
International Journal of Control, Automation, and Systems (2011) 9(4):750-758
DOI 10.1007/s12555-011-0417-7

http://www.springer.com/12555

Anytime Synchronized-Biased-Greedy Rapidly-exploring Random Tree Path
Planning in Two Dimensional Complex Environments

Kwangjin Yang

Abstract: A new synchronized biased-greedy RRT is proposed which leverages the strengths of the bi-
ased and greedy RRTs. It combines the advantage of the biased RRT that grows trees towards the goal
location, with the ability of the greedy RRT that makes trees traverse the environment in a single itera-
tion. The proposed method achieves performance improvements compared to other RRT variants, not
only in computational time but also in the quality of the path. Two enhancements are made to the initial
path to relax the sub-optimality of the RRT path; first a path pruning algorithm is executed to eliminate
redundant nodes and an anytime strategy is adapted to continuously enhance the quality of the path
within the deliberation time.

Keywords: Anytime strategy, obstacle avoidance, path planning, rapidly-exploring random tree.

1. INTRODUCTION

The field of robot motion planning has matured over

the years since the original work in the 1970s. Various
path planning techniques have been proposed for
computing a collision free path amongst obstacles,
however, autonomous real-time navigation in complex
environments is still an active research topic. There are
several considerations for the path planner to take, for
example, optimality, completeness and computational
complexity. There is a natural trade off between these
elements [1]. For real-time applications, computational
complexity is the most important requirement since path
planning has to occur quickly as the change of the
environment [2].

In recent years, sampling-based motion planning has
been emergedas a promising approach for the real time
implementation. Two traditional probabilistic search
methods are the Probabilistic Roadmap (PRM) and the
Rapidly-exploring Random Tree (RRT). The PRM
planner consists of an off-line roadmap construction and
an on-line graph search for path generation. It constructs
a roadmap of the configuration space by sampling a
random point and trying to link it from each nearby
sample point using local planner. After constructing a
roadmap network, graph search is applied online once
the initial point and goal points are assigned. However, it
is difficult to apply PRM to a dynamic and rapidly
changing environment as building a roadmap a priori
may not be feasible [3]. The RRT algorithm incremental-
ly builds a tree on-line from the starting point to the goal

point by adding a new vertex towards randomly selected
points. Although the PRM method was intended to
explore the configuration space exhaustively in the
preprocessing phase, the RRT algorithm tends to achieve
efficient single-query planning by exploring the
environment as little as possible [3]. A good trait of RRT
is that the tree grows towards unvisited regions of the
space and never regresses into already explored areas
which results in a rapid exploration of the space [4]. This
comes from the Voronoi regions in RRT nodes. Larger
Voronoi regions exist on the border of the tree. Therefore,
the nearest neighbor node selection makes vertices with
large Voronoi regions be selected for expansion [5]. The
RRT has been demonstrated successfully in real-time
applications [6-9].

Normal RRT is not an efficient way to find a path
between start and goal configurations because the tree
explores the whole space. By selecting the goal point
with some probability, the growth of RRT is biased
towards the goal instead of exploring the whole space. A
greedy variation of the algorithm reduce the planning
time by extending trees successively along the ray
connecting selected node and random points until a
collision occurs. The efficiency of planning algorithm is
further enhanced by combining the biased and greedy
RRT. Though the biased-greedy RRT algorithm shows
better performance in terms of the computational time,
the quality of computed path is severely suboptimal.

This paper proposes a new synchronized biased-
greedy RRT which leverages the good properties of the
biased and greedy RRT. This method can be interpreted
as a gradient descent search with a designated probability
and uniform exploration with the other's probability.

It should be noted that the RRT planner inherently
sacrifices the optimality for the computational efficiency.
In this work, the optimality is defined as the shortest path.
In addition, the RRT planner does not have the ability to
control the quality of the path. These characteristics of
RRT naturally raise questions on how one can cope with

© ICROS, KIEE and Springer 2011

 Manuscript received October 13, 2010; revised March 30, 2011
and April 5, 2011; accepted April 9, 2011. Recommended by Edi-
torial Board member Youngjin Choi under the direction of Editor
Jae-Bok Song.
 Kwangjin Yang is with the Department of Aerospace and Me-
chanical Engineering, Korea Air Force Academy, P.O. Box 335-2
Ssangsoo Namil Cheongwon, Chungbuk 363-849, Korea (e-mail:
ykj4957@gmail.com).

Anytime Synchronized-Biased-Greedy Rapidly-exploring Random Tree Path Planning in Two Dimensional Complex…

751

the sub-optimality of the path and how one can improve
the path quality systematically. One way to relax the sub-
optimality of the RRT is to run the RRT algorithm
iteratively within the available time for planning. When
the planning time has run out, the planner then chooses
the best path among paths generated during the
deliberation time. This method can reduce the probability
of generating a severely sub-optimal path but it cannot
guarantee the improvement of path quality.

The anytime planning algorithm is a well established
method in the deterministic planning community which
generates an initial path quickly and improves the quality
of the path within the time allotted for planning.
Therefore, the anytime planning strategy offers a built-in
means of improving path quality progressively whilst
deliberation time is permitted. The anytime planning
strategy was firstly applied to RRT path planning in [10].
Path costs were incorporated explicitly into the planning.
A discretization of the environment is a conventional
way to build a cost map in deterministic planning
methods such as A* and D*. This discretization approach
also is used in [10]. A more exact cost of the path can be
calculated by a minute tiling of the environment.
However, the disadvantage of the discretization may
outweigh the benefits.

Instead of discretization of the environment to
evaluate a cost, the Euclidean path distance is used as a
cost in this research. The distance measure is not an
exact evaluation of the cost but it will be matched if the
shortest path generation is the objective of planing. In
addition, it removes the necessity of the environment
discretization. Therefore, path length based anytime RRT
can be operated within the RRT framework which only
needs a collision detection function.

The paper is organized as follows: Section 2 presents
the synchronized-biased-greedy RRT path planning, and
a path pruning algorithm which removes extraneous
nodes is described in Section 3. Section 4 presents an
anytime RRT path planning. Simulation results are
shown in Section 5 and conclusions are thereafter.

2. SYNCHRONIZED-BIASED-GREEDY RRT

PATH PLANNING

2.1. Basic RRT
Algorithm 1: Baisic RRT Algorithm

1: Build_RRT(xinit)
2: T.init (xinit))
3: while Distance(xgoal, xnew) > dlim do
4: xrand← RandomState()
5: xnear← NearestNeighbor(T, xrand)
6: xnew← Extend(T, xrand, xnear)
7: If Distance(xgoal, xnew) ≤ dlim then
8: Return T
9: endif
10: end while

The RRT algorithm incrementally builds a tree from

the starting point to the goal point adding a new vertex
which is one of randomly selected points.

0 50 100 150 200 250 300
0

50

100

150

200

250

300
Good Case

 0 50 100 150 200 250 300
0

50

100

150

200

250

300
Pathological Case

(a) Good case. (b) Pathological case.
Fig. 1. Basic RRT planning results.

Algorithm 1 shows the basic RRT algorithm. First,

RRT selects a random state xrand (Line 4), and this state is
compared with existing tree nodes to find the closest
node in the tree, xnear (Line 5). A line is drawn
connecting xnear to xrand, and a new point xnew is generated
along this ray at a fixed distance from xnear. If there is no
collision on the interval between xnear and xnew, the latter
is added to the tree (Line 6). The algorithm ends if the
distance between xnew and xgoal is smaller than the
threshold dlimit (Line 7).

Fig. 1 shows the basic RRT path planning results. The
green lines denotes all RRT trees and the red lines denote
the generated path. The starting point is (0,0) and the
goal point is (290,290). In Fig. 1(a), RRT can find the
collision free path quickly without exploring the whole
space but this is not often the case. RRT tries to explore
the whole space as shown in Fig. 1(b) for the most part.
This comes from the fact that the basic RRT algorithm
always selects the candidate point randomly which
makes the tree growth uniform. It is not an efficient way
to wander the whole space as the primary goal of path
planning is to find a feasible path between start and goal
configurations.

2.2. Biased RRT

A simple but efficient way to enhance the performance
of the search is to bias the growth of RRT towards the
goal instead of exploring the whole space. This can be
achieved by selecting the goal point with some
probability. A biased RRT selects the goal locations with
probability p and random points are selected with
probability 1– p. As p increases, the RRT behaves
increasingly like the best first search [4]. Here the
probability of goal selection is a design parameter. If the
environment is densely cluttered with obstacles, it is
better to reduce this probability but if the environment
has sparsely located obstacles, higher probability can
reduce the time for generating a collision free path. It is
generally recognized that 10% of probability is a
reasonable choice regardless of the density of obstacles.

Fig. 2 shows the biased RRT path planning results.
This method enables a feasible path to be found within a
short time and stumble less to unnecessary areas
compared to the basic RRT case as can be seen in Fig.
2(a). Even though the total tree number is reduced
greatly, trees still explore unnecessary areas of the
environment as in Fig. 2(b).

Kwangjin Yang

752

0 50 100 150 200 250 300
0

50

100

150

200

250

300
Good Case

 0 50 100 150 200 250 300
0

50

100

150

200

250

300
Pathological Case

(a) Good case. (b) Pathological case.
Fig. 2. Biased RRT planning results.

2.3. Greedy RRT

One of the most time consuming processes in the RRT
algorithm is when finding the nearest neighbor node. The
computational cost increases as the number of trees
increase. K-d tree method can relieve this problem by
efficiently maintaining a data structure, but the best way
to speed up the process is to reduce the use of the nearest
neighbor function. A greedy variation of the algorithm
can reduce the use of this function by extending trees
successively along the ray connecting selected node and
random points until a collision occurs. This greedy RRT
frequently shows a better performance since any
relatively open and unobstructed regions are traversed in
a single iteration [11].

Fig. 3 shows the greedy RRT path planning results.
This method can find a feasible path quickly with less
frequent use of the nearest neighbor calculation function
as in Fig. 3(a). However, the drawback of this method is
that the resulting path is severely suboptimal. Moreover,
the planning time will be increased if the RRT nodes are
extended in the wrong direction as can be seen in Fig.
3(b).

2.4. Biased-greedy RRT

Biased RRT can make the tree grow toward the goal
location and the efficiency will be enhanced by
combining the biased and greedy RRT. It chooses a state
using a biased sampling strategy and then grows trees as
many times as possible before a collision is detected.

Fig. 4(a) shows the result of the biased-greedy RRT
planning method. This method can reduce the planning
time greatly. However, similar to the greedy RRT this
method is sub-optimal as can be seen in Fig. 4(b).

0 50 100 150 200 250 300
0

50

100

150

200

250

300
Good Case

 0 50 100 150 200 250 300
0

50

100

150

200

250

300
Pathological Case

(a) Good case. (b) Pathological case.
Fig. 3. Greedy RRT planning results.

0 50 100 150 200 250 300
0

50

100

150

200

250

300
Good Case

 0 50 100 150 200 250 300
0

50

100

150

200

250

300
Pathological Case

(a) Good case. (b) Pathological case.
Fig. 4. Biased-greedy RRT planning results.

2.5. Synchronized biased-greedy RRT

The biased-greedy RRT algorithm shows better
performance in terms of the computational time.
However, this algorithm has the advantages and
disadvantages of the biased RRT and the greedy RRT
algorithms. The advantages of the biased RRT and
greedy RRT are that it grows trees towards the goal
location and it makes trees traverse the environment in a
single iteration respectively. The disadvantage of the
biased RRT algorithm is that it requires frequent use of
the nearest neighbor function as extensions occur only
once though potential direction is selected and the greedy
RRT frequently explores unnecessary areas as it extends
trees regardless of goodness in that direction. A
synchronized biased-greedy RRT algorithm is proposed
to improve the path planning performance which has
only good properties of both methods. The synchronized
biased-greedy RRT executes a greedy extension where
the goal location is selected as a target point and extends
just one time otherwise.

Algorithm 2: Synchronized Biased-Greedy RRT
Algorithm
1: Build_RRT(xinit)
2: T.init (xinit))
3: while Distance(xgoal, xnew) > dlim do
4: xrand← BiasedState()
5: xnear← NearestNeighbor(T, xrand)
6: xnew← SyncGreedyExtend(T, xrand, xnear)
7: If Distance(xgoal, xnew) ≤ dlim then
8: Return T
9: endif
10: end while

Algorithm 2 shows the synchronized biased-greedy

RRT algorithm. The synchronized biased-greedy RRT
can be interpreted as a gradient descent search with a p
probability and a uniform exploration with 1-p
probability. This approach will not get trapped in a local
minima due to the 1-p probability of random exploration
and will find the shortest path with p probability due to
the greedy extension. With this synchronized
combination of the biasness and greediness, the method
is effective in reducing the computational time in
comparison with biased RRT. In addition, it generates a
more optimal path compared to greedy RRT.

Anytime Synchronized-Biased-Greedy Rapidly-exploring Random Tree Path Planning in Two Dimensional Complex…

753

Fig. 5 shows planning results of a synchronized
biased-greedy RRT algorithm. There are two long greedy
extensions in Fig. 5(a) case which can quickly extend
trees toward the goal location. The resulting path is
shorter and takes less time to generate compared to
previous methods. There are a significant number of
obstacle blockages in Fig. 5(b) case but it can easily get
away from the local minima and find the shortest path
quickly without exploring unnecessary areas. From Fig.
5 it can be seen that the greedy extension is stopped
when a collision is detected but it can easily find the
collision free path in that regions by uniformly searching
the free space with 1-p probability. After escaping from
an obstacle, it tries again to extend the tree in the
direction of the gradient descent to the goal with p
probability.

3. PATH PRUNING

Even though RRT is an effective and computationally

efficient tool for complex online motion planning, the
solution is far from optimal due to its random exploration
of the space. There are a lot of redundant nodes and
wavy motions which simply increase the path length. In
this Section, a simple yet an efficient method which is
able to eliminate most extraneous and wavy nodes within
a short time is described. Two algorithms are proposed
for this path pruning.

3.1. Line of sight path pruning

The first path pruning method uses local information
about the path. Let the pruned path be initially an empty
set. First, define the begin node (BNode) and end node
(ENode) for collision checking. Initially, the BNode is
assigned to the first node of RRT path and the ENode is
the second node of the RRT path. Then check the line
between the BNode and the ENode for a collision,
stopping when a collision is detected between them. If
there is a collision, the previous node from this ENode is
added to the pruned path and reassigned to the BNode
and ENode. This process is repeated until a complete
path is generated. Finally, the final path is obtained
adding the first and the last RRT path to the pruned path.

Fig. 6(b) shows the pruning result of the LOS path
pruning algorithm applied to the initial RRT path in Fig.
6(a). The RRT path initially has 59 nodes between the

start and goal point. However, this number reduces to
only 5 after the redundant waypoints are pruned.

There are several benefits to this pruning algorithm.
First, it reduces the path length by removing the wavy
nodes. Second, path following is made easily since most
of the path consists of straight lines. Finally, it is also
beneficial to the vehicle actuators because a lot of jaggy
motions are removed.

3.2. Global path pruning

As seen in the preceding Section, the LOS path
pruning can efficiently remove the redundant waypoints
in most cases. However, there still exists wavy motions
due to short-sightedness of LOS. To provide better
reasoning about the pruning process, a modification is
made to the LOS path pruning. The LOS algorithm starts
the pruning process from the next point of BNode and
stops the process when a collision is detected. Although
there is a collision in the jth node, there can be no
collisions between BNode and the j + 1th node. Based on
this reasoning, the pruning process starts on the last node
of the RRT path. It slightly increases the processing time
but removes the myopic behavior of the LOS pruning.
This method is called Global path pruning as it tries to
prune the path considering the entire path nodes.

Fig. 7 shows the pruning result of the global path
pruning which is the same path as seen in Fig. 6. After
applying the global path pruning algorithm, nodes
between the start and the goal point are reduced to 3
which is less than the LOS pruning case.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East(m)

N
or

th
(m

)

RRT Path

0 50 100 150 200 250 300

0

50

100

150

200

250

300

East(m)

N
or

th
(m

)

Global Path Pruning

(a) RRT path before prun-
ing.

(b) RRT path after prun-
ing.

Fig. 7. Global path pruning.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

 0 50 100 150 200 250 300
0

50

100

150

200

250

300

(a) Case 1. (b) Case 2.
Fig. 5. Synchronized biased-greedy RRT planning

results.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East(m)

N
or

th
(m

)

RRT Path

0 50 100 150 200 250 300

0

50

100

150

200

250

300

East(m)

N
or

th
(m

)

LOS Path Pruning

(a) RRT path before prun-
ing.

(b) RRT path after prun-
ing.

Fig. 6. Line of sight path pruning.

Kwangjin Yang

754

4. ANYTIME RRT

The second improvements to relax the sub-optimality

of the RRT path is to apply anytime strategy. It generates
an initial path quickly and improves the quality of the
path within the allowable planning time. The anytime
RRT operates as follows: First, the RRT algorithm
generates an initial path without considering path cost
and favoring quick generation of the initial path. After
obtaining the initial path, the role of the planner is shifted
from path generation to path optimization. Then, the
planner progressively improves the quality of the path
until the planning time runs out. Several modifications in
the state sampling, node selection and node expansion
functions are made to enable the RRT algorithm fit into
an anytime planning strategy.

4.1. State sampling

It is possible to get information about the environment
at each iteration from the previous successful solution
because of the iterative path generation process. We
would like to use the previous path information in the
next iteration to enhance the path quality. However, it
should be noted that all prior information is not always
beneficial. If the preceding path is severely sub-optimal,
the information of this path will mislead the current path.
On the other hand, if the previous path is close to the
optimal path, this information can greatly contribute to
improve the path quality. Therefore, it is important to
make a decision as to whether or not use the previous
path information and how useful that information is in
guiding the current path generation. With this insight, a
path cost is incorporated for the judgment of the level of
prior path information to be used in the generation of a
new path.

The next question is how to utilize the previous path
information. The waypoint cache method is used which
is suggested in [12]. The nodes of the prior path are
stored and these nodes will be chosen with some
probability in the next path. This approach is modified to
fit in the anytime RRT framework. First, as explained
previously, the probability of choosing the prior
waypoint cache is determined based on the quality of the
path. Yet a fixed probability is used in [12]. Second, a
small perturbations are added to the prior waypoint cache.
This modification comes from the intuition that the prior
path is not necessarily the optimal path. To find a better
solution near the previous information, the points near
the prior cache are chosen.

4.1.1 Adaptive state sampling

Algorithm 3 shows the state sampling strategy which
is used in the anytime RRT.

Algorithm 3: Anytime RRT State Sampling
1: p=RandomValue([0,1])
2: if 0≤p≤pg then
3: return xgoal
4: elseif pg≤p≤pc then
5: return xseed
6: else

7: return xrandom
8: end if

Line 2-3 is a biased sampling which chooses the goal

point with some probability. Line 4-5 is a guided
sampling which chooses previous path nodes with
adaptive probability. This makes the planner reuse prior
information. Line 6-7 is a random sampling which
chooses any points within the environment. The
combination of three sampling methods speeds up the
search process by growing the tree towards a promising
direction.

There are two parameters to be determined; the
probability to choose the goal point (pg) and the
probability to choose the prior path nodes (pc). The
probability to choose a goal point is decided as pg =0.1
because 10% goal biased sampling exhibits a good
performance regardless of the environment. The prior
path node selection probability (pc) is not fixed but
varied based on the prior path quality. The path length is
used as a cost of the path. First the path length between
the starting point to the goal point is calculated. This
value is set as an optimal cost because the straight line
between these points is the shortest path. Equation (1)
shows the optimal cost calculation.

2 2 2
g s g s g s(x x) (y y) (z z)opt minC L= = − + − + − (1)

If a new path is generated, the length of this path is
computed to evaluate the quality of the path. Then the
probability pc is decided adaptively based on this value
as in (2).

p p

p

Q 0.5, if Q 0.5

0, if Q 0.5,cp
− ≥⎧⎪= ⎨ <⎪⎩

 (2)

where min
p

path

L
Q

L
= is the ratio between the optimal path

length and the previous path length which decides the
path quality. As the quality of the previous path is
improving, the probability to choose the waypoint cache
increases. If Qp is less than 0, the probability to choose
the waypoint cache is set to zero.

4.2. Node selection

Once the state is sampled according to the adaptive
state sampling method, the next task is to select a node to
extend toward the sampled state. The second
modification of the RRT for the application of the
anytime RRT method is to incorporate a path cost into
the node selection to extend. Similar to the state
sampling, the weighting of the cost is varied according to
the quality of the path instead of applying a fixed
contribution.

4.2.1 Progressive weighting of cumulative cost

The distance metric when choosing a node is changed
for the improvement of path quality. Once the feasible
path is generated, the focus of the planning will be
shifted from the feasible path generation to the optimal

Anytime Synchronized-Biased-Greedy Rapidly-exploring Random Tree Path Planning in Two Dimensional Complex…

755

path generation. The original algorithm chooses the
nearest node from the existing node to the sample point.
Instead of applying only the nearest node selection
strategy, the cumulative cost of the existing node is also
considered for optimization.

sum dist cumC C w C .= + ⋅ (3)

Equation (3) shows the evaluation of the cost when
choosing a node to extend. Cdist is a Euclidean distance
from each node to the sampled point; Ccum is a
cumulative cost from the starting point to the current
node; w is a weighting of the cumulative cost; and Csum
is the cost of each node to extend toward the sampled
state. The nodes are sorted in ascending order of Csum
when choosing the cheapest node.

The cumulative cost weighting w is also varied in a
similar fashion to state sampling. Equation (4)
demonstrates how to decide on the weighting w.

ite max

max

N k, if w w
w =

w , otherwise,
⋅ ≤⎧

⎨
⎩

 (4)

where Nite is an iteration number of path planning, k is an
incremental value of weighting, and wmax is a maximum
weighting value.

As the planning time progresses, the cumulative cost
becomes increasingly weighted. The subsequent increase
of the cumulative cost weighting is aimed at making the
new path gradually approach the optimal path. The node
selection result is the same as the original RRT method if
w = 0 in (3) and only the starting point will be selected if
w = 1. Therefore, the w must be smaller than 1 to grow
the tree. In our application, wmax and k are chosen as
wmax = 0.7 and k = 0.1 respectively.

The transition from path generation to path
optimization changes the growing characteristic of the
RRT tree. The distance based nearest neighbor node
selection makes the tree grow rapidly to the larger
Voronoi region. The focus of this stage is to find a
solution quickly. The inclusion of the cumulative cost
hinders the pure expansion of the tree growth towards the
Voronoi region. Instead, it drives the tree growth towards
the direction associated with the shortest path. As a result,
there is a natural trade-off the quick generation of the
sub-optimal path and the better quality path generation
with the increase in planning time. To accommodate this
characteristic, the cumulative cost weighting gradually
increases to progressively improve the path quality
within the time available for planning.

4.3. Node expansion

After the node to extend is decided, the RRT extends
the selected node to the sampled point. In anytime RRT,
however, the chosen node will not be extended if it is not
beneficial for the improvement of path quality. The
rationale of this decision is that the poor node extension
cannot contribute to the enhancement of the path quality.
The purpose of the anytime RRT is not a feasible path
generation but a better quality path generation than the
previous path. Therefore, if the extension of the selected

node cannot contribute to the path quality improvement,
it does not need to extend. To achieve this, we need to
estimate the expected total cost of the path

4.3.1 Cost-to-go estimation

The total cost of a path can be calculated by summing
the accumulated cost from the starting point to the
selected node (Ccum), and the cost from the selected node
to the sampled point (Cdist), and the cost from the
sampled point to the goal point (Cctg).

total cum dist ctg ctc ctgC C C C C C .= + + = + (5)

Equation (5) shows how to calculate the total cost of
the path. The cumulative cost (Ccum) and the extension
cost (Cdist) can be expressed as a cost-to-come cost (Cctc).
Therefore, the total cost consists of the cost-to-come cost
(Cctc) and cost-to-go cost (Cctg). Only the cost-to-go
needs to be calculated as the cost-to-come has already
been calculated in Section 4.2.

It is difficult to calculate the exact cost-to-go. The
complexity of finding the exact cost-to-go value is
comparable to the original path planning problem.
Instead of finding the exact cost-to-go, the Euclidean
distance is used from the sampled point to the goal point
as an estimate of the cost-to-go. Even though this
Euclidean cost-to-go estimation is not an exact measure,
it will offer the lower bound of cost-to-go as any path
cannot be shorter than the straight line.

4.3.2 Decision for the node expansion

In anytime RRT, whenever a new path is generated the
length of this path is set as the upper-bound-cost of the
path. From (5), the expected cost of the path can be
calculated after tree expansion. If this expected cost is
higher than the upper-bound-cost, the node expansion
will not occur. Equation (6) shows the node expansion
condition.

total upperC C .< (6)

According to the evaluation of the path cost before
extending the tree, only the promising nodes are
extended towards the promising state. This process
reduces the planning time by not allowing the addition of
unnecessary trees.

5. SIMULATION EXPERIMENTS

We conduct the simulation experiments to investigate

the performance of synchronized biased-greedy RRT and
anytime RRT.

5.1. Performance comparison of several RRT algorithms

in randomly generated environment
To compare the performance of the proposed synchro-
nized biased-greedy RRT with other RRT variants,
Monte-Carlo simulations are conducted in randomly
generated environment. The environment size is
500m×500m and the starting point is (0, 0) and the goal
point is (500,500). At each run, the number of obstacle

Kwangjin Yang

756

varies from 50 to 100, and the radius of obstacle varies
from 5m to 10m.

Fig. 8 shows two examples of the randomly generated
environments. Fig. 8(a) shows randomly generated
environment when the obstacle number is 50, and Fig.
8(b) shows randomly generated environment when the
obstacle number is 100. The number and size of obstacle
are changed at each run. The yellow circle denotes
randomly generated obstacles and the cyan circle denotes
the safety zone of the obstacle.

Table 1 shows mean values of run time, node number,
and path length over 500 runs. The basic RRT takes the
longest time to find a path. Even though the greedy RRT
is able to find the solution faster than the basic RRT, the
path length is much larger than the basic RRT. This
comes from the blind extension of trees. The biased RRT
reduces run time greatly in comparison with the basic
and greedy RRT. In addition, the resulting path is shorter
than the basic and greedy RRTs. The biased-greedy RRT
can further reduce the run time but preserves the sub-
optimal property of greedy RRT. The synchronized
biased-greedy RRT generates the shortest path with the
least time amongst them. If we compare the planning
time of between the basic RRT and the synchronized
biased-greedy RRT, the former longer than the latter
about one hundred times.

Table 2 shows standard deviation values of the run
time, node number, and path length over 500 runs.
Similar to the mean values as Table 1, the variation of
the run time, node number, and the path length for the
proposed synchronized biased-greedy RRT algorithm is
smaller than other methods.

Table 1. Comparison of several RRT algorithms in

randomly generated environment: mean values
over 500 runs.
 Run Time Node Length

Basic 60.82s 1880 884m
Greedy 23.64s 1161 914m
Biased 1.31s 311 820m

Biased-greedy 0.64s 233 869m
Synchronized 0.38s 145 747m

Table 2. Comparison of several RRT algorithms in
randomly generated environment: standard
deviation values over 500 runs.
 Run Time Node Length

Basic 47.21s 526 39m
Greedy 32.06s 634 96m
Biased 1.59s 121 30m

Biased-greedy 0.65s 134 91m
Synchronized 0.56s 108 34m

5.2. Performance comparison of several rrt algorithms in
deadlock environment

In the second simulation, a deadlock environment is
generated to investigate the RRT performance in local
minima situation. The environment size is 100m×100m,
and the starting point is (50,40) and the goal point is
(50,95) as shown in Fig. 9. The starting point is
encompassed by obstacles and only one side is free.

Fig. 9 shows the synchronized biased-greedy RRT
planning result. The RRT planner must grow trees in
opposite way from the start point to the goal point to
escape the local minima and also pass the narrow
passage in both sides.

Table 3 shows mean and standard deviation values of
run time over 500 runs. The path length of several RRTs
are almost same since the route from the staring point to
the goal point is fixed and the narrow corridors of both
sides restrict the tree expansion. For this reason, only
planning time is used to compare the performance.
Though the differences of the planning time among
several RRTs are not big compared with the randomly
generated environment case, the proposed synchronized
biased-greedy RRT takes the least time and exhibits the
smallest the standard deviation of the planning time.

0 20 40 60 80 100
0

20

40

60

80

100

 0 20 40 60 80 100
0

20

40

60

80

100

(a) (b)
Fig. 9. RRT performance in deadlock environment. (a)

Deadlock environment. (b) Synchronized Biased-
Greedy RRT planning result.

Table 3. Comparison of several RRT algorithms in

deadlock environment: mean and standard
deviation values over 500 runs.

 Run Time(mean) Run Time(STD)
Basic 0.31s 0.25s

Greedy 0.24s o.19s
Biased 0.27s 0.18s

Biased-greedy 0.19s 0.13s
Synchronized 0.16s 0.08s

0 100 200 300 400 500
0

100

200

300

400

500

 0 100 200 300 400 500
0

100

200

300

400

500

(a) (b)
Fig. 8. Randomly generated environments: Monte-

Carlo simulations are conducted in randomly
generated environment to compare the perform-
ance of several RRTs. (a) Randomly generated
environment when the obstacle number is 50. (b)
Randomly generated environment when the
obstacle number is 100.

Anytime Synchronized-Biased-Greedy Rapidly-exploring Random Tree Path Planning in Two Dimensional Complex…

757

5.3. Performance of the anytime RRT
The performance of the anytime RRT is investigated

in this simulation. The starting point is (0,0) and the goal
point is (180,230).

Figs. 10 and 11 show the simulation results of the
anytime RRT. The linear paths of the anytime RRT are
shown from Fig. 10 and their smooth paths are shown
from Fig. 11. A path smoothing algorithm in [13] is

applied to the linear path to clearly compare the path
quality among them. The previous path and the current
path are plotted together in the linear path to show the
improvement of the path quality.

Initially the RRT explores the space to find the
solution quickly which results in a poor quality path as
shown in Fig. 10(a). After finding the initial path,
however, the anytime RRT can find the enhanced path
from the second iteration as shown in Fig. 10(b). The big
difference between the first and the second path is the
tree expansion profile. The trees in the first path grow
largest Voronoi region but the trees in the second path
does not explore unnecessary regions.

This characteristic comes from the node expansion
property of the anytime RRT which does not grow tree if
it is not beneficial for the improvement of the path
quality. The cost of path is greatly reduced at the third
iteration by finding a best route as shown in Fig. 10(c).
The advantage of anytime RRT is that it tries to find the
better route to reduce the path cost as the increase of the
iteration. Once it finds the best route, it tries to improve
the path quality by finding a better path within the best
route. Fig. 10(d) shows this characteristic. By drawing
more samplings from the previous waypoint cache, and
by selecting and expanding node within the best route
with higher probability, the anytime RRT find a better
path.

Table 4 shows the path cost of each RRT path. The
cost of the path is the length of the path. The quality of
the path is gradually improved and it becomes
approaches to the optimal solution as the increase of the
iterations.

6. CONCLUSIONS

This paper proposes a synchronized biased-greedy

RRT which utilizes the good properties of the biased and
greedy RRT. This method can be interpreted as a
gradient descent search with a designated probability and
uniform exploration with the other's probability. With the
synchronized combination of the biasness and greediness,
this method can reduce the computational time compared
to biased RRT as well as generate a more optimal path
compared to greedy RRT. Though RRT is a
computationally efficient tool for complex online motion
planning, the resulting path contains a lot of wavy
redundant nodes. A pruning algorithm is proposed which
is able to remove most of the extraneous and wavy nodes
within a short time. After applying the pruning algorithm,
the most path consists of straight lines and has less jaggy
motion. Finally, an anytime strategy is applied to
continually improve the quality of the path until
deliberation time allows. Simulation results show that
anytime RRT makes the path gradually closer to the
optimal path as the increase of the iteration number.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East(m)

1st Path

N
or

th
(m

)

1st Path

0 50 100 150 200 250 300

0

50

100

150

200

250

300
2nd Path

East(m)

N
or

th
(m

)

2nd Path
1st Path

(a) (b)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East(m)

3rd Path

N
or

th
(m

)

3rd Path
2nd Path

0 50 100 150 200 250 300

0

50

100

150

200

250

300
4th Path

East(m)

N
or

th
(m

)

4th Path
3rd Path

(c) (d)
Fig. 10. The performance of the anytime RRT: Linear

Path.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East(m)

N
or

th
(m

)

1st Path

0 50 100 150 200 250 300

0

50

100

150

200

250

300

East(m)

N
or

th
(m

)

2nd Path

(a) (b)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East(m)

N
or

th
(m

)

3rd Path

0 50 100 150 200 250 300

0

50

100

150

200

250

300

East(m)

N
or

th
(m

)

4th Path

(c) (d)
Fig. 11. The performance of the anytime RRT: Smooth

Path.

Table 4. Path cost of the anytime RRT.
 1st 2nd 3rd 4th

Path length 377m 369m 328m 319m

Kwangjin Yang

758

REFERENCES
[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W.

Burgard, L. Kavraki, and S. Thrun, Principles of
Robot Motion: Theory, Algorithms, and Implemen-
tations, MIT Press, Cambridge, MA, 2005.

[2] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time
motion planning for agile autonomous vehicles,”
Proc. of American Control Conference, Arlington,
Virginia, June 2001.

[3] S. LaValle and J. Kuffner, “Randomized Kinody-
namic planning,” The International Journal of Ro-
botics Research, vol. 20, no. 5, pp. 378-400, May
2001.

[4] D. Ferguson, N. Kalra, and A. Stentz, “Replanning
with RRTs,” Proc. of IEEE International Confer-
ence on Robotics and Automation, Orlando, Florida,
May 2006.

[5] S. LaValle, “Rapidly-exploring random trees: a new
tool for path planning,” TR 98-11, Computer Sci-
ence Dept, Iowa State University, 1998.

[6] J. Saunders, B. Call, A. Curtis, R. Beard, and T.
McLain, “Static and dynamic obstacle avoidance in
miniature air vehicles,” AIAA Infotech@ Aerospace,
Arlington, Virginia, September 2005.

[7] E. Koyuncu, N. Ure, and G. Inalhan, “Integration of
path/maneuver planning in complex environments
for agile maneuvering UCAVs,” Journal of Intelli-
gent and Robotic Systems, vol. 57, no. 1-4, pp. 143-
170, February 2010.

[8] M. Wzorek and P. Doherty, “Reconfigurable path
planning for an autonomous unmanned aerial vehi-
cle,” Proc. of IEEE International Conference on
Hybrid Information Technology, Cheju, Korea, No-

vember 2006.
[9] N. Aminy, D. Boskovic, and K. Raman, “A fast and

efficient approach to path planning for unmanned
vehicle,” Proc. of AIAA Guidance, Navigation, and
Control Conference, Keystone, Colorado, August
2006.

[10] D. Ferguson and A. Stentz, “Anytime RRTs,” Proc.
of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Beijing, China, pp. 5369-
5375, October 2006.

[11] M. Kalisiak and M. Panne, “RRT-blossom: RRT
with a local flood-fill behavior,” Proc. of IEEE In-
ternational Conference on Robotics and Automa-
tion, Orlando, Florida, pp. 1237-1242, May 2006.

[12] J. Bruce and M. Veloso, “Real-time randomized
path planning for robot navigation,” Proc. of
IEEE/RSJ International Conference on Intelligent
Robots and Systems, Lausanne, Switzerland, Octo-
ber 2002.

[13] K. Yang and S. Sukkarieh, “An analytical continu-
ous curvature path smoothing algorithm,” IEEE
Trans. on Robotics, vol. 26, no. 3, pp. 561- 568,
June 2010.

Kwangjin Yang received his B.S. degree
in Mechanical Engineering from Korea
Air Force Academy in 1996, an M.S
degree in Mechanical Engineering from
Pohang University of Science and Tech-
nology in 2002 and a Ph.D. degree in
Aerospace, Mechanical and Mechatronic
Engineering from the University of Syd-
ney in 2010. His research interests in-

clude path planning, RUAV control, cooperative control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

