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Abstract: A new synchronized biased-greedy RRT is proposed which leverages the strengths of the bi-
ased and greedy RRTs. It combines the advantage of the biased RRT that grows trees towards the goal 
location, with the ability of the greedy RRT that makes trees traverse the environment in a single itera-
tion. The proposed method achieves performance improvements compared to other RRT variants, not 
only in computational time but also in the quality of the path. Two enhancements are made to the initial 
path to relax the sub-optimality of the RRT path; first a path pruning algorithm is executed to eliminate 
redundant nodes and an anytime strategy is adapted to continuously enhance the quality of the path 
within the deliberation time. 
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1. INTRODUCTION 
 
The field of robot motion planning has matured over 

the years since the original work in the 1970s. Various 
path planning techniques have been proposed for 
computing a collision free path amongst obstacles, 
however, autonomous real-time navigation in complex 
environments is still an active research topic. There are 
several considerations for the path planner to take, for 
example, optimality, completeness and computational 
complexity. There is a natural trade off between these 
elements [1]. For real-time applications, computational 
complexity is the most important requirement since path 
planning has to occur quickly as the change of the 
environment [2]. 

In recent years, sampling-based motion planning has 
been emergedas a promising approach for the real time 
implementation. Two traditional probabilistic search 
methods are the Probabilistic Roadmap (PRM) and the 
Rapidly-exploring Random Tree (RRT). The PRM 
planner consists of an off-line roadmap construction and 
an on-line graph search for path generation. It constructs 
a roadmap of the configuration space by sampling a 
random point and trying to link it from each nearby 
sample point using local planner. After constructing a 
roadmap network, graph search is applied online once 
the initial point and goal points are assigned. However, it 
is difficult to apply PRM to a dynamic and rapidly 
changing environment as building a roadmap a priori 
may not be feasible [3]. The RRT algorithm incremental-
ly builds a tree on-line from the starting point to the goal 

point by adding a new vertex towards randomly selected 
points. Although the PRM method was intended to 
explore the configuration space exhaustively in the 
preprocessing phase, the RRT algorithm tends to achieve 
efficient single-query planning by exploring the 
environment as little as possible [3]. A good trait of RRT 
is that the tree grows towards unvisited regions of the 
space and never regresses into already explored areas 
which results in a rapid exploration of the space [4]. This 
comes from the Voronoi regions in RRT nodes. Larger 
Voronoi regions exist on the border of the tree. Therefore, 
the nearest neighbor node selection makes vertices with 
large Voronoi regions be selected for expansion [5]. The 
RRT has been demonstrated successfully in real-time 
applications [6-9]. 

Normal RRT is not an efficient way to find a path 
between start and goal configurations because the tree 
explores the whole space. By selecting the goal point 
with some probability, the growth of RRT is biased 
towards the goal instead of exploring the whole space. A 
greedy variation of the algorithm reduce the planning 
time by extending trees successively along the ray 
connecting selected node and random points until a 
collision occurs. The efficiency of planning algorithm is 
further enhanced by combining the biased and greedy 
RRT. Though the biased-greedy RRT algorithm shows 
better performance in terms of the computational time, 
the quality of computed path is severely suboptimal. 

This paper proposes a new synchronized biased-
greedy RRT which leverages the good properties of the 
biased and greedy RRT. This method can be interpreted 
as a gradient descent search with a designated probability 
and uniform exploration with the other's probability. 

It should be noted that the RRT planner inherently 
sacrifices the optimality for the computational efficiency. 
In this work, the optimality is defined as the shortest path. 
In addition, the RRT planner does not have the ability to 
control the quality of the path. These characteristics of 
RRT naturally raise questions on how one can cope with 
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the sub-optimality of the path and how one can improve 
the path quality systematically. One way to relax the sub-
optimality of the RRT is to run the RRT algorithm 
iteratively within the available time for planning. When 
the planning time has run out, the planner then chooses 
the best path among paths generated during the 
deliberation time. This method can reduce the probability 
of generating a severely sub-optimal path but it cannot 
guarantee the improvement of path quality. 

The anytime planning algorithm is a well established 
method in the deterministic planning community which 
generates an initial path quickly and improves the quality 
of the path within the time allotted for planning. 
Therefore, the anytime planning strategy offers a built-in 
means of improving path quality progressively whilst 
deliberation time is permitted. The anytime planning 
strategy was firstly applied to RRT path planning in [10]. 
Path costs were incorporated explicitly into the planning. 
A discretization of the environment is a conventional 
way to build a cost map in deterministic planning 
methods such as A* and D*. This discretization approach 
also is used in [10]. A more exact cost of the path can be 
calculated by a minute tiling of the environment. 
However, the disadvantage of the discretization may 
outweigh the benefits. 

Instead of discretization of the environment to 
evaluate a cost, the Euclidean path distance is used as a 
cost in this research. The distance measure is not an 
exact evaluation of the cost but it will be matched if the 
shortest path generation is the objective of planing. In 
addition, it removes the necessity of the environment 
discretization. Therefore, path length based anytime RRT 
can be operated within the RRT framework which only 
needs a collision detection function. 

The paper is organized as follows: Section 2 presents 
the synchronized-biased-greedy RRT path planning, and 
a path pruning algorithm which removes extraneous 
nodes is described in Section 3. Section 4 presents an 
anytime RRT path planning. Simulation results are 
shown in Section 5 and conclusions are thereafter. 

 
2. SYNCHRONIZED-BIASED-GREEDY RRT 

PATH PLANNING 
 

2.1. Basic RRT 
Algorithm 1: Baisic RRT Algorithm 

1: Build_RRT(xinit) 
2:     T.init (xinit)) 
3: while Distance(xgoal, xnew) > dlim do 
4:     xrand← RandomState() 
5:     xnear← NearestNeighbor(T, xrand) 
6:     xnew← Extend(T, xrand, xnear) 
7:     If Distance(xgoal, xnew) ≤ dlim then 
8:        Return T 
9:     endif 
10:  end while 

 
The RRT algorithm incrementally builds a tree from 

the starting point to the goal point adding a new vertex 
which is one of randomly selected points.  
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(a) Good case. (b) Pathological case. 
Fig. 1. Basic RRT planning results. 

 
Algorithm 1 shows the basic RRT algorithm. First, 

RRT selects a random state xrand (Line 4), and this state is 
compared with existing tree nodes to find the closest 
node in the tree, xnear (Line 5). A line is drawn 
connecting xnear to xrand, and a new point xnew is generated 
along this ray at a fixed distance from xnear. If there is no 
collision on the interval between xnear and xnew, the latter 
is added to the tree (Line 6). The algorithm ends if the 
distance between xnew and xgoal is smaller than the 
threshold dlimit (Line 7). 

Fig. 1 shows the basic RRT path planning results. The 
green lines denotes all RRT trees and the red lines denote 
the generated path. The starting point is (0,0) and the 
goal point is (290,290). In Fig. 1(a), RRT can find the 
collision free path quickly without exploring the whole 
space but this is not often the case. RRT tries to explore 
the whole space as shown in Fig. 1(b) for the most part. 
This comes from the fact that the basic RRT algorithm 
always selects the candidate point randomly which 
makes the tree growth uniform. It is not an efficient way 
to wander the whole space as the primary goal of path 
planning is to find a feasible path between start and goal 
configurations. 

 
2.2. Biased RRT 

A simple but efficient way to enhance the performance 
of the search is to bias the growth of RRT towards the 
goal instead of exploring the whole space. This can be 
achieved by selecting the goal point with some 
probability. A biased RRT selects the goal locations with 
probability p and random points are selected with 
probability 1– p. As p increases, the RRT behaves 
increasingly like the best first search [4]. Here the 
probability of goal selection is a design parameter. If the 
environment is densely cluttered with obstacles, it is 
better to reduce this probability but if the environment 
has sparsely located obstacles, higher probability can 
reduce the time for generating a collision free path. It is 
generally recognized that 10% of probability is a 
reasonable choice regardless of the density of obstacles. 

Fig. 2 shows the biased RRT path planning results. 
This method enables a feasible path to be found within a 
short time and stumble less to unnecessary areas 
compared to the basic RRT case as can be seen in Fig. 
2(a). Even though the total tree number is reduced 
greatly, trees still explore unnecessary areas of the 
environment as in Fig. 2(b). 
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(a) Good case. (b) Pathological case. 
Fig. 2. Biased RRT planning results.  

 
2.3. Greedy RRT 

One of the most time consuming processes in the RRT 
algorithm is when finding the nearest neighbor node. The 
computational cost increases as the number of trees 
increase. K-d tree method can relieve this problem by 
efficiently maintaining a data structure, but the best way 
to speed up the process is to reduce the use of the nearest 
neighbor function. A greedy variation of the algorithm 
can reduce the use of this function by extending trees 
successively along the ray connecting selected node and 
random points until a collision occurs. This greedy RRT 
frequently shows a better performance since any 
relatively open and unobstructed regions are traversed in 
a single iteration [11]. 

Fig. 3 shows the greedy RRT path planning results. 
This method can find a feasible path quickly with less 
frequent use of the nearest neighbor calculation function 
as in Fig. 3(a). However, the drawback of this method is 
that the resulting path is severely suboptimal. Moreover, 
the planning time will be increased if the RRT nodes are 
extended in the wrong direction as can be seen in Fig. 
3(b). 

 
2.4. Biased-greedy RRT 

Biased RRT can make the tree grow toward the goal 
location and the efficiency will be enhanced by 
combining the biased and greedy RRT. It chooses a state 
using a biased sampling strategy and then grows trees as 
many times as possible before a collision is detected. 

Fig. 4(a) shows the result of the biased-greedy RRT 
planning method. This method can reduce the planning 
time greatly. However, similar to the greedy RRT this 
method is sub-optimal as can be seen in Fig. 4(b). 
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(a) Good case. (b) Pathological case. 
Fig. 3. Greedy RRT planning results. 
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(a) Good case. (b) Pathological case. 
Fig. 4. Biased-greedy RRT planning results. 

 
2.5. Synchronized biased-greedy RRT 

The biased-greedy RRT algorithm shows better 
performance in terms of the computational time. 
However, this algorithm has the advantages and 
disadvantages of the biased RRT and the greedy RRT 
algorithms. The advantages of the biased RRT and 
greedy RRT are that it grows trees towards the goal 
location and it makes trees traverse the environment in a 
single iteration respectively. The disadvantage of the 
biased RRT algorithm is that it requires frequent use of 
the nearest neighbor function as extensions occur only 
once though potential direction is selected and the greedy 
RRT frequently explores unnecessary areas as it extends 
trees regardless of goodness in that direction. A 
synchronized biased-greedy RRT algorithm is proposed 
to improve the path planning performance which has 
only good properties of both methods. The synchronized 
biased-greedy RRT executes a greedy extension where 
the goal location is selected as a target point and extends 
just one time otherwise.  

Algorithm 2: Synchronized Biased-Greedy RRT 
Algorithm 
1:  Build_RRT(xinit ) 
2:     T.init (xinit)) 
3:  while Distance(xgoal, xnew) > dlim do 
4:     xrand← BiasedState() 
5:     xnear← NearestNeighbor(T, xrand) 
6:     xnew← SyncGreedyExtend(T, xrand, xnear) 
7:     If Distance(xgoal, xnew) ≤ dlim then 
8:        Return T 
9:     endif 
10:  end while 

 
Algorithm 2 shows the synchronized biased-greedy 

RRT algorithm. The synchronized biased-greedy RRT 
can be interpreted as a gradient descent search with a p 
probability and a uniform exploration with 1-p 
probability. This approach will not get trapped in a local 
minima due to the 1-p probability of random exploration 
and will find the shortest path with p probability due to 
the greedy extension. With this synchronized 
combination of the biasness and greediness, the method 
is effective in reducing the computational time in 
comparison with biased RRT. In addition, it generates a 
more optimal path compared to greedy RRT. 
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Fig. 5 shows planning results of a synchronized 
biased-greedy RRT algorithm. There are two long greedy 
extensions in Fig. 5(a) case which can quickly extend 
trees toward the goal location. The resulting path is 
shorter and takes less time to generate compared to 
previous methods. There are a significant number of 
obstacle blockages in Fig. 5(b) case but it can easily get 
away from the local minima and find the shortest path 
quickly without exploring unnecessary areas. From Fig. 
5 it can be seen that the greedy extension is stopped 
when a collision is detected but it can easily find the 
collision free path in that regions by uniformly searching 
the free space with 1-p probability. After escaping from 
an obstacle, it tries again to extend the tree in the 
direction of the gradient descent to the goal with p 
probability. 

 
3. PATH PRUNING 

 
Even though RRT is an effective and computationally 

efficient tool for complex online motion planning, the 
solution is far from optimal due to its random exploration 
of the space. There are a lot of redundant nodes and 
wavy motions which simply increase the path length. In 
this Section, a simple yet an efficient method which is 
able to eliminate most extraneous and wavy nodes within 
a short time is described. Two algorithms are proposed 
for this path pruning. 

 
3.1. Line of sight path pruning 

The first path pruning method uses local information 
about the path. Let the pruned path be initially an empty 
set. First, define the begin node (BNode) and end node 
(ENode) for collision checking. Initially, the BNode is 
assigned to the first node of RRT path and the ENode is 
the second node of the RRT path. Then check the line 
between the BNode and the ENode for a collision, 
stopping when a collision is detected between them. If 
there is a collision, the previous node from this ENode is 
added to the pruned path and reassigned to the BNode 
and ENode. This process is repeated until a complete 
path is generated. Finally, the final path is obtained 
adding the first and the last RRT path to the pruned path. 

Fig. 6(b) shows the pruning result of the LOS path 
pruning algorithm applied to the initial RRT path in Fig. 
6(a). The RRT path initially has 59 nodes between the 

start and goal point. However, this number reduces to 
only 5 after the redundant waypoints are pruned.  

There are several benefits to this pruning algorithm. 
First, it reduces the path length by removing the wavy 
nodes. Second, path following is made easily since most 
of the path consists of straight lines. Finally, it is also 
beneficial to the vehicle actuators because a lot of jaggy 
motions are removed. 

 
3.2. Global path pruning 

As seen in the preceding Section, the LOS path 
pruning can efficiently remove the redundant waypoints 
in most cases. However, there still exists wavy motions 
due to short-sightedness of LOS. To provide better 
reasoning about the pruning process, a modification is 
made to the LOS path pruning. The LOS algorithm starts 
the pruning process from the next point of BNode and 
stops the process when a collision is detected. Although 
there is a collision in the jth node, there can be no 
collisions between BNode and the j + 1th node. Based on 
this reasoning, the pruning process starts on the last node 
of the RRT path. It slightly increases the processing time 
but removes the myopic behavior of the LOS pruning. 
This method is called Global path pruning as it tries to 
prune the path considering the entire path nodes. 

Fig. 7 shows the pruning result of the global path 
pruning which is the same path as seen in Fig. 6. After 
applying the global path pruning algorithm, nodes 
between the start and the goal point are reduced to 3 
which is less than the LOS pruning case. 
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Fig. 7. Global path pruning. 
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Fig. 5. Synchronized biased-greedy RRT planning 

results. 
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4. ANYTIME RRT 
 
The second improvements to relax the sub-optimality 

of the RRT path is to apply anytime strategy. It generates 
an initial path quickly and improves the quality of the 
path within the allowable planning time. The anytime 
RRT operates as follows: First, the RRT algorithm 
generates an initial path without considering path cost 
and favoring quick generation of the initial path. After 
obtaining the initial path, the role of the planner is shifted 
from path generation to path optimization. Then, the 
planner progressively improves the quality of the path 
until the planning time runs out. Several modifications in 
the state sampling, node selection and node expansion 
functions are made to enable the RRT algorithm fit into 
an anytime planning strategy. 

 
4.1. State sampling 

It is possible to get information about the environment 
at each iteration from the previous successful solution 
because of the iterative path generation process. We 
would like to use the previous path information in the 
next iteration to enhance the path quality. However, it 
should be noted that all prior information is not always 
beneficial. If the preceding path is severely sub-optimal, 
the information of this path will mislead the current path. 
On the other hand, if the previous path is close to the 
optimal path, this information can greatly contribute to 
improve the path quality. Therefore, it is important to 
make a decision as to whether or not use the previous 
path information and how useful that information is in 
guiding the current path generation. With this insight, a 
path cost is incorporated for the judgment of the level of 
prior path information to be used in the generation of a 
new path. 

The next question is how to utilize the previous path 
information. The waypoint cache method is used which 
is suggested in [12]. The nodes of the prior path are 
stored and these nodes will be chosen with some 
probability in the next path. This approach is modified to 
fit in the anytime RRT framework. First, as explained 
previously, the probability of choosing the prior 
waypoint cache is determined based on the quality of the 
path. Yet a fixed probability is used in [12]. Second, a 
small perturbations are added to the prior waypoint cache. 
This modification comes from the intuition that the prior 
path is not necessarily the optimal path. To find a better 
solution near the previous information, the points near 
the prior cache are chosen. 

 
4.1.1 Adaptive state sampling 

Algorithm 3 shows the state sampling strategy which 
is used in the anytime RRT. 

Algorithm 3: Anytime RRT State Sampling 
1:  p=RandomValue([0,1]) 
2:  if 0≤p≤pg then 
3:    return xgoal 
4:  elseif pg≤p≤pc then 
5:    return xseed 
6:  else 

7:    return xrandom 
8:  end if 

 
Line 2-3 is a biased sampling which chooses the goal 

point with some probability. Line 4-5 is a guided 
sampling which chooses previous path nodes with 
adaptive probability. This makes the planner reuse prior 
information. Line 6-7 is a random sampling which 
chooses any points within the environment. The 
combination of three sampling methods speeds up the 
search process by growing the tree towards a promising 
direction.  

There are two parameters to be determined; the 
probability to choose the goal point (pg) and the 
probability to choose the prior path nodes (pc). The 
probability to choose a goal point is decided as pg =0.1 
because 10% goal biased sampling exhibits a good 
performance regardless of the environment. The prior 
path node selection probability (pc) is not fixed but 
varied based on the prior path quality. The path length is 
used as a cost of the path. First the path length between 
the starting point to the goal point is calculated. This 
value is set as an optimal cost because the straight line 
between these points is the shortest path. Equation (1) 
shows the optimal cost calculation. 

2 2 2
g s g s g s(x x ) (y y ) (z z )opt minC L= = − + − + −  (1) 

If a new path is generated, the length of this path is 
computed to evaluate the quality of the path. Then the 
probability pc is decided adaptively based on this value 
as in (2). 

p p

p

Q 0.5, if Q 0.5

0, if Q 0.5,cp
− ≥⎧⎪= ⎨ <⎪⎩

 (2) 

where min
p

path

L
Q

L
=  is the ratio between the optimal path 

length and the previous path length which decides the 
path quality. As the quality of the previous path is 
improving, the probability to choose the waypoint cache 
increases. If Qp is less than 0, the probability to choose 
the waypoint cache is set to zero. 

 
4.2. Node selection 

Once the state is sampled according to the adaptive 
state sampling method, the next task is to select a node to 
extend toward the sampled state. The second 
modification of the RRT for the application of the 
anytime RRT method is to incorporate a path cost into 
the node selection to extend. Similar to the state 
sampling, the weighting of the cost is varied according to 
the quality of the path instead of applying a fixed 
contribution. 

 
4.2.1 Progressive weighting of cumulative cost 

The distance metric when choosing a node is changed 
for the improvement of path quality. Once the feasible 
path is generated, the focus of the planning will be 
shifted from the feasible path generation to the optimal 
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path generation. The original algorithm chooses the 
nearest node from the existing node to the sample point. 
Instead of applying only the nearest node selection 
strategy, the cumulative cost of the existing node is also 
considered for optimization. 

sum dist cumC C w C .= + ⋅  (3) 

Equation (3) shows the evaluation of the cost when 
choosing a node to extend. Cdist is a Euclidean distance 
from each node to the sampled point; Ccum is a 
cumulative cost from the starting point to the current 
node; w is a weighting of the cumulative cost; and Csum 
is the cost of each node to extend toward the sampled 
state. The nodes are sorted in ascending order of Csum 
when choosing the cheapest node. 

The cumulative cost weighting w is also varied in a 
similar fashion to state sampling. Equation (4) 
demonstrates how to decide on the weighting w. 

ite max

max

N k, if w w
w =

w , otherwise,
⋅ ≤⎧

⎨
⎩

 (4) 

where Nite is an iteration number of path planning, k is an 
incremental value of weighting, and wmax is a maximum 
weighting value. 

As the planning time progresses, the cumulative cost 
becomes increasingly weighted. The subsequent increase 
of the cumulative cost weighting is aimed at making the 
new path gradually approach the optimal path. The node 
selection result is the same as the original RRT method if 
w = 0 in (3) and only the starting point will be selected if 
w = 1. Therefore, the w must be smaller than 1 to grow 
the tree. In our application, wmax and k are chosen as 
wmax = 0.7 and k = 0.1 respectively. 

The transition from path generation to path 
optimization changes the growing characteristic of the 
RRT tree. The distance based nearest neighbor node 
selection makes the tree grow rapidly to the larger 
Voronoi region. The focus of this stage is to find a 
solution quickly. The inclusion of the cumulative cost 
hinders the pure expansion of the tree growth towards the 
Voronoi region. Instead, it drives the tree growth towards 
the direction associated with the shortest path. As a result, 
there is a natural trade-off the quick generation of the 
sub-optimal path and the better quality path generation 
with the increase in planning time. To accommodate this 
characteristic, the cumulative cost weighting gradually 
increases to progressively improve the path quality 
within the time available for planning. 

 
4.3. Node expansion 

After the node to extend is decided, the RRT extends 
the selected node to the sampled point. In anytime RRT, 
however, the chosen node will not be extended if it is not 
beneficial for the improvement of path quality. The 
rationale of this decision is that the poor node extension 
cannot contribute to the enhancement of the path quality. 
The purpose of the anytime RRT is not a feasible path 
generation but a better quality path generation than the 
previous path. Therefore, if the extension of the selected 

node cannot contribute to the path quality improvement, 
it does not need to extend. To achieve this, we need to 
estimate the expected total cost of the path 

 
4.3.1 Cost-to-go estimation 

The total cost of a path can be calculated by summing 
the accumulated cost from the starting point to the 
selected node (Ccum), and the cost from the selected node 
to the sampled point (Cdist), and the cost from the 
sampled point to the goal point (Cctg). 

total cum dist ctg ctc ctgC C C C C C .= + + = +  (5) 

Equation (5) shows how to calculate the total cost of 
the path. The cumulative cost (Ccum) and the extension 
cost (Cdist) can be expressed as a cost-to-come cost (Cctc). 
Therefore, the total cost consists of the cost-to-come cost 
(Cctc) and cost-to-go cost (Cctg). Only the cost-to-go 
needs to be calculated as the cost-to-come has already 
been calculated in Section 4.2. 

It is difficult to calculate the exact cost-to-go. The 
complexity of finding the exact cost-to-go value is 
comparable to the original path planning problem. 
Instead of finding the exact cost-to-go, the Euclidean 
distance is used from the sampled point to the goal point 
as an estimate of the cost-to-go. Even though this 
Euclidean cost-to-go estimation is not an exact measure, 
it will offer the lower bound of cost-to-go as any path 
cannot be shorter than the straight line. 

 
4.3.2 Decision for the node expansion 

In anytime RRT, whenever a new path is generated the 
length of this path is set as the upper-bound-cost of the 
path. From (5), the expected cost of the path can be 
calculated after tree expansion. If this expected cost is 
higher than the upper-bound-cost, the node expansion 
will not occur. Equation (6) shows the node expansion 
condition. 

total upperC C .<  (6) 

According to the evaluation of the path cost before 
extending the tree, only the promising nodes are 
extended towards the promising state. This process 
reduces the planning time by not allowing the addition of 
unnecessary trees. 

 
5. SIMULATION EXPERIMENTS 

 
We conduct the simulation experiments to investigate 

the performance of synchronized biased-greedy RRT and 
anytime RRT. 

 
5.1. Performance comparison of several RRT algorithms 

in randomly generated environment 
To compare the performance of the proposed synchro-
nized biased-greedy RRT with other RRT variants, 
Monte-Carlo simulations are conducted in randomly 
generated environment. The environment size is 
500m×500m and the starting point is (0, 0) and the goal 
point is (500,500). At each run, the number of obstacle 
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varies from 50 to 100, and the radius of obstacle varies 
from 5m to 10m.  

Fig. 8 shows two examples of the randomly generated 
environments. Fig. 8(a) shows randomly generated 
environment when the obstacle number is 50, and Fig. 
8(b) shows randomly generated environment when the 
obstacle number is 100. The number and size of obstacle 
are changed at each run. The yellow circle denotes 
randomly generated obstacles and the cyan circle denotes 
the safety zone of the obstacle. 

Table 1 shows mean values of run time, node number, 
and path length over 500 runs. The basic RRT takes the 
longest time to find a path. Even though the greedy RRT 
is able to find the solution faster than the basic RRT, the 
path length is much larger than the basic RRT. This 
comes from the blind extension of trees. The biased RRT 
reduces run time greatly in comparison with the basic 
and greedy RRT. In addition, the resulting path is shorter 
than the basic and greedy RRTs. The biased-greedy RRT 
can further reduce the run time but preserves the sub-
optimal property of greedy RRT. The synchronized 
biased-greedy RRT generates the shortest path with the 
least time amongst them. If we compare the planning 
time of between the basic RRT and the synchronized 
biased-greedy RRT, the former longer than the latter 
about one hundred times. 

Table 2 shows standard deviation values of the run 
time, node number, and path length over 500 runs. 
Similar to the mean values as Table 1, the variation of 
the run time, node number, and the path length for the 
proposed synchronized biased-greedy RRT algorithm is 
smaller than other methods. 

 
Table 1. Comparison of several RRT algorithms  in 

randomly generated environment: mean values 
over 500 runs. 
 Run Time Node Length 

Basic 60.82s 1880 884m 
Greedy 23.64s 1161 914m 
Biased 1.31s 311 820m 

Biased-greedy 0.64s 233 869m 
Synchronized 0.38s 145 747m 

Table 2. Comparison of several RRT algorithms in 
randomly generated environment: standard 
deviation values over 500 runs. 
 Run Time Node Length 

Basic 47.21s 526 39m 
Greedy 32.06s 634 96m 
Biased 1.59s 121 30m 

Biased-greedy 0.65s 134 91m 
Synchronized 0.56s 108 34m 
 

5.2. Performance comparison of several rrt algorithms in 
deadlock environment 

In the second simulation, a deadlock environment is 
generated to investigate the RRT performance in local 
minima situation. The environment size is 100m×100m, 
and the starting point is (50,40) and the goal point is 
(50,95) as shown in Fig. 9. The starting point is 
encompassed by obstacles and only one side is free. 

Fig. 9 shows the synchronized biased-greedy RRT 
planning result. The RRT planner must grow trees in 
opposite way from the start point to the goal point to 
escape the local minima and also pass the narrow 
passage in both sides. 

Table 3 shows mean and standard deviation values of 
run time over 500 runs. The path length of several RRTs 
are almost same since the route from the staring point to 
the goal point is fixed and the narrow corridors of both 
sides restrict the tree expansion. For this reason, only 
planning time is used to compare the performance. 
Though the differences of the planning time among 
several RRTs are not big compared with the randomly 
generated environment case, the proposed synchronized 
biased-greedy RRT takes the least time and exhibits the 
smallest the standard deviation of the planning time. 
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Fig. 9. RRT performance in deadlock environment. (a) 

Deadlock environment. (b) Synchronized Biased-
Greedy RRT planning result. 

 
Table 3. Comparison of several RRT algorithms in 

deadlock environment: mean and standard 
deviation values over 500 runs. 

 Run Time(mean) Run Time(STD)
Basic 0.31s 0.25s 

Greedy 0.24s o.19s 
Biased 0.27s 0.18s 

Biased-greedy 0.19s 0.13s 
Synchronized 0.16s 0.08s 
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Fig. 8. Randomly generated environments: Monte-

Carlo simulations are conducted in randomly 
generated environment to compare the perform-
ance of several RRTs. (a) Randomly generated 
environment when the obstacle number is 50. (b) 
Randomly generated environment when the 
obstacle number is 100. 
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5.3. Performance of the anytime RRT 
The performance of the anytime RRT is investigated 

in this simulation. The starting point is (0,0) and the goal 
point is (180,230). 

Figs. 10 and 11 show the simulation results of the 
anytime RRT. The linear paths of the anytime RRT are 
shown from Fig. 10 and their smooth paths are shown 
from Fig. 11. A path smoothing algorithm in [13] is 

applied to the linear path to clearly compare the path 
quality among them. The previous path and the current 
path are plotted together in the linear path to show the 
improvement of the path quality.  

Initially the RRT explores the space to find the 
solution quickly which results in a poor quality path as 
shown in Fig. 10(a). After finding the initial path, 
however, the anytime RRT can find the enhanced path 
from the second iteration as shown in Fig. 10(b). The big 
difference between the first and the second path is the 
tree expansion profile. The trees in the first path grow 
largest Voronoi region but the trees in the second path 
does not explore unnecessary regions.  

This characteristic comes from the node expansion 
property of the anytime RRT which does not grow tree if 
it is not beneficial for the improvement of the path 
quality. The cost of path is greatly reduced at the third 
iteration by finding a best route as shown in Fig. 10(c). 
The advantage of anytime RRT is that it tries to find the 
better route to reduce the path cost as the increase of the 
iteration. Once it finds the best route, it tries to improve 
the path quality by finding a better path within the best 
route. Fig. 10(d) shows this characteristic. By drawing 
more samplings from the previous waypoint cache, and 
by selecting and expanding node within the best route 
with higher probability, the anytime RRT find a better 
path.  

Table 4 shows the path cost of each RRT path. The 
cost of the path is the length of the path. The quality of 
the path is gradually improved and it becomes 
approaches to the optimal solution as the increase of the 
iterations. 

 
6. CONCLUSIONS 

 
This paper proposes a synchronized biased-greedy 

RRT which utilizes the good properties of the biased and 
greedy RRT. This method can be interpreted as a 
gradient descent search with a designated probability and 
uniform exploration with the other's probability. With the 
synchronized combination of the biasness and greediness, 
this method can reduce the computational time compared 
to biased RRT as well as generate a more optimal path 
compared to greedy RRT. Though RRT is a 
computationally efficient tool for complex online motion 
planning, the resulting path contains a lot of wavy 
redundant nodes. A pruning algorithm is proposed which 
is able to remove most of the extraneous and wavy nodes 
within a short time. After applying the pruning algorithm, 
the most path consists of straight lines and has less jaggy 
motion. Finally, an anytime strategy is applied to 
continually improve the quality of the path until 
deliberation time allows. Simulation results show that 
anytime RRT makes the path gradually closer to the 
optimal path as the increase of the iteration number. 
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Fig. 10. The performance of the anytime RRT: Linear 

Path. 
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Fig. 11. The performance of the anytime RRT: Smooth 

Path. 

Table 4. Path cost of the anytime RRT. 
 1st 2nd 3rd 4th 

Path length 377m 369m 328m 319m 
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