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Abstract: This paper presents an MPC (Model Predictive Control) based consensus algorithm which 

solves a consensus problem in which constraints are imposed on the increment of the state of each 

agent. After making an artificial consensus trajectory using a previously designed consensus algorithm, 

the MPC is used to make the agent track the consensus trajectory. Simulation results demonstrate the 

effectiveness of the proposed algorithm. 
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1. INTRODUCTION 

 

Recently, the consensus problem among multi-agent 

systems (MAS) has attracted much attention in related 

literature, such as in [2,7-10,12] to name but a few. This 

is mainly because the consensus problem unifies many 

other problems in engineering, such as formation control, 

rendezvous problems, sensor networks and so on.  

For the purpose of reaching consensus, the agents 

negotiate with each other and change their opinion. The 

consensus algorithm plays a pivotal role in the 

negotiation. This paper is concerned with the case where 

the agent cannot change its opinion more than a given 

limit in the middle of reaching consensus. For example, 

if the MAS consist of mobile robots, the mobile robot 

cannot significantly change its heading direction at one 

sampling instant because of its hardware limitations. 

Such limitations can be modeled as constraints on the 

increment of the state of the agent. Therefore, the heart 

of the consensus problem that this paper tries to tackle is 

how to handle the constraints in designing the consensus 

algorithm while maintaining its decentralized scheme.  

To take such constraints into account, this paper 

proposes an MPC (Model Predictive Control) based 

consensus algorithm. To this end, an artificial consensus 

trajectory is first generated using any previously reported 

consensus algorithm. This artificial consensus trajectory 

does not have to satisfy the constraints. Then, each agent 

employs a tracking MPC in order to make its state follow 

the consensus trajectory fulfilling the constraints  

Simulation results show that the proposed MPC based 

consensus algorithm indeed results in consensus of MAS 

fulfilling the constraints.  

 

2. PROBLEM DEFINITION AND 

PRELIMINARIES 

 

In this section, we introduce the definition of the 

problem under consideration and some preliminaries. 

 

2.1. Problem definition 

Consider the multi-agent system (MAS) consisting of 

N identical agents 
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where ( ) n

i
x k ∈�  is the state of the i th agent and 

( )
i
u k ∈�  the input. In order to derive the main result, 

several assumptions are given. 

Assumption 1:  The pair (A, B) is stabilizable. 

Assumption 2:  The interconnection between the 

agents contains a spanning tree. 

This paper aims at designing the consensus algorithm 

ui, i =1,..., N, solving the constrained consensus problem 

defined in the following. 

Definition 1: The constrained consensus problem is 

said to be solved if the consensus algorithm is designed 

such that the MAS satisfy the two conditions 

C1. ( ) ( ) 0
i
x k x k

∗
− →  for all i (i =1,..., N) and for 

some x*(k) as k→∞, 

C2. ( 1) ( )
i i

x x k x k x− + − ,� �  for all i (i =1,..., N) 

and k > 0, and for some ,

n

x R
+

∈  

where x*(k) is called the consensus trajectory, x is a 

constant vector denoting the constraint on the state in-

crement of the agent, and the symbol �  implies that 
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the inequality holds componentwise. Note that each 

agent cannot know x*(k) a priori. 

The condition C1 is used in the usual consensus 

problem [2,7,8,10,12]. On top of C1 defining consensus, 

the condition C2 reflects a more practical aspect. The 

condition C2 describes that the increment of the state is 

limited by some quantity and is the main theme of this 

paper. Therefore, the proposed consensus algorithm is 

designed in a way that the MAS reach consensus (C1) 

fulfilling the constraints (C2). This problem setup is 

quite parallel to that of MPC (Model Predictive Control) 

in that it stabilizes a system fulfilling constraints on the 

input or state. In Section 3, a consensus algorithm 

solving the constrained consensus problem is devised 

based on an MPC. Because of the condition C2, the 

following assumption is considered. 

Assumption 3: The spectrum of matrix A belong to 

1O
−

∪  where O– denotes the open unit disk on the com-

plex plane. In the case of the eigenvalue 1, it should be 

simple. 

Assumptions 1 and 2 are basic ingredients to solve the 

usual consensus problem (satisfying only C1). On the 

other hand, Assumption 3 restricts the class of the system 

severely but is inevitably required in order to satisfy C2. 

This is because it is well known that the agreed trajectory 

(or consensus trajectory) in the usual consensus problem 

(without C2) is a solution of the unforced part of the 

agent model, xagree(k +1)=Axagree(k) with some xagree(0). 

In other words, if the consensus algorithm is designed 

properly, the solution of each agent ( 1) ( )
i i
x k Ax k+ =  

( )  1 2
i

Bu k i N+ , = , , ,�  converges to xagree(k) as k→∞. 

Note that it is impossible for each agent to know xagree(0) 

in advance. Therefore, if the agreed trajectory xagree(k) 

does not satisfy the constraint ( 1)
agree

x x k + −� xagree(k) 

x�  in the steady state, the problem is not solvable. 

Therefore, xagree(k) needs to satisfy the constraint C2 in 

order for the constrained consensus problem to make 

sense and this is why Assumption 3 is necessary. 

 

2.2. Tracking MPC 

MPC (Model Predictive Control) is a kind of finite 

horizon optimal control [5]. It solves a finite horizon 

optimal control and applies the first part of the resulting 

optimal control sequence to the plant under control at 

every sampling instant. 

In this section, the general structure of the tracking 

MPC is briefly introduced [1,4]. Let a discrete-time 

linear system be described by 

( 1) ( ) ( ),x k Ax k Bu k+ = +  

( ) ( ) ( )y k Cx k Du k= + ,  

where ( ) n

x k ∈� is the current state of the system, u(k) 

m

∈� is the current input. This system is subjected to the 

mixed constraints on the state and input 
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where M1, M2, and M3 are appropriately defined matrices 

describing constraints on the input and state, and set Z is 

assumed to be a non-empty compact convex polyhedron 

containing the origin in its interior. For instance, if there 

are only input constraints such as ( )u u k u− � �  with a 

finite constant u � 0, this is equivalent to [ ]
T

m m
I I− u(k) 

[ ]1 1
T T T

u
m m

�  where Im is the m×m identity matrix and 

1
m a vector with all its elements being 1. Therefore, 

1
0,M =

2
[ ]

T
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M I I= − ,  and 

3
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T T T
M u=

m m
in this 

case. The constrained tracking MPC problem is to design 

an MPC to drive the output y(k) to the piecewise constant 

reference r as k→∞ satisfying the constraints on the state 

and/or input. For the purpose of addressing the given 

tracking problem, similarly to other tracking problems, 

the steady state of the state and input are calculated by 

solving 

0
,

s

s
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ur C D

 
 
 
  

−   
=   

   
 

where xs and us denote the steady state value of the state 

and input with the piecewise constant r. With this steady 

state in mind, the optimization problem associated with 

the tracking MPC is solved at every sampling instant as 

follows 
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where M is the prediction horizon, { (0)u u:= , ,�  

( 1)}u M −  the control sequence over the horizon, r a 

piecewise constant reference, Xf the terminal constraint 

set for closed-loop stability, VM (x,r,u) the cost function 

defined by 

1
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with Q being positive semidefinite, and R and P positive 

definite. Note that Qx� �  denotes a weighted Euclidian 

norm, i.e., T
Qx x Qx=� �  where x is a vector and Q is 

a weighting matrix. Fig. 1 describes the structure of the 

general tracking MPC.  

 

 

Fig. 1. General structure of a tracking MPC. 
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Remark 1: Depending on the given reference, it can 

happen that ( ) .s sx u Z, ∉  In this case, the cost function 

needs to be modified in a way that the tracking MPC 

steers the state to the value as close as possible to xs 

fulfilling the constraints. For details, see [1,4]. In theory, 

any stabilizing tracking MPC can be employed in the 

proposed MPC-based consensus algorithm. The tracking 

MPC in [4] is used in this paper.         � 

 

3. CONSTRAINED CONSENSUS PROBLEM 

USING MPC 

 

In this section, an MPC based consensus algorithm 

solving the constrained consensus problem is proposed. 

To this end, at first it is shown that the constrained 

consensus problem can be reformulated into a 

constrained tracking problem which can be dealt with 

using the tracking MPC. 

The following lemma shows that in fact the condition 

C2 denotes mixed constraints. 

Lemma 1: The constraint in C2 is equivalent to the 

mixed constraint 

( ) ( ) ,
i i

x Mx k Nu k x− +� �  (4) 

where M=A–I and N=B.           � 

Proof: It is shown by rewriting the constraint C2 as 

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( )
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+ − = + −
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 � 
With the mixed constraints in mind, if it is possible to 

know the consensus trajectory x*(k) a priori, we can 

design the consensus algorithm such that it makes xi 

track the known consensus trajectory fulfilling the mixed 

constraints (4). In other words, the constrained consensus 

problem can be reformulated into a constrained tracking 

problem if the consensus trajectory is known. In what 

follows, it is presented how to identify the consensus 

trajectory in advance. For the purpose of generating the 

consensus trajectory, information MAS (iMAS) is 

defined 
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As seen in the equations, the dynamics of iMAS is 

exactly the same as that of the MAS and their initial 

conditions are as well. However, note that the input vi to 

the iMAS is different from ui (the input of MAS) and 

that iMAS is a part of the proposed consensus algorithm 

just as a state observer in output feedback controller. In 

other words, zi dynamics is embedded in the proposed 

consensus algorithm ui. 

It is assumed that the input vi to the iMAS is defined 

as follows 

( ) ( ( ) ( )),

i

i ij j i

j N

v k F a z k z k

∈

= −∑  (6) 

where Ni denotes the index set (which contains the set of 

neighbor agents) of the i th agent, 1 n

F
×

∈� the gain, and 

aij the connection between the i th agent and j th agent. If 

the information flows from the j th agent to i th agent, 

then aij=1. Otherwise, aij=0. If the gain F is designed 

according to the methods in ([2,7,10-12]), the iMAS 

reaches consensus (i.e., zi
 (k) –z*(k)→0 for all i, i =1,..., N 

and for some z*(k), as k→∞). Previous results ([6,7,12]) 

report that the consensus trajectory z*(k) of the MAS (5) 

is the solution of z*(k +1) =Az*(k) with z*(0)= 

1
(0)

N

i ii
c x

=
∑  where ci are constants such that 

1
1

N

ii
c

=

= .∑  Note that the constants ci are determined by 

the given communication graph, in particular the roots in 

the graph. Therefore, the consensus trajectory of iMAS is 

exactly the same as that of the MAS (i.e., z*(k)= x*(k)) as 

far as only the condition C1 is concerned. Note that zi 

does not necessarily meet the constraints in C2 because 

the constraints are imposed only on xi not on zi. Thanks 

to this iMAS, ui can identify its consensus trajectory in 

advance by exchanging zi with its neighbors and 

applying vi to iMAS. 

Since the consensus trajectory zi is known, if the 

tracking MPC described in Section 2.2 is applied to 

design ui such that it makes xi follow zi fulfilling the 

mixed constraints (4), the constrained consensus problem 

is solved. Fig. 2 depicts the proposed MPC-based 

consensus algorithm. The proposed consensus algorithm 

sends and receives the state of iMAS and gives ui using 

the tracking MPC. In Fig. 2, the blocks in the dashed box 

indicate the proposed MPC-based consensus algorithm. 

One missing part not yet explained is a piecewise 

constant reference employed in the tracking MPC. 

Although zi acts as the reference trajectory for the 

tracking MPC, since the tracking MPC in Section 2.2 

works only for a piecewise constant reference, it is 

necessary to convert the zi trajectory into a piecewise 

constant trajectory whose steady state is the same as that 

of the zi trajectory. To this end, a function denoted by Ξ() 

is defined as follows 

( ) if 0
( ) ( ( ))

( 1) otherwise,

i

i i

i

k
z k

r k z k

r k

σ

  
=  = Ξ =  

 −

 (7) 

where a

b

 
  

is the remainder of a

b
 and σ in the 

definition is a positive integer large than 2 and can be 

heuristically determined. From the definition, it is easily 

seen that the input to the function Ξ() is zi trajectory, the 

output is a piecewise constant signal ri, and the function 

Ξ() just samples and holds the input zi(k) in order to 

convert it to the corresponding piecewise constant signal. 

Note that zi(k) converges to a constant due to 

Assumption 3 and that it follows that 

lim ( ) lim ( )
i i

k k

r k z k
→∞ →∞

= .  

The following algorithm describes the proposed MPC 

based consensus algorithm.  
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Algorithm 1: MPC based consensus algorithm ui of 

the i th agent ( {1 2 })i N∀ ∈ , , ,…  

Step 1: Initialize. (0) (0).
i i
z x=  

Step 2: Send zi to its neighbors and receive j iz j N, ∈  

from its neighbors. 

Step 3: Update zi using ( 1) ( ) ( )
i i i
z k Az k Bv k+ = +  

and vi(k) in (6). 

Step 4: Generate the piecewise constant signal ri(k) 

using ( ) ( ( )).
i i
r k z k= Ξ  

Step 5: Compute ui using the tracking MPC and apply 

it. 

Step 6: 1,k k:= +  and go to Step 2. 

Now we are ready to present the main result of the 

paper. 

Theorem 1: Suppose that Assumptions 1-3 hold true 

and that the optimization problems associated with the 

tracking MPC employed in the proposed consensus algo-

rithm ui are all initially feasible. In addition, the gain F in 

vi(k) of the iMAS is designed such that iMAS satisfies 

only C1. Then, the MPC-based consensus algorithm de-

scribed in Algorithm 1 solves the constrained consensus 

problem.               � 

Proof: The first important point is that iMAS reaches 

consensus using vi because of Assumptions 1 and 2, and 

the main result in [2,7,8,10,12]. Since the function Ξ() 

converts the zi trajectory into a piecewise constant 

trajectory ri, the tracking MPC proposed in [4] can be 

employed. If the optimization problem associated with 

the tracking MPC is initially feasible, the optimization 

problem is always feasible thereafter [4]. The employed 

tracking MPC in Section 2.2 renders the state xi of the 

i th agent to track ri (which means C1 is met) fulfilling 

the constraint C2. Note that Assumption 3 leads to 

lim ( ) lim ( ).
k i k i

z k r k
→∞ →∞

=  Hence the constrained 

consensus problem is solved by the proposed MPC based 

consensus algorithm.            � 

What the proposed MPC based consensus algorithm 

pursues is that it first tries to make a consensus trajectory 

using iMAS (which does not necessarily satisfy the 

constraints in C2) and then drive the state to the 

consensus trajectory fulfilling the constraints by 

employing a tracking MPC. 

 

4. SIMULATION STUDY 

 

In order to illustrate the performance of the proposed 

consensus algorithm, a simulation study is done in this 

section. For this, we consider the MAS consisting of four 

agents (N=4) with 

1 1 0
and

0 0 9 1
A B

   
= =   .   

 

and state increment constraints 

15 15
( 1) ( )

15 15
i i
x k x k

   
− ≤ + − ≤ ,   
   

 (8) 

and the communication graph and the corresponding 

Laplacian L are given in Fig. 3. To implement the 

proposed algorithm, a consensus algorithm proposed in 

[3] and the tracking MPC in [4] are employed. The 

coupling gain for the associated iMAS is 

[0 1206 0 9278]F = . .  

 

 

Fig. 3. The communication graph and the Laplacian 

matrix. 

 

Fig. 2. The proposed MPC-based consensus algorithm. 

 

Ni Ni 
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and the parameters used in the cost function (3) are 

2 2
7 and 1M P I Q I R= , = , = , , = .  

The proposed consensus algorithm is implemented 

according to Algorithm 1 in the previous section. The 

simulation result is depicted in Fig. 4 in which it is 

shown that the consensus of both iMAS (zi) and MAS 

(xi) are achieved. In Fig. 5, the red horizontal lines 

denote the constraints on the state increment. As shown 

in Fig. 5(a), the constraint on the state increments is 

violated in the case of the iMAS. This is natural because 

the consensus algorithm vi does not take the constraints 

into account. On the contrary, consensus of the MAS is 

reached fulfilling the constraints in Fig. 5(b) owing to the 

proposed MPC based consensus algorithm. Fig. 6 shows 

the resulting zi trajectory and corresponding ri and xi 

trajectories. 

 

 

Time 

(a) Consensus of iMAS. 

 

Time 

(b) Consensus of MAS. 

Fig. 4. State variables of iMAS and MAS. 

 

Time 

(a) State increments of iMAS. 

 

Time 

(b) State increments of MAS. 

Fig. 5. State increments of iMAS and MAS with the 

constraints (red line). 

 

 

Time 

Fig. 6. Trajectories of zi, ri, and xi. 
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5. CONCLUSION 

 

This paper proposed an MPC-based consensus 

algorithm for a constrained consensus problem which is 

motivated from practical problems. To this end, a 

conventional consensus algorithm is used for a copy of 

MAS and the resulting trajectories are employed as a 

reference in tracking MPC which makes the state of the 

agent reach consensus while fulfilling the constraints. 
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