
International Journal of Control, Automation, and Systems (2011) 9(5):966-972 
DOI 10.1007/s12555-011-0518-3 

 

http://www.springer.com/12555

Exponential P-Stability of Singularly Perturbed Impulsive 

Stochastic Delay Differential Systems 
 

Liguang Xu 

 

Abstract: In this paper, we study singularly perturbed impulsive stochastic delay differential systems 

(SPISDDSs). By establishing an L-operator delay differential inequality and using the stochastic analy-

sis technique, we obtain some sufficient conditions ensuring the exponential p-stability of any solution 

of SPISDDSs for sufficiently small ε > 0. The results extend and improve the earlier publications. An 

example is also discussed to illustrate the efficiency of the obtained results. 
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1. INTRODUCTION 

 

The last two decades witnessed considerable research 

efforts aimed at the investigation of singularly perturbed 

delay differential systems, which arise in the study of an 

“optically bistable device” [1] and in a variety of models 

for physiological processes or diseases [2]. And many 

good results on the stability of singularly perturbed delay 

differential systems have been reported, see e.g., [3-6]. 

On the other hand, many evolution processes exhibit 

abrupt changes of their states at certain moments, such as 

threshold phenomena in biology, bursting rhythm models 

in medicine, optimal control models in economics, 

circuit networks and frequency modulated systems, etc 

[7]. These abrupt changes are of the short duration and 

may be described by impulsive differential systems [7-

10]. There are many papers have devoted to the stability 

of singularly perturbed impulsive delay differential 

systems, see e.g., [11-13].  

However, besides delay and impulsive effects and 

singularly perturbed, stochastic effects likewise exist in 

real systems. A lot of dynamical systems have variable 

structures subject to stochastic abrupt changes, which 

may result from abrupt phenomena such as stochastic 

failures and repairs of the components, changes in the 

interconnections of subsystems, sudden environment 

changes, etc [14]. In recent years, the stability 

investigation of stochastic delay differential systems with 

or without impulses is interesting to many investigators, 

and a large number of stability criteria of these systems 

have been reported [14-19].  

Unfortunately, up to now, the exponential p-stability 

analysis problem of SPISDDSs is still an open problem 

that has not been properly studied although Socha [20], 

El-Ansary [21] and El-Ansary and Khalil [22] have 

discussed the stability of singularly perturbed stochastic 

systems without impulses. It is, therefore, our intention 

in this paper is to investigate the exponential p-stability 

analysis problem of SPISDDSs. By establishing an L-

operator delay differential inequality and using the 

stochastic analysis technique, we obtain some sufficient 

conditions ensuring the exponential p-stability of any 

solution of SPISDDSs for sufficiently small ε > 0. The 

results extend and improve the earlier publications. An 

example is also discussed to illustrate the efficiency of 

the obtained results.  

 

2. MODEL AND PRELIMINARIES 

 

To begin with, we introduce some notation and recall 

some basic definitions. Let I denote the n-dimensional 

unit matrix, | ⋅ |  denote the Euclidean norm, N � {1, 

2,...,n}, {1 2 },
+

, , ,� � � [0 ).
+
= ,∞�  For m n

A B
×

, ∈�  

or ,

n

A B, ∈� ( )A B A B A B A B≥ ≤ , > , <  means that 

each pair of corresponding elements of A and B satisfies 

the inequality “ ≥ ( ≤,>,< )”. Especially, A is called a 

nonnegative matrix if 0A ≥ , and z is called a positive 

vector if z > 0. 

C[X, Y] denotes the space of continuous mappings 

from the topological space X to the topological space Y. 

In particular, let [[ 0] ].
n

C C τ− , ,� �  

[ ] ( )n nPC { sψ ψ, = : → |� �J J  is continuous for all 

but at most countable points s∈ J  and at these points 

s∈ ,J ( )sψ
+  and ( )sψ

−  exist, ( ) ( )},s sψ ψ
+

=  where 

⊂ �J is an interval, ( )sψ
+  and ( )sψ

−  denote the 

right-hand and left-hand limits of the function ( )sψ , 

respectively. Especially, let [[ 0] ].
n

PC PC τ− , ,� �  

For ,

n

x∈� Cϕ ∈  or ,PCϕ ∈ 0,p >  we define 
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1
[ ] ( ) ,p p p T

nx x x
+
= | | , ,| |�  especially 

1
[ ] (x x

+
= | |, ,�  

) ,T

n
x| |

1
[ ( )] ([ ( )] [ ( )] ) ,T

n
t t t

τ τ τ
ϕ ϕ ϕ= , ,� [ ( )]

i
t

τ
ϕ =

0
sup { ( )}

s i
t s i

τ
ϕ

− ≤ ≤

+ , ∈ ,N  and ( )D tϕ
+  denotes the 

upper right derivative of ( )tϕ  at time t. 

Let 
0

( { } )
t t

P
≥

Ω, , ,F F  be a complete probability 

space with a filtration 
0

{ }
t t≥

F  satisfying the usual 

conditions (i.e., it is right continuous and 
0

F  contains 

all P-null sets). Let 
0
[[ 0] ]

b n
PC τ− , ,�

F
 denote the family 

of all bounded 
0

F -measurable, [[ 0] ]
n

PC τ− , ,� -valued 

random variables ,φ  satisfying 
0

sup
p

p

L
τ θ

φ
− ≤ ≤

=� �  

( ) ,pφ θ| | < ∞E  where E denotes the expectation of 

stochastic process. 

In this paper, we consider the following singularly 

perturbed ˆIto  impulsive stochastic delay differential 

systems: 

0

0

( ) [ ( ) ( ) ( ( ( )))]

( ( ) ( ( ))) ( )

( ) ( ( )

( ) ( ) [ 0]

k

k k k k

dx t A t x t f t x t t dt

g t x t x t t d t

t t t t

x t J t x t k

x t s s s

ε τ

ε τ ω

φ τ

−

+

= + , −


+ , , − ,


≥ , ≠ ,


= , , ∈ ,
 + = , ∈ − , ,

�

 (1) 

where 0 ( ) ,tτ τ≤ ≤ τ is constant, 
0

(0 ]ε ε∈ ,  is a small 

parameter, A(t)= ( ( )) [ ],n n
ij n na t PC

×

×
∈ ,� �

nf : × →� �  

,

n

� ,

n n n m

g
×

: × × →� � � � i.e., ( , , ) (ijg t x y g t x= , ,  

)) .
n m

y
×

 Let 
1

( ) ( ( ) ( ))
i i im

g t x y g t x y g t x y, , = , , , , , ,�  be 

i th row vector of ( ),g t x y, , .i∈N  
1

( ) ( ( )t tω ω= , ,�  

( ))T
m
tω  is an m-dimensional Brownian motion defined 

on 
0

( { } ).
t t

P
≥

Ω, , ,F F  And the initial function ( )sφ =  

01
( ( ) ( )) [[ 0] ],T b n

n
s s PCφ φ τ, , ∈ − , ,� �

F

 the impulsive func-

tion 
1

( ) [ ],T n n

k k nk
J J J C= , , ∈ × ,� � � �  and the fixed 

impulsive moments tk satisfy 
1 2

lim
k k

t t t
→∞

< < , = ∞,�  

.k
+

∈�  

Throughout this paper, we assume that for any 

0
[[ 0] ],

b n
PCφ τ∈ − , ,�

F
 there exists at least one solution 

of (1), which is denoted by 
0

( ),x t t φ, ,  or, x(t), if no 

confusion occur. 

Definition 1: The solution of (1) is said to be 

exponentially p-stable for sufficiently small ε if there 

exist finite constant vectors K > 0 and σ > 0, which are 

independent of 
0

(0 ]ε ε∈ ,  for some ε0, and a constant 

λ > 0 such that 0( )
[ ( ) ( )]E

t tpx t y t Ke
λ− −

+
− ≤  for 

0
t t≥  and 

for any initial perturbation satisfying sup [ 0] [ ( )
s

s
τ

φ
∈ − ,

E – 

( )] .p
sϕ σ

+
<  Here y(t) is the solution of (1) correspond-

ing to the initial condition .ϕ  Especially, it is said to be 

exponentially stable in mean square when p = 2. 

Lemma 1 (Arithmetic-mean-geometric-mean inequal-

ity [23]):  

For 0
i
x ≥ , 0

i
α >  and 

1

1,
n

i

i

α

=

=∑  

11

i

n n

i i i

ii

x x
α

α

==

≤ ,∑∏  

the sign of equality holds if and only if xi = xj for all 
.i j, ∈N  

Lemma 2 [14]: For 0 0
i i
x a i≥ , ≥ , ∈N  and ,p

+
∈�  

the following inequality holds 

( 1)

1 1 1

p p
n n n

p
i i i i i

i i i

a x a a x

−

= = =

   
≤ .   

   
∑ ∑ ∑  (2) 

Lemma 3 [13]: Assume that 
1

0 ( ) ( ( )u t u t≤ = , ,�  

( )) ,T n

n
u t ∈�

0
t t≥  satisfy 

0

0 0

( ) ( ) ( ) ( )[ ( )]

( ) ( ) [ ] ( )

D u t P t u t Q t u t t t

u t t t t t t PC

τ

ϕ τ ϕ

+ ≤ + , ≥ ,


= , ∈ − , , ∈ ,
 (3) 

where ( ) ( ( )) 0ij n nP t p t
×

= ≥  for 
0

t t≥  and ,i j≠  Q(t)= 

( ( )) 0ij n nq t
×

≥  for 
0
.t t≥  If there exist a positive 

vector 
1

( )T n

n
z z z= , , ∈� �  and two positive diagonal 

matrices 
1

{ },
n

L diag L L= , ,�
1

{ }
n

H diag h h= , ,�  with 

0 1
i
h< <  such that 

0
( ( ) ( ) ) 0Q t HP t L z t t+ + ≤ , ≥ .  (4) 

Then we have 

0( )
0( )

t t
u t ze t t

λ− −

≤ , ≥ ,  (5) 

where the positive constant λ is defined as 

0

0
1

( )

1

0 min inf ( )

( ) ( ( ) ( ) ) 0 ,i

i
i n t t

n
t

i i ij ij j

j

t

t z p t q t e z
λ τ

λ λ λ

λ

≤ ≤ ≥

=


< < = :




+ + = 


∑

 

 (6) 

for the given z. 

 

3. MAIN RESULTS 

 

Let 1 2
[ ]

n

C
,

+ +
× ,� � �  denote the family of all 

nonnegative functions ( )t x,V  on n

+
×� �  which are 

twice continuously differentiable in x  and once in t. 

For each 1 2( ) [ ],n

t x C
,

+ +
, ∈ × ,� � �V  we define an 

operator L on V, associated with the system (1), by 

( )

( ) ( ) ( )

1 ( ) ( ) ( ( ( )))

t x
L t x t x t x

A t x t f t x t tτ

ε

, = , + ,

 + , −  

V V V
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1 1trace ( ( ( )))
2

1 ( ( ( ))) ,

T

xx

g t x x t t

g t x x t t

τ

ε

τ

ε

 
+ , , − 
 

 
, , −  

 
V

 

1

( ) ( ) ( )
( ) , ( ) ,

t x

n

t x t x t x
t x t x

t x x

∂ , ∂ , ∂ , 
, = , = , , ∂ ∂ ∂ 

�

V V V
V V  

2 ( )
.xx

i j
n n

t x

x x
×

 ∂ ,
=   ∂ ∂ 

V
V  

Lemma 4: Assume that there exist functions Vi (x)∈  
2[ ]n

C
+

,� �  such that 

( ) 0

1

( ) ( ) ( ) ( )[ ( )]
n

i ij j ij j

j

LV x p t V x q t V x t t i
τ

=

≤ + , ≥ , ∈ ,∑ N

 (7) 

where ( ) ( ( )) 0ij n nP t p t
×

= ≥  for 
0

t t≥  and ,i j≠  Q(t)= 

( ( ))ij n nq t
×

≥ 0 for 
0
.t t≥  If there exist a positive vector 

1
( )T n

nz z z= , , ∈� �  and two positive diagonal matrices 

L=diag
1

{ },
n

L L, ,�  H=diag 1{ }
n

h h, ,�  with 0 < hi < 1 

such that 

0
( ( ) ( ) ) 0Q t HP t L z t t+ + ≤ , ≥ .  (8) 

Then we have 

0( )
0( ( ))

t t

i i
V x t z e t t

λ− −

≤ , ≥ ,E  (9) 

where the positive constant λ is defined as 

0

0
1

( )

1

0 min inf ( )

( ) ( ( ) ( ) ) 0i

i
i n t t

n
t

i i ij ij j

j

t

t z p t q t e z
λ τ

λ λ λ

λ

≤ ≤ ≥

=

< < = :



+ + = ,


∑

 

 (10) 

for the given z. 

Proof: Since x(t) is the solution process of (1) and 
2( ) [ ],n

i
V x C

+
∈ ,� �  by the ˆIto  formula, we can get 

(For convenience, throughout this proof, we assume 

t ≥ t0, )i∈N  

0

0

0
( ( )) ( ( )) ( ( ))

( ( )) 1
( ( ) ( ( )) ( )

t

i i i
t

t
i

t

V x t V x t LV x s ds

V x s
g s x s x s s d s

x
τ ω

ε

= +

∂
+ , , − .

∂

∫

∫
 

Then we have 

0
0

( ( )) ( ( )) ( ( ))
t

i i i
t

V x t V x t LV x s ds= + .∫E E E  (11) 

So, for small enough ∆t > 0, we have 

0
0

( ( )) ( ( )) ( ( ))
t t

i i i
t

V x t t V x t LV x s ds
+∆

+ ∆ = + .∫E E E  (12) 

Thus from (7), (11) and (12), we have 

( ( )) ( ( )) ( ( ))
t t

i i i
t

V x t t V x t LV x s ds
+∆

+ ∆ − = ∫E E E  

1

[ ( ) ( ( )) ( )[ ( ( ))] ]
n

t t

ij j ij j
t

j

p t V x s q t V x s ds
τ

+∆

=

  
≤ + . 

  
∑∫ E E  

 (13) 

From (13), we obtain that 

( )
1

( ( )) ( ) ( ( )) ( )[ ( ( ))] .
n

i ij j ij j

j

D V x t p t V x t q t V x t
τ

+

=

≤ +∑E E E

 (14) 

By a similar argument with the proof of Lemma 1 in [13], 

one can know that that (10) has at least one positive 

solution λ < λ0. Thus from Lemma 3, we know Lemma 4 

is true.                � 

In the following, we will obtain several sufficient 

conditions ensuring the exponential p-stability of (1) by 

employing Lemma 4. Here, we firstly introduce the 

following assumptions. 

(A1) For any ,

n

x y, ∈�  there exists nonnegative 

matrix ( ) ( ( )) ,ij n nU t u t
×

=
0
,t t≥  such that 

0
[ ( ) ( )] ( )[ ]f t x f t y U t x y t t

+ +
, − , ≤ − , ≥ .  

(A2) For any ,

n

x x y y, , , ∈�  there exist nonnegative 

matrices ( ) ( ( ))ij n nC t c t
×

=  and ( ) ( ( )) ,ij n nD t d t
×

=
0
,t t≥  

such that 

2 2

1 1

( ( ) ( ))( ( ) ( ))

( ) ( )

T
i i i i

n n

jij j ij j j
j j

g t x y g t x y g t x y g t x y

c t x d t y iyx
= =

, , − , , , , − , ,

≤ | − | + | − | , ∈ .∑ ∑ N

 (15) 

(A3) There exist a positive vector z =
1

( )T n

n
z z, , ∈� �  

and two positive diagonal matrices W=
1

diag{ },
n

w w, ,�  

1
diag{ },

n
S s s= , ,�  with 0 1,

i
s< < i∈N  such that 

0
ˆ ˆ( ( ) ( ) ) 0Q t SP t W z t t+ + ≤ , ≥ ,  (16) 

where 

ˆ ˆ( ) ( ( ))n nij
P t tp

×
= , ˆ ( ) ( ) ( 1) ( )ij ijij

t a t p c tp = + − , i j≠ ,  

1

1

ˆ ( ) ( ) ( 1)( ( ) ( ))

1
( 1)( 2) ( ( ) ( )) ( 1) ( )

2

n n

ii ij ijii

j i j

n

ij ij ii

j

t pa t p a t u tp

p p c t d t p c t

≠ =

=

= + − +

+ − − + + − ,

∑ ∑

∑

ˆ ˆ( ) ( ( ))n nij
Q t tq

×
= ,  

ˆ ( ) ( ) ( 1) ( )ij ijii
t u t p d t p i jq

+
= + − , ∈ , , ∈ .� N  

(A4) For any ,

n

x y, ∈�  there exist constant matrices 

( ) 0
ijk k n n

M M
×

= ≥  such that 

0
[ ( ) ( )] [ ]

k k k
J t x J t y M x y t t

+ +
, − , ≤ − , ≥ .  (17) 

(A5) There exists a positive constant η satisfying 
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1

ln
( )k

k k

k
t t

η
η λ ε

+

−

≤ < , ∈ ,

−

�  (18) 

where ηk ≥ 1 satisfies 

( 1)

1

ˆ ˆ ˆ( )

ˆ

ij

ij ij ij

k k k k n n

p
n

k k k

j

z M z M M

M M M

η
×

−

=

≥ , = ,

 
≥ , 

 
 
∑

 (19) 

and λ(ε) is defined as 

0

0
1

1

0 ( ) ( ) min inf ( )

ˆ ˆ( ) ( )
0i

i
i n t t

n
ij ij

i i j

j

t

t tp q
z e z

λ τ

λ ε λ ε λ ε

λ
ε ε

≤ ≤ ≥

=


< < = , :



  
+ + = ,   

  
∑

 (20) 

for the given z. 

Theorem 1: Assume that ( ) ( ( )) 0ij n nA t a t
×

= ≥  for 

0
t t≥  and ,i j≠  further suppose that (A1)-(A5) hold. 

Then there exists a small ε0 > 0 such that the solution of 

(1) is exponentially p-stable for sufficiently small ε∈ (0, 

ε0)]. 

Proof: By a similar argument with the proof of 

Lemma 1 in [13], one can know that the λ(ε) defined by 

(20) is reasonable. For any 
0
[[ 0] ],

b n

F
PCφ ϕ τ, ∈ − , ,�  let 

x(t), y(t) be two solutions processes of (1) through (t0, 

)φ ,
0

( )t ϕ,  respectively. Since 
0
[[ 0] ]

b n
PCφ ϕ τ, ∈ − , ,�

F
 

are bounded and (16) holds, we can always choose a 

positive vector z such that 

0( )( )

0 0

( ) ( )

[ ]

t tp
i i ix t y t z e

t t t i

λ ε

τ

− −

| − | ≤ ,

∈ − , , ∈ .

E

N

 (21) 

Let ( ( )) ( ) p
iiV x t tx=| | ,� � p

+
∈ ,� ,i∈N  where ( )x t� =x(t) 

–y(t). Then, by conditions (A1), (A2) and Lemma 2, we 

have 

( ( ))
i

LV x t�  

]

( 2)

1

2

( ) ( ) ( ( ) ( ))

1
( )( ( ) ( ))

( ( ( ( ))) ( ( ( )))

1
( 1) ( ) ( ) sgn( ( ) ( ))

2

1
( ( ( ( ) ( ( ))) ( ( ) ( ( ))))

1
( ( ( ( )

p
i i i i

n

ij j j

j

i i

p
i i i i

i i

i

p x t y t x t y t

a t x t y t

f t x t t f t y t t

p p x t y t x t y t

g t x t x t t g t y t y t t

g t x t

ε

τ τ

τ τ

ε

ε

−

=

−

= | − | −


× −



+ , − − , −

+ − | − | −

× , , − − , , −

× , ,

∑

( 1)

1

1

( ( ))) ( ( ) ( ( )))))

( )
( ) ( ) ( ) ( )

( ) ( ( ) ( ( )) )

T
i

p pii
i i jij

j i

n
p

i jij

j

x t t g t y t y t t

pa t p
t t a t tx x x

p
t u t t tx x

τ τ

ε ε

τ

ε

−

≠

−

=

− − , , −

≤ | | + | | | |

+ | | | − |

∑

∑

� � �

� �

2 2

1

2

1

1

1

1
( 1) ( ) ( ) ( )

2

( ) ( ( ))

( ) 1
( ) ( )[( 1) ( ) ( ) ]

1
( )[( 1) ( ) ( ( )) ]

1
( )(( 2

2

n
p

i jij

j

n

ij j

j

p p pii
i ij i j

j i

n
p p

i jij

j

n

ij

j

p p t c t tx x

d t x t t

pa t
x t a t p x t x t

u t p t t tx x

p
c t p

ε

τ

ε ε

τ

ε

ε


−

 =

=

≠

=

=

+ − | | | |


+ | − | 




≤ | | + − | | + | |

+ − | | + | − |

−
+ −

∑

∑

∑

∑

∑

� �

�

� � �

� �

1

1

1

1

) ( ) 2 ( ) )

( )(( 2) ( ) 2 ( ( ))

1
( ) ( 1)( ( ) ( ))

1
( 1)( 2) ( ( ) ( )) ( )

2

1
( ( ) ( 1) ( ))

p p
i j

n
p p

i jij

j

n n

ii ij ij

j i j

n
p

iij ij

j

n n

jij ij

j i j

t tx x

d t p t t tx x

pa t p a t u t

p p c t d t tx

a t p c t

τ

ε

ε




= 

≠ =

=

≠ =


| | + | |



+ − | | + | − |


= + − +




+ − − + | |



+ + − |

∑

∑ ∑

∑

∑ ∑

� �

� �

�

1

( )

1
( ( ) ( 1) ( )) ( ( ))

p

n
p

jij ij

j

tx

u t p d t t tx τ

ε =

|

+ + − | − |∑

�

�

1

1
ˆ ( ) ( )

n

jij

j

t V xp
ε

=

≤ ∑ � +
1

1
ˆ ( )[ ( )]

n

jij

j

t V xq
τ

ε
=

.∑ �  (22) 

From condition (A3), we have 

0

ˆ ˆ( ) ( )
0

Q t P t W
S z t t

ε ε ε

 
+ + ≤ , ≥ .  

 
 (23) 

Then, all assumptions of Lemma 4 are satisfied by (22), 

(23) and (A3), so 

0( )( )
0 1

( ( )) ( ) ( )

[ ) ,

p
i i i

t t
i

V x t x t y t

z e t t t i
λ ε− −

= | − |

≤ , ∈ , , ∈

E E�

N

 (24) 

where λ(ε) is determined by (20) and the positive 

constant vector z is determined by (16). 

Using the discrete part of (1), condition (A4), (A5), (24) 

and Lemma 2, we can obtain that 

0

0

1 1

( 1)
1 1 1 1

1 1

1 1 1

1

( )( )
1

1

( )( )
1

( ) ( )

[( ) ( ) ( ) ]

ˆ ( ) ( )

ˆ

ij ij

ij

ij

p
i i

n n
p p

j j

j j

n
p

j j

j

n
t t

j

j

t t
i

x t y t

M M x t y t

M x t y t

M z e

z e i

λ ε

λ ε
η

− − −

= =

− −

=

− −

=

− −

| − |

≤ | − |

≤ | − |

≤

≤ , ∈ .

∑ ∑

∑

∑

E

E

E

N

 (25) 
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This, together with (24), lead to 

0( )( )
1

1 1

( ) ( )

[ ]

t tp
i i ix t y t z e

t t t i

λ ε
η

τ

− −

| − | ≤ ,

∈ − , , ∈ .

E

N

 (26) 

By a similar argument with (24), we can use (26) to 

derive that 

0( )( )
1

1 2

( ) ( )

[ )

t tp
i i ix t y t z e

t t t i

λ ε
η

− −

| − | ≤ ,

∈ , , ∈ .

E

N

 (27) 

Therefore, by simple induction, we have 

0( )( )
1 1

1

( ) ( )

[ )

t tp
i i k i

k k

x t y t z e

t t t k i

λ ε
η η

− −

−

− +

| − | ≤ ,

∈ , , ∈ , ∈ .

E �

� N

 (28) 

In term of (18), we have 1( )
,

k kt t

k
e
η

η −
−

≤ ,k
+

∈�  and 

then 

1 0 0( ) ( )
1 1

1[ )

kt t t t
k

k k

e e

t t t k i

η η
η η −

− −

−

− +

≤ ≤ ,

∈ , , ∈ , ∈ .

�

� N

 (29) 

Therefore, combining (28) and (29), we obtain 

0( ( ) )( )

1

( ) ( )

[ ) 0

t tp
i i i

k k

x t y t z e

t t t k i

λ ε η

ε

− − −

− +

| − | ≤ ,

∈ , , ∈ , ∀ > , ∈ .

E

� N

 (30) 

That is 

0( ( ) )( )

1

[ ( ) ( )]

[ ) 0

t tp

k k

x t y t ze

t t t k

λ ε η

ε

− − −

+

− +

− ≤ ,

∈ , , ∈ , ∀ > .

E

�

 (31) 

For any 
0
,t t≥  let ( )

i
tλ ε,  be defined as the unique 

positive zero of 

1

ˆ ˆ( ) ( )
0i

n
ij ij

i i j

j

t tp q
z e z

λ τ
λ

ε ε
=

 
+ + = .  

 
∑  (32) 

Differentiate both sides of (32) with respect to the 

variable ε, we have 

1

( ) 0
ˆ ( ) i

i i
i n

i jijj

zd
t

d z t e zq
λ τ

λ
λ ε

ε ε τ
=

−
, = < ,

+∑
 (33) 

so λi(t,ε) is monotonically decreasing with respect to the 

variable ε, which implies that λ0(ε) is also monotonically 

decreasing with respect to the variable ε. So, by a similar 

argument with the proof of Lemma 1 in [13], one can 

deduce that there exists a small ε0 >0 such that the 

solution of (1) is exponentially p-stable for sufficiently 

small 
0

(0 ].ε ε∈ ,  The proof is completed.     � 

Remark 1: For system (1), when ( ( ) (g t x t x t, , −  

τ))=0, then it degenerates to the deterministic singularly 

perturbed impulsive delay differential systems: 

0

0

( ) [ ( ) ( ) ( ( ( )))]

( ) ( ( )

( ) ( ) [ 0]

k

k k k k

dx t A t x t f t x t t dt t t t t

x t J t x t k

x t s s s

ε τ

ϕ τ

−

+

= + , − , ≥ , ≠ ,


= , , ∈ ,
 + = , ∈ − , ,

�   

 (34) 

the same as the models discussed in [13], for (34), if 

noting that: 

1) When ( ( ) ( ))g t x t x t τ, , − =0, (A2) is satisfies by taking 

( ) ( ) 0.C t D t= =  

2) When p=1, (A3) degenerates to 

(A'3) There exist a positive vector 
1

( )T
n

z z z= , , ∈�  

R
n and two positive diagonal matrices W=diag{w1, 

},
n

w,�
1

diag{ },
n

S s s= , ,�  with 0 1,
i
s< < i∈N  

such that 

0
( ( ) ( ) ) 0U t SA t W z t t+ + ≤ , ≥ .  (35) 

3) When p=1 and ˆ ,
k k

M M=  (A5) degenerates to 

(A'5) There exists a positive constant η satisfying 

1

ln
( )k

k k

k
t t

η
η λ ε

+

−

≤ < , ∈ ,

−

�  (36) 

where ηk satisfies 

1 and
k k k

z M zη η≥ ≥ ,  (37) 

and λ(ε) is defined as 

0

0
1

1

0 ( ) ( ) min inf ( )

( ) ( )
0i

i
i n t t

n
ij ij

i i j

j

t

a t u t

z e z
λ τ

λ ε λ ε λ ε

λ
ε ε

≤ ≤ ≥

=

< < = , :


  
+ + = ,  

  
∑

 (38) 

for the given z. 

Then we can easily obtain the following Corollary. 

Corollary 1: Assume that ( ) ( ( )) 0ij n nA t a t
×

= ≥  for 

0
t t≥  and ,i j≠  further suppose that (A1), (A'3), (A4) 

and (A'5) hold. Then there exists a small ε0 > 0 such that 

the solution of (34) is exponentially stable for 

sufficiently small 
0

(0 ].ε ε∈ ,  

Remark 2: From Corollary 1, it is easy to obtain 

Theorem 1 in [13]. In fact, “ max{ 1}
k k

Mη ,� � � ” of 

condition (H4) in Theorem 1 in [13] ensure that the 

above (37) holds. 

Remark 3: If ( ) ,
k

J t x x, =
0
,t t≥  that is there have 

no impulses in (1), then by Theorem 3.1, we can obtain 

the following result. 

Corollary 2: Assume that ( ) ( ( )) 0ij n nA t a t
×

= ≥  for 

0
t t≥  and ,i j≠  further suppose that (A1)-(A3) hold. 

Then there exists a small ε0 >0 such that the solution of 

(1) is exponentially p-stable for sufficiently small ε∈  

0
(0 ].ε,  

Proof: When ( ) ,
k

J t x x, = ,k
+

∈�  the conditions 

(A4) and (A5) is obviously satisfied on choosing Mk = I in 

(17), ˆ
k

M I=  and ηk =1 in (19) and 0η =  in (18).   � 

Remark 4: From Lemma 4 and the proof of Theorem 

1, it is obvious that the results obtained in this paper still 

hold for ε =1. So our method in this paper can obviously 

be applied to the following more general impulsive 
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stochastic delay differential systems: 

0

0

( ) [ ( ) ( ) ( ( ( )))]

( ( ) ( ( ))) ( )

( ) ( ( )

( ) ( ) [ 0]

k

k k k k

dx t A t x t f t x t t dt

g t x t x t t d t

t t t t

x t J t x t k

x t s s s

τ

τ ω

φ τ

−

+

= + , −


+ , , − ,


≥ , ≠ ,


= , , ∈ ,
 + = , ∈ − , ,

�

E

E

 (39) 

where �E diag
1 2

{ },
n

ε ε ε, , ,�  �E diag
1 2

{ ε ε, ,  

},
n

ε,�  
0

(0 ] {1}
i
ε ε∈ , ∪ is a small parameter. 

Remark 5: In [20], Socha investigated the exponential 

stability of a similar system to (39) with Jk
 (t, x)=x by 

employing suitable Lyapunov functions. Obviously, 

Socha’s approach can also be used to study the stability 

of (39) with Jk
 (t, x)=x. However, it needs not only the 

continuous differentiability of the drift and diffusions 

coefficients but also the boundedness of the derivatives 

of the drift and diffusion coefficients. However, our 

approach in this paper does not require these conditions. 

 

4. EXAMPLE 

 

The following illustrative example will demonstrate 

the effectiveness of our results. 

Example 1: Consider the following SPISDDSs: 

1 1

1

2

2

1 1

2 2

2 2

2

1

2

2

( ) [( 9 sin ) ( )

(2 sin )arctan ( ( ))

(1 cos ( ))arctan ( ( ))]

sin ( ) ( )

cos ( ( )) ( )

( ) [( 10 cos ) ( )

(sin )arctan ( ( ))

(2 cos ( ))arctan ( ( ))

k

dx t t x t

t x t t

t x t t dt

tx t dw t

tx t t dw t t t

dx t t x t

t x t t

t x t t

ε

τ

τ

ε

ε τ

ε

τ

τ

= − −

+ + −

+ + −

+

+ − , ≠ ,

= − +

+ −

+ + −

1 1

2 2

]

2 ( ( )) ( )

cos ( ) ( )
k

dt

x t t dw t

tx t dw t t t

ε τ

ε















 + −


+ , ≠ ,

 (40) 

with 

1 1 1 1 2

2 2 1 2 2

( ) ( ) ( )

( ) ( ) ( ),

k k k k k

k k k k k

x t x t x t

x t x t x t

α β

β α

− −

− −

 = −


= +
 

where αik and βik are nonnegative constants, τ(t)= t
e
−
≤  

1 τ� ; The impulsive moments tk ( )k
+

∈�  satisfy: t1=0, 

1 2
t t< <�  and lim .

k k
t

→+∞
= +∞  

Taking p=2, we can get 

9 sin 0
( )

0 10 cos

t
A t

t

− − 
= , − + 

 

2

2 2

2 sin 1 cos
( )

sin 2 cos ( )

t t
U t

t t

 + +
= , 

+  
 

2 2sin 0 0 cos
( ) ( )

0 1 2 0

t t
C t D t

   
= , = ,   
   

 

14 sin 0
ˆ( )

0 16 2cos

t
P t

t

− − 
= , − + 

 

2

1 1

2 2
2 2

2 sin 1 cos
ˆ ( )

2 sin 2 cos ( )

k k

k

k k

t t
Q t R

t t

α β

β α

 
 
 
  

 + +
= , = . 

+ +  
 

So there exist (1 1) ,T
z = , diag{1 1}W = ,  and diagS =  

{0.5, 0.5} such that 

2

0

ˆ ˆ( ( ) ( ) )

( 3 2cos 0 5sin 2 cos ) 0T

Q t SP t W z

t t t t t

+ +

= − + + . ,− + ≤ , ≥ .
 (41) 

Let 2 2

1 1 2 2
max{( ) ( ) }

k k k k k
η α β α β= + , +  and ˆ

ijk
M =  

2

1
( ),

ij ijk kj
M M

=
∑ 1 2,i j, = ,  then ˆ

ijk
M  satisfies (19) and 

ηk satisfies ˆ
k k
z M z kη

+
≥ , ∈ .�  

Case 1: Let 0 2

1 2

1 ,
3

k

k k
eα α

.

= =  0 2

1 2

2 ,
3

k

k k
eβ β .

= =  

and tk – tk–1=2k, then we obtain that there exists an 

0 2 0η = . >  such that 

0 4

0 4

1

ln ln
1 and 0 2

2

k

k k

k

k k

e
e

t t k

η
η η

.

.

−

= ≥ = = . = .

−

 

And for any ε > 0, the positive constant λ(ε) is 

determined by the following systems: 

1

2

( )2
1

( )
2

1
( ) ( 14 sin (3 2cos sin ) ) 0

1
( ) ( 12 2cos 5 ) 0

t

t

t t t t e

t t e

λ

λ

λ
ε

λ
ε


+ − − + + + = ,


 + − + + = .


 (42) 

So for a given ε, we can obtain the corresponding λ by 

(42). By the proof of Theorem 1, we know that λ is 

monotonically decreasing with respect to the variable ε, 

then there exists an ε0 > 0 such that for any ε∈ (0, ε0], we 

have λ > η. Therefore, all the conditions of Theorem 1 

are satisfied, we conclude that the solution of (40) is 

exponentially stable in mean square for sufficiently small 

ε > 0. 

Case 2: Let α1k = α2k = 1 and β1k = β2k = 0, then (40) 

becomes the singularly perturbed stochastic delay 

differential systems without impulses. So by Corollary 2, 

the solution of (40) is exponentially stable in mean 

square for sufficiently small ε > 0. 
 

5. CONCLUSIONS 

 

This paper is concerned with the stability analysis of 

SPISDDSs. By establishing an L-operator delay 

differential inequality and using the stochastic analysis 

technique, some suffcient conditions ensuring the 

exponential p-stability of SPISDDSs have been obtained. 

The derived criteria do not require the continuous 

differentiability of the drift and diffusions coefficients or 

the boundedness of the derivatives of the drift and 

diffusion coefficients. 
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