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Robust Synchronization and Fault Detection of Uncertain Master-Slave Systems 

with Mixed Time-Varying Delays and Nonlinear Perturbations 
 

Hamid Reza Karimi 

 

Abstract: In this paper, the problem of robust synchronization and fault detection for a class of master-

slave systems subjected to some nonlinear perturbations and mixed neutral and discrete time-varying 

delays is investigated based on an H∞ performance condition. By introducing a descriptor technique, 

using Lyapunov-Krasovskii functional and a suitable change of variables, new required sufficient con-

ditions are established in terms of delay-dependent linear matrix inequalities to synthesize the residual 

generation scheme. The explicit expression of the synchronization law is derived for the fault such that 

both asymptotic stability and a prescribed level of disturbance attenuation are satisfied for all admissi-

ble nonlinear perturbations. A numerical example with simulation results illustrates the effectiveness of 

the methodology. 
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1. INTRODUCTION 

 

In the last few years, synchronization in dynamical 

systems has received a great deal of interest among 

scientists from various fields [1-5]. In order to better 

understand the dynamical behaviours of different kind of 

complex networks, an important and interesting 

phenomenon to investigate is the synchrony of all 

dynamical nodes. In fact, synchronization is a basic 

motion in nature that has been studied for a long time, 

ever since the discovery of Christian Huygens in 1665 on 

the synchronization of two pendulum clocks. The results 

of chaos synchronization are utilized in biology, 

chemistry, secret communication and cryptography, 

nonlinear oscillation synchronization and some other 

nonlinear fields. The first idea of synchronizing two 

identical chaotic systems with different initial conditions 

was introduced by Pecora and Carroll [6], and the 

method was realized in electronic circuits. The methods 

for synchronization of the chaotic systems have been 

widely studied in recent years, and many different 

methods have been applied theoretically and 

experimentally to synchronize chaotic systems, such as 

feedback control [7-12], adaptive control [13-17], 

backstepping [18] and sliding mode control [19,20]. 

Recently, the theory of incremental input-to-state 

stability to the problem of synchronization in a complex 

dynamical network of identical nodes, using chaotic 

nodes as a typical platform was studied in [21]. 

There is an increasing demand for dynamic systems to 

become safer, more reliable and more economical in 

operation. This requirement extends beyond the normally 

accepted safety-critical systems e.g., nuclear reactors, 

aircraft and many chemical processes, to systems such as 

autonomous vehicles and some process control systems 

where the system availability is vital [22]. The field of 

fault diagnosis for dynamic systems (including fault 

detection and isolation) has become an important topic of 

research in the past three decades (see for instance [22-

26]).  

On the other hand, time-delay exists widely in practice. 

The delay effects on the stability of systems including 

delays in the state and/or input is a problem of recurring 

interest since the delay presence may induce complex 

behaviours (oscillation, instability, bad performances) for 

the schemes (see for instance [27-30]). Large delays in 

some reaction processes of chemical industries or time-

delays induced by long-distance transportation and 

communication might cause the closed-loop systems 

unstable and deteriorate the control performance. 

Recently, a stability criteria is proposed for neutral 

systems with mixed time-varying delays and nonlinear 

perturbations based on Lyapunov functional approach 

and linear matrix inequality method in [31]. On the 

contrary to the intensive investigation of robust fault 

diagnosis for uncertain systems and fault diagnosis for 

nonlinear systems, which have achieved much progress 

in recent years [32,33], the works on fault diagnosis for 

time-delay systems are very few. 

On the research of fault diagnosis for linear time-delay 

systems, Yang and Saif in [34] first proposed a scheme 

of actuator and sensor fault diagnosis using an unknown 

input observer and a technique of input estimation for 

systems with time-delays only in the state. In this work, 

modeling uncertainties were not considered and some 

assumptions on the system’s structure decomposition 

were unreasonable. For systems with state and input 

time-delays, Ding et al. in [35] designed a robust fault 

detection filter that guaranteed both sensitivity to faults 

and insensitivity to disturbances. In the scheme of the 
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reference [36], the influence of disturbances on the 

residual was further decreased using the idea of 

integrated design of H∞ filter and unknown input 

observer. Based on an adaptive observer, Jiang et al. in 

[37] developed a scheme to estimate abrupt state fault for 

linear (nonlinear) systems with only state time-delays, 

and no uncertainties were considered. For systems with 

constant time-delays in inputs and outputs only, Zhang et 

al., in [38] presented a state fault detection method based 

on parity space. Recently, a geometric approach for fault 

detection and isolation of retarded and neutral time-delay 

systems was developed in [39]. The time-delays 

investigated above are either in the state, the derivative 

of the state or in the input/output, neither in both of them 

or in the derivative of state. In practice, a system may 

involve time-delays in states, inputs/outputs and the 

derivative of states, and the influences of modeling 

uncertainties, noises and disturbances are perhaps not 

negligible. Furthermore, from the published results in 

[23,24,39,40], it appears that general results pertaining to 

robust fault detection of linear systems with mixed 

neutral and discrete time-varying delays, some nonlinear 

perturbations and an H∞ performance criteria, which are 

infinite dimensional systems in essence, are few and 

restricted, despite its practical importance, mainly due to 

the mathematical difficulties in dealing with such mixed 

delays and nonlinearities. Hence, it is our intention in 

this paper to tackle such an important yet challenging 

problem. 

In this paper, we are concerned to develop a new 

delay-dependent stability criterion for robust 

synchronization and fault detection filter problem of 

linear systems subjected to mixed neutral and discrete 

time-varying delays and some nonlinear perturbations 

which satisfy the Lipschitz conditions. The contribution 

of this paper is three-fold: first, this paper extends 

previous works on synchronization and fault detection 

problem and derives some new theoretical results; 

second, this paper shows how the synchronization and 

fault detection problem can be reduced to a convex 

problem with additional degrees of freedom to design a 

synchronization law; third, by introducing a descriptor 

technique, using Lyapunov-Krasovskii functional and a 

suitable change of variables, we establish new required 

sufficient conditions in terms of delay-dependent linear 

matrix inequalities (LMIs) under which the desired 

synchronization law exist, and derive the explicit 

expression of these salve systems to satisfy both 

asymptotic stability and an H∞ performance condition. A 

numerical example is given to illustrate the use of our 

results. 
 

Notations: The notations used throughout the paper 

are fairly standard. I and 0 represent identity matrix and 

zero matrix; symbols J and Ĵ  represent, respectively, [I, 

0]and [0, I]; the superscript ' 'T  stands for matrix 

transposition and. ||.|| refers to the Euclidean vector norm 

or the induced matrix 2-norm. diag{� } represents a 

block diagonal matrix and the operator sym(A) 

represents A+AT. ε{.} denotes the expectation operator 

with respect to some probability measure P. The notation 

P > 0 means that P is real symmetric and positive 

definite; the symbol * denotes the elements below the 

main diagonal of a symmetric block matrix. 

 

2. PROBLEM DESCRIPTION 

 

We consider a class of continuous linear systems with 

some nonlinear perturbations and mixed neutral and 

discrete time-varying delays described by 
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E h t x t E h t x t t

E h t x t d t E f t

τ

τ

= + − + −

+ + −

+ − +

� �

�

 (1a) 

( ) ( ) [ , 0],
m
x t t tφ κ= ∈ −  (1b) 

1
( ) ( ),

m m
z t C x t=  (1c) 

2 4
( ) ( ) ( , ( )) ( )m m h m fy t C x t C h t x t C f t= + +  (1d) 

with xm(t)=
1 2

[ ( ), ( ), , ( )]n n

m m mn
x t x t x t ∈ℜ�  where xmi (t) 

are the master system’s state vector associated with the i-

th state, ( ) z

m
z t ∈ℜ  and ( ) p

m
y t ∈ℜ  are, respectively, 

the controlled- and the measured- output of the master 

system. The term ( ) lf t ∈ℜ  corresponds to fault modes 

and Ef is called fault signature which is assumed known. 

h1(t, x(t)), 
2
( , ( ( ))),h t x t tτ−

3
( , ( ( )))h t x t d t−� and h4(t, x(t)) 

are time-varying vector-valued functions which are 

unknown and present the nonlinear parameter perturb-

ations. The time-varying function ( )tφ  is continuous 

vector valued initial function and the parameters τ(t) and 

d(t) are time-varying delays satisfying 

1 2
0 ( ) , ( ) ,t tτ τ τ τ≤ ≤ ≤�  (2a) 

1 2
0 ( ) , ( ) 1d t d d t d≤ ≤ ≤ <�  (2b) 

with 
1 1

max{ , }.dκ τ=  One can define a difference 

operator : ([ ,0], )n n

D C κ− ℜ →ℜ  such that 

2
( ) ( ( )).

t
Dx x t A x t d t= − −  (3) 

 

Definition 1 [27]: The difference operator D is said to 

be stable if the zero solution of the homogeneous 

difference equation 

0
0, 0, { ([ ,0]) :

t
Dx t x C κ= ≥ = Ψ∈ Φ∈ − 0}∇Φ =  

is uniformly asymptotically stable. 

The stability of the difference operator D is necessary 

for the stability of the system (1). Therefore, throughout 

the paper, the following assumption is needed to enable 

the application of Lyapunov’s method for the stability of 

neutral systems. 

 

Assumption 1: It follows from [27] that a delay-

independent sufficient condition for the asymptotic 

stability of the system (1) is that all the eigenvalues of 

the matrix A2 are inside the unit circle, i.e., λmax(A2) < 1. 

Furthermore, we make the following assumption for 
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the nonlinear perturbation functions in (1). 

Assumption 2: The nonlinear function :
n

i
h ℜ×ℜ →  

n
ℜ  are continuous and satisfy hi(t,

 0)=0 and the Lipschitz 

condition, i.e., 
0 0 0 0

( , ) ( , ) ( )
i i i
h t x h t y U x y− ≤ −  for all 

x0, y0
n

∈ℜ  and Ui are known matrices. 
 

Remark 1: The model (1) can describe a large amount 

of well-known dynamical systems with time-delays, such 

as the delayed Logistic model, the chaotic models with 

time-delays, the artificial neural network models with 

time-delays, and the predator-prey model with delays. 
 

Now, given the master signal xm(t), we are to design a 

feasible coupling technique to realize the synchroni-

zation between two identical systems with different 

initial conditions. Actually, the slave system is described 

as follows: 
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2 4
( ) ( ) ( , ( )),s s h sy t C x t C h t x t= +  (4d) 

( ) ( ( ) ( ))m sr t V y t y t= −  (4e) 

with 
1 2

( ) [ ( ), ( ), , ( )]n n

s s s sn
x t x t x t x t= ∈ℜ�  where xsi (t) 

are the slave system’s state vector associated with the ith 

state; ( ) m

u t ∈ℜ  is a coupled term which is considered 

as the control input; 
2

( ) [0, )s

w t L∈ ∞  is the disturbance, 

zs(t)
z

∈ℜ  and ys(t)
p

∈ℜ  are corresponded to the 

controlled- and the measured output of the slave system, 

respectively. φ(t) is a continuously differentiable 

functional. r(t) is the so-called generated residual signal 

and is associate with a matrix V. 

In the absence of w(t) and f (t), it is required that 

2
( ) ( ) 0 ,m sx t x t as t− → →∞  (5) 

where 
1 2

( ) [ ( ), ( ), , ( )] ( ) ( )T

n m s
e t e t e t e t x t x t= = −… is the 

synchronization error. Then, the synchronization error 

system between (1) and (4) can be expressed by 
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4 4 4
( , ( )) ( , ( )) ( , ( ) ( )).

m m
t e t h t x t h t x t e tψ = − −  

From Assumption 2, the Mean Value theorem and the 

Leibniz-Newton formula, i.e., ( ) ( ( ))e t e t tτ− − =  

( )
( ) ,

t

t t

e s ds
τ−

∫ �  it is easy to see 

2 2

2

2 ( )

( , ( )) ( , ( ( )))

( ) ( ( ) ( ( )))

( ) ( ) ,
t

t t

t e t t e t t

e t e t t

e s ds
τ

ψ ψ τ

ψ ξ τ
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−

− −
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= ∫

�
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 (7) 

where ξ is a point on the straight line between e(t) and 

( ( )),e t tτ−  which may be different for different rows of 

2
( ).ψ ξ�   

Remark 2:It is noting that, from the equation (7), one 

can obtain 

2 2

2

2
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thus, the Lipschitz constant of ψ2(.)can be estimated by 

2
max ( ) .
ξ

ψ ξ�  

Therefore, from the equation (7), the synchronization 

error system can be represented in a descriptor model 

form as 

( ) ( ),e t tη=�  (9a) 
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where 
2

: ( ).S ψ ξ= �  

Remark 3: In general, an equivalent descriptor form 

is employed to include information about static as well as 

dynamic constraints. In particular, applying inequalities 

to descriptor systems augmented from a state-space 

system also generates some freedom as shown in the next 

section. 

Definition 2: The salve system (6) is said  

1) to achieve asymptotic stability in the Lyapunov sense 

for ˆ ( ) 0w t =  if the synchronization error system (6) 

is asymptotically stable for all admissible nonlinear 

perturbations. 

2) to guarantee H∞ performance condition if under zero 

initial conditions, 

2

2

ˆ 0
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z t z t
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≠

− 
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≤  (10) 

 holds for all bounded energy disturbances and a 

prescribed positive value γ.  



Hamid Reza Karimi 

 

674 

The problem of synchronization with the fault detection 

we address here is as follows:  

Given a prescribed level of disturbance attenuation γ > 0, 

find a driving signal u(t) of the form 

1
( ) ( )u t K e t=

 

where the matrices K1 and V are to be determined in the 

sense of Definition 2. 

 

Furthermore, as commonly adopted in literature 

[23,24], the fault f(t) can be detected by the following 

steps. 

Step 1: Select a residual evaluation function  

2
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= ∫  

where the length of the time window 
2 1
t tϖ = −  is fi-

nite and t1 denotes the initial evaluation time instant. 
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Step 3: Test: 
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( ( )) .

th
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ϖ

ϖ

> ⇒ ⇒
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 (11) 

This test is a decision making process that always comes 

down to a threshold logic of a decision function. 

Remark 4: The fault can be detected according to the 

logical relationship (11). In the fault-free case, the 

generated residual r(t) is only affected by the disturbance 

input w(t).  
 

Before ending this section, we recall a well-known 

lemma, which will be used in the proof of our main 

results. 

Lemma 1 [29]: For any arbitrary column vectors a(t), 

b(t), matrices Φ(t), H, U and W the following inequality 

holds: 
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3. MAIN RESULTS 

 

In this section, we present our new sufficient 

conditions for the solvability of the problem of the 

synchronization and fault detection using the Lyapunov 

method and an LMI approach.  

Firstly, we choose a Lyapunov-Krasovskii functional 

candidate for the synchronization error system (6a) as 

1 2 3
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In the following theorem, we state our main results. 

Theorem 1: Under Assumptions 1 and 2, consider 

master-slave systems (1) and (4) and let the scalars γ, τ1, 

d1 > 0, τ2, d2, ε be given. If there exist the matrices P2, V, 
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where 
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Then there exists a state feedback controller given in the 

form u(t)=K1e(t) which achieve the asymptotic stability 

and the H∞ performance condition, simultaneously, in the 

sense of Definition 2. Moreover, the matrix K1 can be 

found by computing  
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K B P K
+ −

=  

where 1( ) .T T
B B B B
+ −
=  

Proof: Differentiating V1(t) in t along the trajectory of 

the error dynamics (6a) we obtain  

1 2

3

1 1

2

1 2

3 1

( )
( ) 2 ( ) ( ) 2 ( )

0

ˆ2 ( ) ( ( ) ( ( ))

ˆ ˆ( , ( )) ( , ( ))

ˆ ˆ ˆ ˆ( , ( ( ))) ( )) ( ),

T T T

T T T

T T

h h

T T

h

e t
V t e t Pe t t P

t P A t J A t d t

J E t e t J E t e t

J E t t d t J Dw t t

η

η η η

ψ ψ

ψ η β

 
= =  

 

= + −

+ +

+ − + +

�
� �

 (15) 

where  

1 1

0
: ,

I
A

A A BK I

 
=  + − − 

 

21 1 ( )

ˆ( ) 2 ( ) ( ) ( ) .
t

T T T

h
t t

t t P J A E S s ds
τ

β η η
−

= − + ∫  

By Lemma 1 and (7), it is clear that 

21 1
1 ( )

3

ˆ ( )( )
( )

( )

T T T
t h

t t

H U P J A E St
t

s Qτ

η
β

η−

 − + 
≤   

∗    
∫  

2

3 1 1( )

1

2

2

( )

( )

( ) ( ) ( ) ( )

ˆ2 ( ) ( )( ( ) ( ( )))

ˆ2 ( ) ( ( , ( ))

( , ( ( ))))

t
T T

t t

T T T

T T T

h

t
ds

s

s Q s ds t H t

t U P J A e t e t t

t P J E t e t

t e t t

τ

η

η

η η τ η η

η τ

η ψ

ψ τ

−

 
 
 

≤ +

+ − − −

−

− −

∫
 (16) 

subject to the LMI (14b). The time derivative of the 

second and third terms of V(t) are, respectively, as 

2 1 2

1 2

3 3

1 2 2 1

2 2

( ) ( ) ( ) ( ) (1 ( )) ( ( ))

( ( )) (1 ( )) ( ( )) ( ( ))

( ) ( ) (1 ( )) ( ( )) ( ( ))

( ) ( ) ( ) (1 ) ( ( )) ( ( ))

(1 ) ( ( )) ( (

T T

T

T T

T T

T

V t e t Q Q e t t e t t

Q e t t d t e t d t Q e t d t

t Q t d t t d t Q t d t

e t Q Q e t e t t Q e t t

d e t d t Q e t d t

τ τ

τ

η η η η

τ τ τ

= + − − −

× − − − − −

+ − − − −

≤ + − − − −

− − − −

� �

�

�

3

2 3

)) ( ) ( )

(1 ) ( ( )) ( ( ))

T

T

t Q t

d t d t Q t d t

η η

η η

+

− − − −

  

 (17) 

and 

3 1 1 2 1( )
( ) ( ) ( ) (1 ) ( ) ( ) ,

t
T T

t t
V t t R t s R s ds

τ

τ η η τ η η
−

= − − ∫�  

 (18) 

4 1 2 2 2( )
( ) ( ) ( ) (1 ) ( ) ( ) .

t
T T

t d t
V t d t R t d s R s dsη η η η

−

= − − ∫�  

 (19) 

Using Assumption 2, we have 

1 1 1 1
0 ( , ( )) ( , ( )) ( ) ( ),T T T

t e t t e t e t U U e tψ ψ≤ − +  (20a) 

2 2

2 2

0 ( , ( ( ))) ( , ( ( )))

( ( )) ( ( )),

T

T T

t e t t t e t t

e t t U U e t t

ψ τ ψ τ

τ τ

≤ − − −

+ − −

 (20b) 

3 3

3 3

0 ( , ( ( ))) ( , ( ( )))

( ( )) ( ( )),

T

T T

t t d t t t d t

t d t U U t d t

ψ η ψ η

η η

≤ − − −

+ − −

 (20c) 

4 4 4 4
0 ( , ( )) ( , ( )) ( ) ( ).T T T

t e t t e t e t U U e tψ ψ≤ − +  (20d) 

Moreover, from the Leibniz-Newton formula and (6a), 

the following equation holds for any matrix M with 

appropriate dimension, 

( )
2 ( ) ( ( ) ( ( )) ( ) ) 0,

t
T

t d t
t M e t e t d t s dsυ η

−

− − − =∫  (21) 

where 

1 2 3

4

( ) : { ( ), ( ( )), ( ( )), ( ( )),

( , ( )), ( , ( ( ))), ( , ( ( ))),

ˆ( , ( )), ( )}.

t col t e t t e t d t t d t

t e t t e t t t t d t

t e t w t

ϑ η τ η

ψ ψ τ ψ η

ψ

= − − −

− − (22) 

Construct a HJI function in the form of 

2

( ) ( ) ( ) ( )
ˆ[ ( ), ( )] ( )

( ) ( )

ˆ ˆ( ) ( ),

T

m s m s

T

z t z t z t z td
J e t w t V t

r t r tdt

w t w tγ

− −   
= +    

   

−

 (23) 
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where derivative of V(t) is evaluated along the trajectory 

of the error dynamics (6a). It is well known that the 

performance condition (10) is that the inequality 

ˆ[ ( ), ( )] 0J e t w t <  for every 
2

ˆ ( ) [0, )s
w t L∈ ∞  results in a 

function V(t), which is strictly radially unbounded.  

By adding the right- and the left- hand sides of (21)-

(22), respectively, to (20), it follows From (15)-(19) that 

we obtain 

1
12 2

1
2

2 2
( )

2

2 2

3 2 1
( )

ˆˆ[ ( ), ( )] ( ) ( ) ( )

( ( ) (1 ) ( ) )
1

( ( ) (1 ) ( ) )

( ) ( (1 ) ) ( ) ,

T T

t
T T

t d t

T T T

t
T

t t

J e t w t t d MR M t

R
t M d s R

d

t M d s R ds

s Q R s ds
τ

ϑ ϑ

ϑ η

ϑ η

η τ η

−

−

−

−

≤ Π +

− + −

−

× + −

+ − −

∫

∫

 (24) 

where the matrix Π̂  is given by 

11 12 3 1 14 15

22 2

33

44

ˆ ˆ ˆ ˆ

ˆ 0 0

ˆ 0 0

ˆ 0
ˆ

T
J M M

M

I

Π Π − Π Π

∗ Π −


∗ ∗ Π

 ∗ ∗ ∗ Π
Π =  ∗ ∗ ∗ ∗ −


∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

 

 

16 17 18 19

88

99

ˆ ˆ ˆ ˆ

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0

ˆˆ

ˆ

T T
h f

I

I

C V VC J

Π Π Π Π







−


∗ − 
∗ ∗ Π −

∗ ∗ ∗ Π 

 (25) 

with 

11 1 1

1 1 1 2 1 1 1 1 4 4

2 2 1 1 1 2 3

ˆˆ { } {( ) }

(

ˆ ˆ) ( ) ,

T T T

T T T T

T T T

sym P A sym U P J A J M J

H J Q Q C C U U U U

C V VC J J R d R Q J

τ

τ

Π = + − +

+ + + + + +

+ + + +

12 1 1 2
ˆˆ ,

T T T T
U P J A M J MΠ = − + − +  

22 2 2 2 1
ˆ (1 ) ,T

U U QτΠ = − −  

33 2 2 3
ˆ (1 ) { },d Q sym MΠ = − − −  

44 3 3 2 3
ˆ (1 ) ,TU U d QΠ = − −

14 2 4
ˆˆ ,

T T T T
P J A J MΠ = +  

115 5
ˆˆ ,

T T T T

h
P J E J MΠ = +

216 6
ˆˆ ,

T T T T

h
P J E J MΠ = +  

317 7
ˆˆ ,

T T T T

h
P J E J MΠ = +

18 8 2
ˆ ( ),T T T T

h
J M C V CΠ = −  

19 1 2 9
ˆ ˆ ˆˆ ( ) ,T T T T T T T T

fP J D J C C V C J J MΠ = + + +  

88
ˆ ,

T T

h h
C V VC IΠ = −  

2

99
ˆ ˆˆ ( ) .T T T

f fJ I C V VC J IγΠ = + −  

Thus, if the inequalities 

1

12 2
ˆ 0,

T
d MR M

−

Π + <  (26a) 

3 2 1
(1 ) 0Q Rτ− − <  (26b) 

hold, it follows from 
ˆ ( ) 0

ˆ[ ( ), ( )]
w t

J e t w t
≡

≤ 0 that ( )
d
V t

dt
 

0≤  or ( ) (0).V t V≤  

Then, from (12), it can be deduced 

0

1 1(0)

0 0

2 3(0) (0)

0 0

1(0)

0 0

2(0)

02

max 1 max 12 (0)

0

max 2 (0)

m

(0) (0) (0) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

T T

T T

d d

T

s

T

d s

T

T

d

V e Pe e s Q e s ds

e s Q e s ds s Q s ds

R d ds

R d ds

P Q s s ds

Q s s ds

τ

τ

τ

η η

η ξ η ξ ξ

η ξ η ξ ξ

λ ϕ λ ϕ ϕ

λ ϕ ϕ

λ

−

− −

−

−

−

−

= +

+ +

+

+

≤ +

+

+

∫

∫ ∫

∫ ∫

∫ ∫

∫

∫
0

ax 3 (0)

0 0

max 1 (0)

0 0

max 2 (0)

2 2

1 22 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

T

d

T

s

T

d s

Q s s ds

R d ds

R d ds

τ

ϕ ϕ

λ ϕ θ ϕ θ θ

λ ϕ θ ϕ θ θ

σ ϕ σ ϕ

−

−

−

+

+

≤ +

∫

∫ ∫

∫ ∫

� �

� �

� �

�

 

where  

1 max 1 1 max 1 1 max 1
: ( ) ( ) ( )P Q d Qσ λ τ λ λ= + +  

and  

2 2

2 1 max 3 1 max 1 1 max 2
: ( ( ) 0.5 ( ) 0.5 ( )).d Q R d Rσ λ τ λ λ= + +  

Then, we have: 

2 2 2

min 1 1 22 2 2
( ) ( ) .P V tλ ϕ σ ϕ σ ϕ≤ ≤ + �  

Now, by considering 
3 2

,P Pε=
1 2 1

T
K P BK=  (to 

remove the present nonlinearities in the optimization 

technique) and applying Schur complement on the matrix 

inequality (26a), the matrix inequality (26a) is converted 

into a convex programming problem written in terms of 

LMI (14c). It is also easy to see that the inequality above 

implies 
2

( ) 0.Tsym P <  Hence, the matrices P and P2 are 

nonsingular.              � 

Remark 5: It is worth noting that one of advantages 

of the descriptor model (9) is that Lemma 1 and slack 

variables in (16) can be exploited to reduce conservatism 

in robust synthesis and the proposed LMI conditions 
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have the numerical advantage of being strict. 

Remark 6: It is noted that our approach is different 

from that in the reference [31] in several perspectives: a) 

the system structure in [31] considers norm-bounded 

unknown nonlinear perturbations and in compare to our 

case do not center on the Lipschitz condition in A2), i.e., 

the results in [31] can not be directly applied to the 

systems with Lipschitz nonlinear functions; b) the main 

problem in [31] is to study the problem of robust stability 

analysis for time-delay systems in compare to our case 

that the problem of synchronization with the fault 

detection and a disturbance attenuation level are 

considered; c) employing the descriptor technique in the 

present paper can reduce conservatism in the derived 

conditions in comparison with the reference [31]. 

 

4. NUMERICAL EXAMPLE 

 

Consider the master-slave systems (1) and (4), where 

the system matrices are given by  

0 0 1 0

0 0 0 1
,

0.4 0.1 1 0.5

3.6 5.9 5 1.5

A

 
 
 =
 − − − −
 
− − − −  

 

1

0 0 0 0

0 0 0 0
,

0.2 0.05 0.5 0.25

1.8 2.95 2.5 0.75

A

 
 
 =
 − − − −
 
− − − −  

 

2

0 0 0 0

0 0 0 0
,

0 0 0.5 0

0 0 0 0.5

A

 
 
 =
 −
 

−  

 
1

0 0

0 0
,

1 0.5

5 20.5

h
E

 
 
 =
 − −
 
  

 

2

0 0

0 0
,

0.5 0.25

2.5 10.25

h
E

 
 
 =
 − −
 
  

 [ ]1
1 1 0 0 ,C =  

2

1 0.5 0 0
,

1 1 0 0
C

 
=  
 

 

0

0
,

1

1

fE

 
 
 =
 
 
  

 

0

0
,

1

1

B

 
 
 =
 −
 
  

 

0

0
.

0.1

0.1

D

 
 
 =
 
 
  

 

The delays ( ) ( ) (1 ) (1 )t t
t d t e eτ

− −

= = − +  are time-

varying and satisfy 0 ( ) ( ) 1t d tτ≤ = ≤  and ( ) ( )t d tτ =
��  

0.5.≤  For simulation purpose, a uniformly distributed 

random signal, shown in Fig. 1, with minimum and 

maximum -1 and 1, respectively, as the disturbance is 

imposed on the response system. The fault signal f (t) is  

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)  

Fig. 1. The disturbance signal. 

 

0 5 10 15
0

0.5

1

1.5

Time (sec)

f
(
t
)

 

Fig. 2. Fault signal f (t) (abrupt fault). 
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1 2m m

x x−  plot. 
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( )1x tm�  

(b) 
1 2m m

x x−� �  plot. 

Fig. 3. The phase trajectories. 
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simulated as a square ware of unite amplitude occurred 

from 5 to 10 sec, shown in Fig. 2. With the above 

parameters, the master-slave systems (1) and (2) exhibit 

chaotic behaviours such the 
1 2m m

x x−  and 
1 2m m

x x−� �  

planes with initial conditions 

(0) {0.4,0.6, 0.3, 0.2}colφ = − −  

and  

(0) {0.8, 0.7,0.1,0.1},colϕ = −  

respectively, are shown in Fig. 3. 

It is required to design the control law 
1

( ) ( )u t K e t=  

such that the synchronization error system (9) is 

asymptotically stable and satisfies the H∞ performance 

measure. To this end, in light of Theorem 1, we solved 

LMIs (14) with the disturbance attenuation γ = 0.8 and 

obtained the following control gain by using Matlab LMI 

Control Toolbox: 

[0.9543 1.4119 2.0951 1.5799].K = − −  

Now, by applying the synchronization control signal 

with the parameters above, the synchronization error 

between the drive system and response system is shown 

in Fig. 4. It shows that the synchronization error 

converges to zero. The curve of control signal is shown 

in Fig. 5. Also, Fig. 6 shows the residual signals obtained 

with the synchronization. It can be seen that clearly by 

monitoring the fault estimates, it would be possible to 

detect fault behaviours. 

In Fig. 7, the evolution of ( )2

1

0.5

( ( )) : ( ) ( )
t

T

t
J r t r t r t dt

ϖ
= ∫  

is presented for both faulty case and fault-free case, 

respectively. We can see that the fault f(t) can be 

detected 1.6 sec after its occurrence based on Jth = 0.26 

for the first residual signal 
1
( ),r t

ϖ
 shown in Fig. 7. 

 

5. CONCLUSIONS 

 

The problem of robust synchronization and fault 

detection for a class of master-slave systems subjected to 

some nonlinear perturbations and mixed neutral and 

discrete time-varying delays was investigated based on 

an H∞ performance condition. By introducing a descrip-

tor technique, using Lyapunov-Krasovskii functional and 

a suitable change of variables, new required sufficient 

conditions were established in terms of delay-dependent 

linear matrix inequalities to synthesize the residual 

generation scheme. The explicit expression of the 

synchronization law was derived for the fault such that 

both asymptotic stability and a prescribed level of 

disturbance attenuation were satisfied for all admissible 

nonlinear perturbations. A numerical example was given 

to show the effectiveness of the method. 
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Fig. 4. The synchronization errors. 
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Fig. 5. Control law for system. 
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Fig. 6. Residual signals. 
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