

where Lemma 4 has been applied in the second step. 

Then by Lemma 3, if 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0,

t t t t

t t

t t

RH H R RF dH S

F R S dF S

dSH dSF S

σ σ σ σ

σ σ

σ σ

Τ Τ

Τ Τ

 +
 
 − <
 

− 
 

 (18) 

then ( ) 0V t <
�  holds. Therefore, the system (15) is 

asymptotically stable when 1ˆ ( ) 0,tω ≡  since (18) can be 

guaranteed by the condition (17) due to Lemma 3. 

Subsequently, we discuss the performance of system 

(15) with nonzero disturbance 1ˆ ( ).tω  By the similar 

method in the stability analysis, we find that the time 

derivative of V(t) along the solution to (15) satisfies 
 

1 ( ) ( ) ( )

( )

1

1
( )

1
( ) ( )( )

1

( )

ˆ ( )

( ) ( ) 0

ˆ ( ) 0 0

ˆ ( )

[ ] ( )

ˆ ( )

( ) ( ),

t t t

t

t

t tt

t

RH H R RF RG
x t

V t t F R S

t G R

dH S x t

S dSH dSF dSG tdF S

tdG S

t t

σ σ σ

σ

σ

σ σσ

σ

η

ω

η

ω

ς ς

ΤΤ

Τ

Τ

Τ

−Τ

Τ

Τ

  +        ≤ −           

   
   
 +  
        

Θ

�

�

 

where 1 1ˆˆ( ) [ ( ) ( ) ( )] .t x t t tς η ω
Τ Τ Τ Τ

=  For any 0,T >  

consider the following cost function 

1 1 2 1 1

0 0

ˆ ˆˆ ˆ( ) ( )d ( ) ( ) d .
T T

T
J z t z t t t t tγ ω ω

Τ Τ
= −∫ ∫  

Under the zero initial condition ( (0) 0),V =  we have 

1 1 2 1 1

0

2
( )0

( )0

ˆ ˆˆ ˆ[ ( ) ( ) ( ) ( ) ( )]d ( )

[ ( )( diag{ ,0,- }) ( )]d ( )

( ) ( )d ( ).

T

T

T

t

T

t

J x t x t t t V t t V T

t I I t t V T

t t t V T

σ

σ

γ ω ω

ς γ ς

ς ς

Τ Τ

Τ

Τ

= − + −

≤ Θ + −

Θ −

∫

∫

∫

�

�

 

According to Lemma 3, the condition (17) is equivalent 

to ( ) 0,
tσ

Θ <  from which 0
T
J <  follows. That is, 

1 2 2 1 2

0 0

ˆˆ|| ( ) || d || ( ) || d .
T T

z t t t tγ ω<∫ ∫  

Let ,T →∞  we have 1 2 2 1 2

0 0

ˆˆ|| ( ) || d || ( ) ||z t t tγ ω
∞ ∞

<∫ ∫  

dt, which completes the proof. � 

First of all, we consider the multi-agent system (1) by 

neglecting the model uncertainties in (2), i.e., matrices A, 

B1, B2 are known constant. Denote ( )t iσ
λ as the ith 

positive real eigenvalue of matrix ( ) ,t
L
σ

1, , 1.i n= −�  

Let iσ
∗ ∗

 and iσ
∗ ∗  be the subscripts associated with 

the minimum and the maximum nonzero eigenvalues of 

all matrices ( ) ,t
L
σ

 respectively. 

Theorem 1: Under protocol (8), the multi-agent 

system (1) achieves consensus with a given H∞ 

disturbance attenuation index γ, if there exists a scalar 

0,α >  a positive definite matrix m m

P
×

∈�  and a 

matrix 2m m

Q
×

∈�  such that linear matrix inequality 

(LMI) 
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( ) ( ) ( ) 2 1 ( )

( ) 2 ( ) 2

2
1 1

( ) ( ) 2 1

0 0

0 0

0

0 0 0

t i t i t i t i

t i t i

t i t i

B Q B d P

Q B P d Q B

B I dB

d d B Q dB P

P I

σ σ σ σ

σ σ

σ σ

αλ

αλ α αλ

γ

αλ α

Τ Τ

Τ Τ Τ Τ

Τ Τ

 Ψ +Ψ Ψ
 
 −
 
 −
 
 Ψ −
 
 − 

 0<  (19) 

is satisfied for ( )t i iσ σ
∗ ∗

=  and ,iσ
∗ ∗  where ( )t iσ

Ψ =  

( ) 2 .

t i
AP B Q

σ
λ+  If the above two LMIs are feasible, 

then the feedback matrix of the consensus protocol is 

given by 

1
.K QP

−

=  (20) 

Proof: By Lemma 5, the multi-agent system (1) 

achieves consensus with the H
∞ index γ under protocol 

(8), if there exist positive definite matrices 
( 1) ( 1)

,

n m n m

R S
− × −

∈�  satisfying (17) for ( ) .tσ∀ ∈Ω  

To simplify the consensus condition analysis, let the 

undetermined matrices R and S in inequality (17) take the 

special form: 
1n

R I R
−

= ⊗  and 
1

.

n
S I S

−

= ⊗  

Since matrix 1 ( )tL
σ

is positive definite, there exists an 

orthogonal matrix ( 1) ( 1)
1 ( )

n n

t
U

σ

− × −

∈�  such that 

1 ( ) 1 ( ) 1 ( ) ( )1 ( )2 ( )( 1)diag{ , , , },
t t t t t t n

U L U
σ σ σ σ σ σ

λ λ λ
Τ

−
= �  where 

( )t iσ
λ ( 1, , 1)i n= −�  are the positive eigenvalues of 

( ) .t
L
σ

 Let 1 ( ) 1 ( ) .
t t m

U U I
σ σ

= ⊗  According to the proof 

of theorem 3.3 in [16], we pre- and post-multiply the 

matrix inequality (17) with 1 ( ) 1 ( )diag{ , ,
t t

U U
σ σ

ϒ =  

1 ( ) 1 ( ) 1 ( ), , }
t t t

U U U
σ σ σ

Τ
 and ,

Τ
ϒ  respectively, and 

conduct the elementary transformation of matrices to 

obtain a series of matrix inequalities 

( )

( ) ( ) ( ) 1 ( )

( ) ( )

2
1 1

( ) ( ) 1

0 0

0 0

0

0 0 0

0, 1, , 1,

t i

t i t i t i t i

t i t i

t i t i

RH H R RF RB dH S I

F R S dF S

B R I dB S

dSH dSF dSB S

I I

i n

σ

σ σ σ σ

σ σ

σ σ

γ

Τ Τ

Τ Τ

Τ Τ

Φ =

 +
 
 −
 
 −
 

− 
 −  

< = −�

 

 (21) 

that are equivalent to (17), where ( )t iH A
σ

= +  

( ) 2t i
B K

σ
λ  and ( ) ( ) 2 .

t i t i
F B K
σ σ

λ=  

To determine the feedback matrix K, let 1
,S Rα

−

=  

0.α >  Then pre- and post-multiplying (21) with 
1 1 1diag{ , , , , }R S I S I

− − −  leads to the LMI (19) with 

1
R P
−

=  and 1
.KR Q

−

=  Note that (19) is an LMI in 

terms of matrices P and Q. Due to the convex property of 

LMIs, if (19) holds when ( )t iσ
λ  takes its extreme values 

iσ
λ

∗ ∗

 and ,

iσ

λ
∗ ∗

 then the LMI (19) holds for ( ) .t iσ∀  

Consequently, the multi-agent system (1) achieves 

consensus with H∞ index γ  if (19) is satisfied for 

( )t i iσ σ
∗ ∗

=  and .iσ
∗ ∗  Further, if the above two LMIs 

are feasible, then (20) is derived from KP = Q.    � 

According to the previous development, the consensus 

condition is further given for the multi-agent system (1) 

with model uncertainties (2). 

Lemma 6: Given symmetric matrices , ,

n n

X Y Z
×

∈�  

satisfying 0,X ≥ 0,Y < 0,Z ≥  the inequality 

2( ) 4 0Y X Zζ ζ ζ ζζ ζΤ Τ Τ
− >  (22) 

holds for any vector ,

nζ≠ ∈0 �  if and only if there 

exists a scalar 0λ >  such that 

2
0.X Y Zλ λ+ + <  (23) 

Proof: The necessity is obtained from Lemma 4 of 

chapter 5 in [19]. And the sufficiency can be easily 

derived by pre- and post-multiplying the matrix 

inequality (23) with nonzero vectors ζ T and ζ.     � 

Theorem 2: Under protocol (8), the multi-agent 

system (1) with model uncertainties (2) achieves robust 

consensus with a given H∞ disturbance attenuation index 

,γ  if for scalars ,α 0,λ >  there exists a positive 

definite matrix m m

P
×

∈�  and a matrix 2m m

Q
×

∈�  

such that LMI 

( ) ( ) ( ) 20 10 ( )

( ) 20 ( ) 20

2
10 10

( ) ( ) 20 10

1 1 1
( ) ( ) 3 2

0

0

0 0 0

0 0

0

t i t i t i t i

t i t i

t i t i

t i t i

B Q B d

Q B P d Q B

B I dB

d d B Q dB P

P

E dE

F Q F

σ σ σ σ

σ σ

σ σ

σ σ

αλ

αλ α αλ

γ

αλ α

λ λ

λ χ αλ λ λ

Τ Τ

Τ Τ Τ Τ

Τ Τ

Τ Τ

− − −

Ψ +Ψ Ψ

 −

 −

 Ψ −







 

1
( )

1
( ) 3

1
2

0 0

0 0

0,0 0

0 0

0 0

0 0

t i

t i

P E

Q F

F

dE

I

I

I

σ

σ

λ λ χ

αλ λ

λ

λ

− Τ

− Τ Τ

− Τ







 <

−

−

− 

 

( ) 0 ( ) 20

( ) 1 ( ) 3

,
t i t i

t i t i

A P B Q

F P F Q

σ σ

σ σ

λ

χ λ

Ψ = +

= +
 (24) 

is satisfied for ( )t i iσ σ
∗ ∗

=  and .iσ
∗ ∗  If the above two 
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LMIs are feasible, then the feedback matrix of the 

consensus protocol can be determined by (20). 

Proof: Combining the proof of Theorem 1 with the 

definition of negative definite matrices, the multi-agent 

system (1) reaches the desired robust H∞ consensus if 

( ) 0
t iσ

ξ ξΤ
Φ <  holds for any nonzero vector ξ  and 

( ) .t iσ∀  From (2) and (3), we know that ( ) ( )t i t iσ σ
Φ = Φ  

( ) ,t iσ
+∆Φ  where 

 

( )

( ) ( ) ( ) 10 ( )

( ) ( )

2
10 10

( ) ( ) 10

0 0

,
0 0

0

0 0 0

t i

t i t i t i t i

t i t i

t i t i

RH H R RF RB dH S I

F R S dF S

B R I dB S

dSH dSF dSB S

I I

σ

σ σ σ σ

σ σ

σ σ

γ

Τ Τ

Τ Τ

Τ Τ

Φ =

 +
 
 −
 
 −
 

− 
 −  

( ) 0 ( ) 20 ( ) ( ) 20, ,
t i t i t i t i

H A B K F B K
σ σ σ σ

λ λ= + =  and 

( )t iσ
∆Φ =  

( )

( ) 2 ( )

( )

( ) ( )

2 2

( ) ( ) 2

(
( ) 0

)

0 0 0
,

( ) 0 0 ( ) 0

( ) 0 0

0 0 0 0 0

t i

t i t i

t i

t i t i

t i t i

R H

R F RE t F d H S

H R

F R d F S

F t E R dF t E S

dS H dS F dSE t F

σ

σ σ

σ

σ σ

σ σ

Τ

Τ

Τ Τ

Τ Τ Τ Τ Τ Τ

 ∆
 ∆ Σ ∆
 +∆
 
 ∆ ∆
 
 Σ Σ
 

∆ ∆ Σ 
   

( ) 1 ( ) 3

( ) ( ) 3

( ) ( ) ,

( ) .

t i t i

t i t i

H E t F E t F K

F E t F K

σ σ

σ σ

λ

λ

∆ = Σ + Σ

∆ = Σ

 

 

Let 
1 2 3 4 5

[ ]ξ ξ ξ ξ ξ ξΤ Τ Τ Τ Τ Τ
=  be a nonzero vector. The 

inequality ( ) 0
t iσ

ξ ξΤ
Φ <  holds if and only if 

( ) ( ) 1 4

1 ( ) 3 1 ( ) 3 2 2 3

2[ ] ( )

[( ) ]

0

t i t i

t i t i

RE d SE t

F F K F K F

σ σ

σ σ

ξ ξ ξ ξ ξ ξ

λ ξ λ ξ ξ

Τ Τ Τ Τ
Φ = Φ + + Σ

+ + +

<

 

 (25) 

is satisfied for any ( ) ( ) .t t I
Τ

Σ Σ ≤  Actually, if one takes 

0 ( )

0 2 ( ) 2

( )
|| || || ||

t i

t i

t
σ

σ

ϑ ϑ

ϑ ϑ

Τ

Σ =  (26) 

with 
0 1 4

E R dE Sϑ ξ ξ
Τ Τ

= +  and ( ) 1 ( ) 3( )
t i t i

F F K
σ σ

ϑ λ= +  

1 ( ) 3 2 2 3 ,t i
F K F

σ
ξ λ ξ ξ+ +  then ( )t iσ

ξ ξΤ
Φ  reaches its 

maximum value. Therefore, (25) holds for any Σ(t) 

satisfying ( ) ( )t t I
Τ

Σ Σ ≤  if and only if it holds when 

Σ(t) is taken as (26). instituting (26) into (25) leads to 

( ) ( )2 0,
t i t i

X Z
σ σ

ξ ξ ξ ξ ξ ξΤ Τ Τ
Φ + <  (27) 

where 

2

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

REE R dREE S

X

dSEE R d SEE S

Τ Τ

Τ Τ

 
 
 
 =
 
 
 
  

 (28) 

and 

( )t iZ
σ

=  

( ) ( ) ( ) ( ) 3 ( ) 2

2
( ) 3 ( ) ( ) 3 3 ( ) 3 2

2 ( ) ( ) 2 3 2 2

0 0

0 0

0 0

0 0 0 0 0

0 0 0 0 0

t i t i t i t i t i

t i t i t i t i

t i t i

Y Y Y F K Y F

K F Y K F F K K F F

F Y F F K F F

σ σ σ σ σ

σ σ σ σ

σ σ

λ

λ λ λ

λ

Τ Τ Τ

Τ Τ Τ Τ Τ Τ

Τ Τ Τ

 
 
 
 
 
 
 
 
  

 (29) 

with ( ) 1 ( ) 3 .

t i t i
Y F F K
σ σ

λ= +  Obviously, (27) is satisfied 

if and only if ( ) 0
t iσ

Φ <  and 

2
( ) ( )( ) 4 0.
t i t i

X Z
σ σ

ξ ξ ξ ξξ ξΤ Τ Τ
Φ − >  (30) 

Using Lemma 6, we obtain that (30) holds if and only if 

there exists a scalar 0λ >  satisfying 

2 2
( ) ( ) 0.
t i t i

X Z
σ σ

λ λ
−

Φ + + <  

Inserting (28) and (29) into the above inequality results 

in 

( ) 0
t i

W W
σ

Τ
Φ + <  (31) 

with 

1 1 1
( ) ( ) 3 2

0 0 0
.

0 0
t i t i

E R dE S
W

Y F K F
σ σ

λ λ

λ λ λ λ

Τ Τ

− − −

 
 =
  

 

According to Lemma 3, matrix inequality (31) becomes 

( )
0.

t i
W

W I

σ

Τ Φ
< 

−  
 (32) 

Similar to Theorem 1, pre- and post-multiplying (32) 

with the symmetric matrix 1 1 1diag{ , , , , , , }R S I S I I I
− − −  

and letting 1
S Rα

−

= ( 0)α >  lead to the LMI (24) with 

1
R P
−

=  and 1
.KR Q

−

=  Combining with the convex 

property of LMIs, we have that if for a scalar 0,λ >  

there exists a positive definite matrix P and a matrix Q 

such that the LMI (24) holds for ( )t i iσ σ
∗ ∗

=  and 

,iσ
∗ ∗  then the multi-agent system (1) with model 

uncertainties (2) achieves robust consensus with the H
∞ 

index γ  under protocol (8). Further, if the above two 

LMIs are feasible, then 1
K QP

−

=  is derived.    � 
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4. SIMULATION RESULTS 

 

In this section, we provide a simulation example to 

illustrate the robust consensus performance of uncertain 

multi-agent systems under the proposed protocol. In 

particular, a network of four agents is considered, and the 

matrices in (1) and (2) are 

0 10 20

0 1 0 1 0
, , ,

2 1 1 0 2
A B B

−     
= = =     
     

 

sin(10 ) 00 0
, ( ) ,

0.2 0.2 0 1 t

t
E t

e
−

  
= Σ =   

−   
 

1 2 3

0.4 0 0.3 0.2 0
, , .

0 0.5 0.3 0 0.2
F F F

     
= = =     
     

 

Here, the communication delay in networks is d(t)= 

0.1cos(t) that satisfies (c1). The external disturbance is 

supposed to be 

1 2 3 4
( ) [ ( ) ( ) ( ) ( )]

[2 ( ) 1.5 ( ) 1.2 ( ) 1.8 ( )]

t t t t t

w t w t w t w t

ω ω ω ω ω
Τ

Τ

=

= −

 

with w(t) shown in Fig. 1, which is band-limited white 

noise on the time interval [0,10]. The H∞ performance 

index is chosen as γ =1. For simplicity, the possible 

interaction graphs are constrained to be within the set 

1 2 3{ , , }G G G  as given in Fig. 2, and it is assumed that all 

the nonzero weighting factors are 1. Then the maximum 

and the minimum nonzero eigenvalues of the 

corresponding three Laplacian matrices are 4 and 0.5858. 

According to Theorem 2, the feedback matrix of 

protocol (8) can be determined as 

2.2684 0.2213

0.1565 1.0674
K

− − 
=  − − 

 

by solving two LMIs related to ( ) 4
t iσ

λ =  and 0.5858. 

Fig. 3 depicts the state trajectories of four agents 

,1 ,2( ) [ ( ) ( )]
i i i
x t x t x t

Τ
=  under the designed protocol. It 

can be seen that the disagreements among agents are 

small compared with the intensity of external disturbance 

given in Fig. 1, and all agents reach consensus again 

within 12s. Fig. 4 exhibits the energy relationship 

between the controlled output z(t) and the external 

disturbance ω(t). Obviously, the consensus is achieved 

with H∞ disturbance attenuation index 1 in the presence 

of delay d(t), which validates the effectiveness of the 

proposed protocol and demonstrates the correctness of 

the obtained theoretical results. 

 

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

2.5

t

w
(t
)

 

Fig. 1. Trajectory of w(t). 

 

  

(a) G1. (b) G2. (c) G3. 

Fig. 2. Undirected interaction graphs. 
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(b) The second element: ,2 ( ).i
x t  

Fig. 3. State trajectories of four agents. 
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5. CONCLUSIONS 

 

By applying the robust H∞ theory, we have addressed 

the consensus control problem for switching networks of 

autonomous agents with model uncertainties, subject to 

external disturbances and communication delays. 

Sufficient conditions are given to ensure the consensus 

performance with a given H
∞
 disturbance attenuation 

level for the disturbed multi-agent system without and 

with model uncertainties respectively, and meanwhile 

determine the feedback matrix of the proposed 

distributed state-feedback protocol accordingly. 

Simulation results illustrate the satisfactory robust 

consensus performance of uncertain multi-agent systems 

under the designed protocol. 
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