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Task-space Neuro-Sliding Mode Control of Robot Manipulators 

under Jacobian Uncertainties 
 

Rodolfo García-Rodríguez and Vicente Parra-Vega 

 

Abstract: Cartesian robot control is an appealing scheme because it avoids the computation of inverse 

kinematics, in contrast to joint robot control approach. For tracking, high computational load is typical-

ly required to obtain Cartesian robot dynamics. In this paper, an alternative approach for Cartesian 

tracking is proposed under assumption that robot dynamics is unknown and the Jacobian are uncertain. 

A neuro-sliding second order mode controller delivers a low dimensional neural network, which rough-

ly estimates inverse robot dynamics, and an inner smooth control loop guarantees exponential tracking. 

Experimental results are presented to confirm the performance in a real time environment. 
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1. INTRODUCTION 

 

To implement a joint robot control, the desired joint 

references are computed from desired Cartesian 

coordinates using inverse mapping and its derivatives up 

to second order. However, the high computational load 

and the ill-posed nature of the inverse kinematics 

mapping are the main disadvantages of this scheme. To 

circumvent the computation of the inverse kinematics 

and reduce the computational load, the Cartesian control 

stands as a useful control strategy. Therefore, due to 

several robotic tasks are coded in operational coordinates 

-generally in Cartesian coordinates; the Cartesian control 

allows an efficient and intuitive design of the task. 

Basically, two types of Cartesian controllers have been 

proposed: inverse Jacobian based and transpose Jacobian 

based. Nevertheless, an exact knowledge of the Jacobian 

is required in these controllers, that is, the exact 

knowledge of link lengths of the robot manipulator and 

the payload variations are needed. Recently, based on the 

seminal work of Miyazaki and Masutani [23] several 

Cartesian controllers have been proposed under the 

assumptions that the Jacobian is uncertain and the robot 

trajectories are free of singularities. Posteriorly, 

considering that the Jacobian matrix can be parametrized 

linearly, a passivity based approach which guarantee 

stability in the closed loop is presented in [3-7,31]. 

Now, if we are interested that having the end effector 

of the robot manipulator follow a desired trajectory, 

Cartesian robot dynamics knowledge is required. 

However, Cartesian robot dynamics demands even more 

computational power than computing the inverse 

kinematics. Therefore, non-model based control 

strategies which guarantee convergence of the Cartesian 

tracking errors is desirable. Based on the Cartesian 

dynamics and the Jacobian transpose, a Cartesian 

tracking controller is proposed in [24]. Additionally, to 

compensate the noise, unmodeled dynamics and to avoid 

the use of high gains an additional term is included in the 

controller. By other hand, in [8,9,19] adaptive Jacobian 

tracking controllers have been reported, assuming that 

the knowledge of robot dynamics and kinematics are 

uncertainties. Lyapunov stability is used to guarantee the 

convergence of the position and velocity tracking errors, 

considering that the Jacobian matrix is parametrized 

linearly.  

At the same time, in order to compensate the 

nonlinearity and the uncertainties of the robot dynamics, 

the neural networks have been used into the control 

algorithms and pattern recognition, among others; to 

approximated smoothly vector fields with a certain 

desired accuracy, where the accuracy is controlled by the 

architecture of the neural network. In [13-17] the neural 

networks learn the inverse dynamics of the manipulators 

based on gradient descent method or adaptive control. 

However, a high computational cost is required because 

a great number of neurons in each layer are used. 

Additionally, to provide robustness some approaches add 

a high frequency input in the controller which represents 

the principal disadvantage in the practical applications. 

In [22] is proposed a neuro-visual servoing control for a 

planar robot manipulator assuming that link lengths of 

the robot manipulator are uncertain. In order to avoid the 

drift in the parameter estimated and some possible 

overshoot in the estimated of the gravitational vector a 

neural network is used. That is, it is not necessary to 

known the gravity vector and boundedness of the 

Jacobian matrix against a perturbation. Additionally, in 

[32] an adaptive neural network based controller is 
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proposed to approximate robot kinematics and dynamics 

of a pair of robotic fingers for manipulating an object. 

Specifically, a Gaussian radial basis function neural 

network (RBFNN) is used to approximate Jacobian 

matrices in order to guarantee boundedness of the 

position errors. Moreover, in [20] an adaptive neural 

controller is proposed to avoid the regression matrix 

computation. A parametric uncertainty in the Jacobian 

matrix and the external perturbations are compensated 

using a radial basis function neural network. In order to 

avoid the linearity- in-parameters, in [21] is presented a 

tracking of redundant robot manipulators assuming that 

parametric uncertainty is approximated by neural 

networks with 60 neurons in the hidden layer and an 

additional term is included to compensate external error 

and the approximated errors.  

In this paper is proposed an alternative approach to 

solve the Cartesian tracking of non-redundant robot 

manipulator assuming a parametric uncertainty. This 

approach is based on the assumption that the initial 

conditions and desired trajectories belong to the 

workspace Ω that defines a hyperspace free of singular 

configurations, which is an standard assumption for joint 

robot control. The control strategy is based on a second 

order sliding (SOSM) surface and a low dimensional 

neural network, to guarantee Cartesian tracking errors 

convergence with a smooth control effort under 

parametric uncertainties. The key of this approach is to 

design a Cartesian manifold which is invariant to 

parametric robot kinematics, such that, exponential 

convergence is guaranteed despite Jacobian uncertainties. 

This is carried out, by designing a second order sliding 

mode (SOSM) control which is piecewise continuous in 

contrast to the classical first order sliding mode control. 

That is, because of the fact that the sliding mode 

condition is relegated to the first order time derivative of 

the sliding surface, the possibility of chattering in the 

closed loop is eliminated. Compared with other 

approaches [20,22,32] the low dimensional neural 

network is used to approximate the robot parametric 

uncertainty. Additionally, the estimated Jacobian matrix 

is proposed by the user, considering that the exact 

Jacobian matrix of the robot manipulator is a function of 

the articular joints. Finally, given that the SOSM satisfy 

the sliding mode condition, the system is robust against 

structured unmodelled dynamics if the disturbances enter 

into the system via the input space. Stability and 

boundedness of all closed loop error signals is proved in 

the sense of Lyapunov while exponential convergence is 

established using SOSM control arguments. 

Representative real-time experimental results validate the 

proposed approach.  

 

2. DYNAMICAL MODEL OF THE 

MANIPULATOR 

 

Consider the following dynamical model of the robot 

manipulator obtained with the Euler-Lagrange (E-L) 

modeling formalism 

( ) ( ) ( ) ,H q q C q q q g q τ+ , + =�� � �  (1) 

where ,

n

q∈ℜ  is a n-dimensional vector of the joint 

angular positions, ( ) n n

H q
×

∈ℜ is the inertia matrix, 

( ) n n

C q q
×

, ∈ℜ� is the centrifugal Coriolis matrix, 

( ) n

g q ∈ℜ is the vector of gravity forces, and n

τ ∈ℜ  

stands for the torque inputs1. 

Some important structural properties of E-L systems 

(1) are very useful in our ulterior analysis. 

Property 1: The inertia matrix H(q) is symmetric, 

positive definite, and both H(q) and H–1(q) are uniformly 

bounded as a function of n

q∈ℜ  [25]. 

Property 2: The matrix ( )C q q, �  and the time 

derivative of the inertia matrix ( )H q�  satisfy 

( ( ) 2 ( )) 0 .
T n
H q C q q q q qq − , = ∀ , ∈ℜ
� � � ��  (2) 

Property 3: The general form of the E-L systems (1) 

can be parameterized linearly as follows, [28], 

( ) ( ) ( ) ,H q q C q q q g q Y+ , + = Θ�� � �  (3) 

where ( ) n p
Y Y q q q q

×

= , , , ∈ℜ� � �� is known as the regressor 

and p
Θ∈ℜ  is a vector of constant unknown parameters. 

Property 4: Equation (1) is passive from the torque 

input τ to velocity output q�  with storage function 

0
( );H q q, �  that is 

0
,

T dH
q

dt
τ ≥�  

where 
0
( )H q q, �  is the total energy of the system 

described in (1), such that 

0
( ) ( ) ( )H q q K q q P q, = , +� �  

with 1

2
( ) ( )

T
K q q H q qq, =� ��  being the kinetic energy and 

P(q) the potential energy of the system, assuming that 

( ) 0.
q

min P q =  

Property 3 becomes, in terms of a nominal reference 
2( ) n

r r
q q, ∈ℜ� ��  as 

( ) ( ) ( )
rr r

H q C q q g q Yq q+ , + = Θ,��� �  (4) 

where the regressor, ( )
r r r r

Y Y q q q q= , , ,� � �� is an n p×  

matrix and Θ  is an p×1 vector. Adding and subtracting 

(4) into (1), the open-loop error equation becomes 

( ) ( ) ,
q q r

H q S C q q S Yτ+ , = − Θ
� �  (5) 

where 

q r
S q q:= −� �  (6) 

defines a joint error manifold. This representation has 

                                                           
1Notice that we have not considered noise nor quantization 

sensor errors, typically of real world applications. 
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been very useful in previous works to design a variety of 

control strategies [1,2,17,19], in particular for sliding 

mode control. At this stage the control problem is the 

design of a Cartesian controller τ that guarantees tracking 

without resorting on Y
r
Θ using smooth desired Cartesian 

trajectories, rather than desired joint coordinates 
3( ) .

T TT T n

d d d
q q q, , ∈ℜ� ��  

To proceed, we need convenient open loop error 

dynamics parameterized in Cartesian errors, that is, we 

need to build an explicit representation of (6) in terms of 

Cartesian coordinates, then design the neuro-SOSM 

controller. 

 

3. CARTESIAN ERROR MANIFOLD UNDER 

JACOBIAN UNCERTAINTIES 

 

Let mX ∈ℜ  be the end-effector position vector with 

respect to a fixed reference inertial frame. The relation 

between joint space and task space is described by 

forward kinematics as 

( ),X f q=  (7) 

where X stands for the Cartesian coordinates, ( ) nf . : ℜ  

n

→ℜ is the forward kinematics map, generally a non-

linear transformation.2 Given that differential kinematics 

establishes a mapping between joint velocities and end-

effector velocities, we have that 

1( ) ,q J q X
−

=
��  (8) 

where 1( ) n m

J q
− ×

∈ℜ  represent the inverse Jacobian 

matrix. Based on (8), the nominal reference 
r

q�  can be 

defined as 

1( ) .
rr

J q Xq
−

=
��  (9) 

Notice now that the joint nominal reference 
r

q�  in (9) 

appears as function of Cartesian nominal reference ,
r

X�  

i.e., the Cartesian nominal reference is mapped into joint 

nominal reference. 

 

3.1. Cartesian adaptive control 

Let 
1r

X�  be defined as 

1 1 1 1
,

r d
X X Xα= − ∆
� �  (10) 

where the subscript d denotes desired trajectories, α1 is a 

positive-definite diagonal matrix and 
1

.

d
X X X∆ = −  

Now, substituting (8) and (9) with 1

1
( )

rr
J q Xq
−

=
��  in 

(6), we obtain 

1

1

1

1

( )( )

( ) ,

q r

x

S J q X X

J q S

−

−

= −

=

� �

 (11) 

                                                           
2
We consider nonredundant robots thus m

 

= n. 

where 
1 1 1 1 1x r

S X X X Xα= − = ∆ + ∆
� � �  is called Cartesian 

error manifold. Therefore, the joint error manifold Sq in 

(11) is defined as a function of the Cartesian error 

manifold Sx1. It is noteworthy that (9) and (11) allow us 

to input desired Cartesian coordinates directly, as 

function of inverse Jacobian. 

Assuming parametric uncertainties in robot dynamics, 

we can design the Cartesian version of the classical 

adaptive control for robots manipulators proposed by 

[28]. 

Theorem 1 (Cartesian Adaptive Control): Assum-

ing that initial conditions and desired trajectories are 

defined in a singularities-free robot workspace. Consider 

known kinematic parameters and unknown dynamic ones, 

then 

ˆ ,

ˆ ,

d q r

T
r q

K S Y

Y S

τ = − + Θ

Θ = −Γ
�

 

where 0 ,
T n n

d d
K K

×

= > ∈ℜ 0 .
T p p×

Γ = Γ > ∈ℜ  Then 

1
X∆  and 

1
X∆ �  tends to zero asymptotically. 

Proof: Considering a Lyapunov function V =  

11 1( )
2 2

T T
q qS H q S

−

+ ∆Θ Γ ∆Θ  then 0.q d qV S K S= − ≤
�  

Since 0,V ≤�  we can state that V  is also bounded. 

Therefore, Sq and ∆Θ  are bounded. This implies that 

Θ̂  and 1

1
( )

x
J q S
−  is bounded if 1( )J q

−  is well posed 

for all t. From the definition of 
1x

S  we have that 
1
,X∆ �  

1
X∆  are also bounded. Since 

1
,X∆ �

1
,X∆ ∆Θ  and Sq 

are bounded we have that 
q

S�  is bounded.This shows 

that V��  is bounded. Hence, V� is uniformly continuous. 

Using the Barbalat’s lemma [28], we have that 0V →
�  

at .t →∞  This implies that 
1

X∆  and 
1

X∆ �  tends to 

zero as t tends to infinity. Then, tracking errors 
1

X∆  

and 
1

X∆ �  are asymptotically stable [17].      � 

Remark 1: Notice that the controller exhibits a PD 

structure plus passivity-based inverse dynamic compen-

sation, i.e., 

1 1

ˆ

ˆ( ) ( ) ,

d q r

p v r

PD

K S Y

K t X K t X Y

τ = − + Θ

= − ∆ + ∆ + Θ�
�����������

 

where state dependant feedback gains are defined as 

1

1

1

( ) ( ),

( ) ( )

p d

v d

K t K J q

K t K J q

α
−

−

=

=

 

with α1 as is defined previously. 

 

In this controller, we can recognize that the exact 

knowledge of J –1(q) and the robot structure -the 

regressor Yr; are required. In addition, the assumption 

that J–1(q) is well posed for all t is very restrictive. 
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Because it is not possible to verify a priori the 

assumption on rank(J –1(q))=n for all t since q(t) may 

exhibit a transient response so that J(q) losses rank, thus 

the stability domain is very small. 

In order to eliminate these drawbacks, a neural 

network to approximate continuous functions will be 

proposed to ensure the boundedness of all closed loop 

signals while tracking is ensured by means of tailoring a 

modified Cartesian nominal reference 
r

X�  to introduce 

a second order sliding mode. 

Now, the modified Cartesian nominal reference 
r

X�  

is defined as follows 

,

( ),

r d d i

e

X X X S K

sgn S

α σ

σ

= − ∆ + −

=

� �

�

 (12) 

where α is a positive-definite diagonal matrix, ∆X= X–Xd, 

Ki is positive-definite diagonal matrix and function 

sgn(*) stands for the signum function of (*). Now, 

substituting (12) in (9) and (8) in (6) we have that 

0

0

1

1

1

( )( ),

( )(

( ( )) ),

( ) ( ( )) ,

q r

q d d

t

i et

t

q e i et

S J q X X

S J q X X X S

K sgn S d

S J q S K sgn S d

α

τ τ

τ τ

−

−

−

= −

= − + ∆ −

+

 +
  

∫

∫

� �

� �

�

 (13) 

where 

0( )
0

,

,

( ) , 0.

e x d

x

t t

d x

S S S

S X X

S S t exp
κ

α

κ
− −

= −

=∆ + ∆

= >

�  

Remark 2: Notice that the sliding mode condition is 

induced by the sgn(Se) term in (13) and exponential 

convergence of tracking error is established i.e., the 

discontinuity associated to the sliding mode present in 

Sq=0 is relegated to the first order time derivative of 

0.
qS =�  Then, the possibility of chattering in the closed 

loop dynamics is eliminated. In addition, it allows us to 

avoid the use of the boundary layer or a continuous 

approximation of function sgn(*) [12], i.e., dynamic 

sliding mode is imposed on the evolution of the sliding 

surface Sq. 

To complete the parametrization of (4), it is necessary 

to obtain the time derivative of (9) using the Cartesian 

nominal reference defined in (12), so that 

1 1

1 1

( ) ( )

( )( ( )) ( ) ,

r rr

e i e r

J q X J q Xq

J q S K sign S J q X

− −

− −

= +

= + +

�� � ���

� � �
 

where the first term of the right side is discontinuous. 

Since neural networks can not approximate discontinu-

ous signals, we need to avoid discontinuous signals in 

the function .

r
Y Θ  To solve this, 

r
q�� is decompose into 

continuous and discontinuous terms as follows 

1( ) ,
ir cont

J q K Zq q
−

= +�� ��  (14) 

where 

1 1( ) ( )

tanh( ) ( )

cont rcont

q e

J q X J q Xq

Z S sign Sλ

− −

= +

= −

�� � ���

 (15) 

for the 
1

tanh( ) [tanh( ) tanh( )]T
k

x x x= , ,…  as the continu-

ous hyperbolic tangent function of ,

k
X ∈ℜ

T
λ λ= ∈  

0.
n n×

ℜ >  

Notice that tanh( )
cont e i e

X S K Sλ= −
���  is continuous 

and Z in (15) yields a bounded discontinuous signal and 

it has the following properties: 1,Z ≥ − 1,Z ≤
0

e
S

Z
−

→

=  

1,−

0
1

e
S

Z
+

→

= +  and 0.
e

S
Z

→±∞
=  

Now, the parametrization of (4) using (9) and (14) 

becomes 

( ) ( ) ( ) ,
cont dcont r

H q C q q g q Yq q τ+ , + = Θ−��� �  (16) 

where the regressor ( )
cont r r cont
Y Y q q q q= , , ,� � �� is continu-

ous due to 1( ) ,
r cont

Cq q, ∈� ��  and 1( ) ( )
d i

H q J q K Zτ
−

=  

denotes a bounded endogenous disturbances subject to 

matching conditions. Finally, the open-loop error 

dynamics [26,27] is obtained adding and subtracting (16) 

into (1) such that 

( ) ( ) .q q cont dH q S C q q S Yτ τ= − , + − Θ−
� �  (17) 

Remark 3: If 
cont
Y Θ  and τd are available, the 

controller d q cont dK S Yτ τ= − + Θ+  would guarantee 

asymptotic tracking, for a Lyapunov function V =  

1 ( ) .
2

T
q qS H q S  However if 

cont
Y Θ  and τd are not 

available and assuming that the Jacobian is not exactly 

known, the nominal reference (9) cannot be used, that is 
1( )

rr
J q Xq
−

=
��  is not available. Then, an uncalibrated 

joint manifold arises which cannot be used for a sliding 

mode controller. In this case, the switching policy must 

take place in the Cartesian manifold Sx, which is 

invariant to uncertainty on J 
–1(q). 

 

3.2. Uncalibrated joint error manifold 

Considering that the Jacobian is not exactly known, 

the nominal reference defined previously in (9) cannot be 

used. Then, the uncalibrated nominal reference is defined 

as 

1ˆ ( ) ,ˆ
r

r

q Xq J
−

=
��  (18) 

where 
1ˆ ( )qJ

−

 stands as an estimate of J 
–1(q) so that 

1ˆ( ( )) ,rank q nJ
−

=  for all t and for all ,q∈Ω  where 

{ ( ( ))} .q rank J q nΩ = | =  Then, substituting (18) in (6), 

we obtain a Cartesian error manifold, coined uncertain 

joint error manifold as follows 
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11

ˆ ˆ

ˆ( ) ( ) .

q r

r

q qS

J q X q XJ
−−

= −

= −

��

� �
 (19) 

Notice that ˆ
q

S  is available since q�  and q̂�  are available. 

Taking the time derivative of (18) and rearranging the 

terms into continuous and discontinuous, the uncertain 

parametrization of ˆ
r

Y Θ  is defined as 

( ) ˆ
cont

H q q�� + ˆ( ) ( ) ,ˆ cont dr
C q q g q Yq τ, + = Θ−

��  (20) 

where ˆ
cont
Y Θ  is continuous with 

1ˆ ˆ
cont cont
q XJ

−

= +
�� ��  

1ˆ
r

J X
−
� �  and 1ˆ( )

d i
H q J K Zτ

−

=  means a bounded high 

frequency signal. 

Now, adding and subtracting (20) into (1), the 

uncertain open loop error equation arises as follows 

ˆ( )
q

H q S
�

+ ˆ( ) ,
q

C q q S τ, = −�  (21) 

where ˆ .
cont d
Yτ τ τ= − + Θ +  

Based on the property of the neural networks to 

approximate smooth bounded functions, in the next 

section is presented a design of the neural-adaptive 

controller τ where ˆ
cont
Y Θ  is approximated by a neural 

network and the endogenous discontinuous disturbance 

function 
d

τ  is considered not available. 

 

4. CONTROLLER DESIGN 

 

4.1. Neural network architecture 

To approximate continuous regressor Ycont a tree 

network structure that satisfies Stone-Weierstrass 

theorem [10] is used i.e., many neurons on one layer feed 

a single neuron on the next layer. The input-output 

relationship for this generic architecture is given as 

1
( )

m

i i ii
y x wφ

=

= ∑  where xi is the input to neural 

network, wi is the weight of connections and φ  the 

activation function. Notice that tree structure could have 

one or more hidden layers where the linear activation 

function is used as the last stage of a multilayer neural 

network.  

Considering the property that neural networks can 

approximate any smooth function f (x) with x belongs to 

a compact set S of n
ℜ  [11,18], it is defined regularly a 

sufficiently large neural network to approximate f (x) 

such that  

1
( ) ( ) ( ),Tf x xφ ε| − |≤X W  

where 
1
( )

N
xε ε≤� �  is a functional reconstruction error 

with εN > 0 for all .x∈S  Now, if for a low dimensional 

neural network exists a bounded optimal approximating 

weights Wlow, the approximation function of f (x) is 

given as  

2
ˆ ( ) ( ) ( ),Tf x xφ ε= +X W�  

where W�  is the estimated of the optimal approximating 

weights and 
2 1
( ) ( ).x xε ε>   

Taking into account that the regressor Ycont is 

continuous and assuming that exist a parametric 

uncertainties in the robot dynamics, we will use the low 

dimensional neural network to approximate the unknown 

function ˆ( )
cont

f x Y= Θ  as follows  

2
ˆ ˆ( ) ( ),T

cont
f x Y xε= Θ ≡ +X W�  (22) 

where the activation function φ  is used as a linear 

function, T n p×
∈ℜX are the inputs to the neural network 

and p
∈ℜW�  are the estimated neural network weights. 

To difference other approaches, the architecture of the 

low dimensional neural network is based on the 

ADAptive LINear Element (ADALINE) proposed by 

Widrow and Hoff [30] which consists of a single neuron 

of the McCulloch-Pitts type. Additionally, given that the 

regressor Ycont is a function of ,q ,q�
r

q�  and 
cont

q��  and 

is independent of dynamic parameters, the inputs to the 

neural network can be defined as  

.

T

r cont
q q q q= , , ,  X � � ��  (23) 

Now, based on the information provided by the input 

vectors to the neural network is possible to determine its 

size. Therefore, the number of weights that uses the 

neural network is defined as 4n where n represent the 

number of degrees of freedom of the robot manipulator 

and 4 represents the weights for each degree of freedom, 

Fig. 1.  

Remark 4: The neural network proposed in this work 

can be considered as minimal architecture to 

approximate the robot dynamics taking into account the 

regressor elements, that is, the neural network 

architecture provide a very easy and cheap estimation of 

ˆ .
cont
Y Θ  This architecture takes more relevance since the 

neural network is driven by a second order sliding mode, 

with bounded adaptive weights, as it will be shown in the 

next section.  

 

 

Fig. 1. Proposed neural network architecture. 
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4.2. Neuro-controller design 

Considering the parameterization of f (x) by a low 

dimensional neural network, we have that the open loop 

neuro-error equation is defined as 

ˆ( )
q

H q S
�

+ ˆ( ) ,
q

C q q S τ, = −�  (24) 

where T
τ τ δ= − + +X W�  with 

2
( ) .

d
xδ ε τ= +  Finally, 

we have the following result. 

Theorem 2 (Exponential Stability): Consider the 

robot dynamics (1) in closed loop with the controller 

given by 

ˆ ˆ ,
T

d qK Sτ = − +X W  (25) 

ˆ ( )tW =
0

ˆˆ (0) ( ) ( ) ,
t

qX S dτ τ τ− Γ∫W  (26) 

where T n n

d d
K K

×

= ∈ℜ  is a gain matrix, ˆ n p×
∈ℜW is 

a neural network weights, and .

T p p×
Γ = Γ ∈ℜ  Then, 

for a large enough gain Kd and small errors in the initial 

conditions, local exponential tracking errors are assured 

provided that 
1 ˆ( )

i x
K geq J q S

−�� + 1 ˆ( )
x

J q S
−

�
+

r
JX∆ � � + 

.

r
JX∆ �� �  

Proof: The closed loop error dynamics between 

equations (25) and (24) is given as 

ˆ( )
q

H q S
�

= ˆ( )
q

C q q S− , � – ˆ ,
T

d qK S vδ+ ∆ − +X W  (27) 

where ˆ∆ = −W W W  and v  is a virtual input defined 

for analysis proposes. For sake of clarity, the proof is 

organized in four parts as follows. 

Part 1 (Passivity): The passive mapping from virtual 

input v to output ˆ
q

S  is defined as 

0 0

0 0

ˆ ˆ ˆ ˆ( ( ) ( )

ˆ )

ˆ ˆ( ) ,

X W

t tT T
q q q qt t

T
d q

t t T
q d qt t

S vd S H q S C q q S

K S

dV
d S K S d

dt

τ

δ

τ δ τ

= + ,

+ − ∆ +

= + +

∫ ∫

∫ ∫

�
�

 (28) 

where 

11 1
ˆ ˆ

2 2
W W

T T
q qV S HS

−

= + ∆ Γ ∆  (29) 

represents a storage function. Due to 0V ≥  it is 

considered as candidate Lyapunov function. 

Part 2 (Boundedness of Closed-loop Trajectories): 
The time derivative of (29) leads to 

2
ˆ ˆ ˆ ˆ( ) .
T T T
q d q q q dV S K S S x Sε τ= − − −

�  (30) 

Note that the term ˆT
q dS τ  is radially unbounded3 only 

                                                           
3 Let m

q
S :ℜ →ℜ  be a function such that Sq(x)→∞ as 

,x →∞� �  then Sq is said to be radially unbounded. 

when ˆ
q

S →∞  and for bounded signals it is zero only 

at ˆ 0.
q

S =  These arguments imply that ˆT
q dS τ ≤� �  

ˆ
qSη � �  where 

1ˆ( ) ( ) .
i

H q q KJη
−

=� �� �� �  Then, (30) 

becomes 

2
ˆ ˆ ˆ ˆ ,
T
q d q q q NV S K S S Sη ε≤ − + +� � � � �  (31) 

where 
2 2
( ) .

N
xε ε≤� �  For small initial errors belonging 

to a neighborhood ε3 with radius r > 0 centered in the 

equilibrium ˆ 0,
q

S =  there exists a large enough 

feedback gain Kd such that ˆ
q

S  converges intoa set-

bounded ε0. Thus the boundedness of tracking error can 

be concluded, namely 

3
ˆ as .
q

S tε→ →∞  

This result stands for local stability of ˆ
q

S  provided that 

the state is near of the desired trajectories for any initial 

conditions. This boundedness in the L∞ sense, leads to 

the existence of the constant ε1> 0 such that 

4
ˆ .
q

S ε<� �  

Then, ˆ( )
e

S σ
∞

, ∈L  and since desired trajectories are C2 

and feedback gains are bounded, we have that 

( ) ,
r cont

q q
∞

, ∈� �� L  which implies that ˆ ,
cont
Y

∞
∈L

∞
∈X L  

and ˆ .
∞

∈W
�

L  Then, the output of the neural network is 

also bounded. According previous arguments and the 

boundedness of the robot dynamics -Coriolis matrix, 

gravitational term; and due to inertia matrix is positive-

definite and upper bounded; the right hand side of (27) 

with v =0 is bounded, such that ˆ .
q

S
∞

∈

�
L  Then, exists a 

bounded scalar ε5> 0 such that 

5
ˆ .
q

S ε<
�

� �  

So far, we conclude the boundedness of all closed-loop 

error signals. 

Part 3 (Sliding Mode): Now, we show that a sliding 

mode at S
e
=0 arises for all time. Adding and subtracting 

1( )
r

J q X
−  to (19) we have that 

1 1 1

1 1 1

1

ˆ ˆ( ) ( ) ( )

ˆ( )( ) ( ( ) ( ))

( ) ,

q r r

r r

x r

S J q X J q X J q X

J q X X J q J q X

J q S JX

− − −

− − −

−

= − ±

= − − −

= −∆

� � �

� � �

�

 (32) 

where 1 1ˆ ( ) ( ).J J q J q
− −

∆ = −  If we multiply (32) by 

J(q) we obtain 

ˆ( ) ( ) .
x q r

S J q S J q JX= + ∆
�  

Given that ,
x e i

S S K σ= +  we have that 
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ˆ( )( ).e i q rS K J q S JXσ= − + + ∆
�  (33) 

Taking the time derivative of (33), we obtain the 

following second order sliding mode 

{ }ˆ( ) ( )( ) .e i e q r

d
S K sign S J q S JX

dt
= − + + ∆

� �  (34) 

Now, if we multiply (34) by ,

T

e
S  we obtain 

{ }

6

ˆ( ) ( )

,

T T
e e i e e q r

i e e

e

d
S S K S S J q S J q JX

dt

K S S

S

ε

µ

 = − | | + + ∆ 
 

≤ − | | + | |

≤ − | |

� �

 (35) 

where µ=Ki–ε6 with 
6

ˆ( )
q

J q Sε =
� + ˆ( )

q
J q S

�
+ ( )

r
J q JX∆� �  

( ) ( ) .
r r

J q JX J q JX+ ∆ + ∆
� � ��  Then, if 6i

K ε>  we obtain 

the sliding mode condition. Therefore, µ > 0 guarantees 

the existence of a sliding mode at Se=0 at time 

0
( )

.e

q

S t
t

µ

| |
≤  However, notice that for any initial 

condition Se(t0)=0 and hence 0.
q
t ≡  This implies that a 

sliding mode in Se(t)=0 is enforced for all time without 

reaching phase and then Sx(t)=Sd for all t. 

Part 4 (Exponential Convergence): Sliding mode at 

Se implies that 
0

( ) kt

x d x
S S S t e

−

= =  thus 

0( )
0( ) .

k t t

x
X X S t eα

− −

∆ = − ∆ +�  

Now, if k  is tuned large enough so that Sd ≈ 0 for some 

small time 0 1
d
t< �  then 0 0,

d d
S t t= ∀ ≥ >  i.e., 

exponential stability of tracking errors is guaranteed 

since the solution of Sx=0 goes to zero exponentially, 

.X Xα∆ = − ∆�               � 

Remark 5: It is important to notice that the mapping 

from T
X W  to ˆ

q
S−  defined in (26) is passive, that is 

1

0

1ˆ (0) (0).
2

t T T T
qS dτ

−

− ≥ − Γ∫ X W W W� �  

At the same time, it is showed that dissipativity arises 

from the input 
e

S�  to the output Se where the storage 

function is defined as 1 2 .
T

e e e
V S S= /  Then, the passivity 

property of the robot manipulator is preserved in the 

closed loop using a neuro-adaptive law. 

Remark 6: The integral term in the Cartesian nominal 

reference ,
r

X� is a continuous function which introduces 

stronger error correction of the error trajectories with 

respect to Se=0. Then, the second order sliding mode is 

piecewise continuous, in contrast to the classical first 

order sliding mode control. Therefore, ˆ
d qK S is also a 

continuous function, i.e., the controller is continuous. 

Remark 7: If Ki and Sd are equal to zero, we will 

obtain the nominal reference frequently defined in the 

literature [14,18,29]. Although the value of Ki is an 

important parameter to establish a sliding mode, 

conservative values are used. Ki cannot be known a priori 

since it depends on the state space variables. 

Remark 8: Unlike other approaches which guarantee 

only bounded tracking error for low dimensional neural 

network [15,18] we prove exponential convergence with 

the low dimensional neural network where its size is 

defined by the degree of freedomof the robot 

manipulator. Furthermore, because of the fact that the 

neural network is driven by ˆ ,
q

S  it is possible to 

guarantee boundedness of the weights. 

 

5. EXPERIMENTAL RESULTS 

 

In this section we present the experimental results 

carried out on 2 degree of freedom planar robot arm (Fig. 

2), whose parameters are shown in Table 1. These 

experiments were developed under LabWindows 5.0 

with Pentium 4, 1.5 Ghz, and a 1 ms. sampling time. 

Additionally, the desired task in Cartesian space is 

defined as a circle centered at X=(0.5,0)m with radius of 

0.1m in 2.5s. 

Each experiment was executed under different initial 

conditions, zero initial velocity and assuming that the 

Jacobian matrix is uncertain, that is, the Jacobian matrix 

is parameterized in terms of a regressor times as 

parameter vector. To get parametric uncertainty, this 

vector is multiplied by a factor to get X% of uncertainty 

with respect to the nominal value. In these experiments, 

the neural network has only one layer and four weights 

per degree of freedom where wij (0)=0. Additionally, as is 

defined in (23), the input to the neural network is given 

as [ ]
T

ji r jiji r ji
q qq q

− −

= , , ,X � �  for j=1,2 and j=1,2,3,4. It 

is worth noticing that the term Sx(t0) can be obtained 

directly from sensor data in t = t0 i.e., when the robot 

 

 

Fig. 2. High speed planar robot. 

 

Table 1. Parameters of the robot arm. 

Parameter m1 m2 l1 l2 

Value 8 Kg 5 Kg 0.5 m 0.35 m 

Parameter I1 I2 lc1 lc2 

Value 0.02 Kgm2 0.16 Kgm2 0.19 m 0.12 m 
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Fig. 3. Theorem 2 (Exponential Tracking): Cartesian 

tracking errors (Top), End-effector tracking 

trajectory (Bottom). 

 

 

Fig. 4. Theorem 2 (Exponential Tracking): Control input 

for each joint. 

 

 

Fig. 5. Theorem 2 (Exponential Tracking): Cartesian 

tracking errors (Top), End-effector tracking 

trajectory (Bottom). 

 

Fig. 6. Theorem 2 (Exponential Tracking): Control input 

for each joint. 

 

 

Fig. 7. Cartesian error manifold Sx. 

 

manipulator starts moving we have that 
0

( ) 0q t∆ =�  then 

0 0
( ) ( )

x
S t q tα= ∆ is available. Therefore, the reaching 

phase is eliminated. 

Assuming 75% of parametric uncertainty in the 

Jacobian matrix, the exponential convergence of the 

Cartesian tracking errors and the performance of the end-

effector when it tracks a desired trajectories are shown in 

Fig. 3. Because to the fact that sliding mode condition is 

relegated to the first order time derivative of ˆ ,
r

S  the 

possibility of chattering in the closed loop is eliminated. 

Accordingly, the joint torques applied to the manipulator 

are assumed free of chattering i.e., the frequency is 

normal in direct drive motors, see Fig. 4. 

Now, if we assume that exists a 90% of parametric 

uncertainty in the Jacobian matrix and the initial 

conditions are away from the desired trajectory. The 

robot manipulator converges exponentially to the desired 

trajectory in a very short time -in order to enforce sliding 

mode condition, see Fig. 5. Therefore, the convergence 

to zero of the Cartesian tracking errors is established as 

shown in Fig. 5. The performance and smoothness of the 
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control signal is shown in Fig. 6. In Fig. 7 is shown the 

performance of the Cartesian error manifold which tends 

to zero, ensuring the tracking trajectory in a short time. 

As proved in Theorem 2, the experimental results show 

an exponential stability without any knowledge of the 

robots dynamics and considering that the Jacobian is 

uncertain. The feedback gains used in these experiments 

are shown in Table 2. Finally, the feedback gains are 

tuned in trial-and-error basis according to the interplay of 

each gain in the closed loop system. 

 

6. CONCLUSIONS 

 

An alternative solution to the problem of tracking 

tasks without knowledge of the robot dynamics and 

assuming that the Jacobian is uncertain is presented. A 

neuro-sliding mode controller is proposed to guarantee 

exponential stability. Moreover, experimental results on 

a simple but characteristic robot are presented, to 

visualize the real time stability properties of the proposed 

scheme.  
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