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Abstract: In this paper, a generalized terminal sliding surface is proposed for second-order systems. It 

is shown that the proposed scheme guarantees that the system state gets to zero in a finite time, and the 

proposed generalized terminal sliding surface is a superset of the conventional terminal sliding surfac-

es. The experimental results are given to show the validity of the main result. 
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1. INTRODUCTION 

 

In most of previous works on systems and control field, 

it has been shown that the closed-loop system is 

asymptotically stable in the sense of Lyapunov. 

Although the asymptotic stability guarantees that the 

system state converges to zero as time approaches 

infinity, it does not specify when the system states will 

get to zero. That is, asymptotic stability does not imply 

finite time convergence. However, finite time 

stabilization is very important in many industrial 

applications such as motor systems, power systems, 

robot manipulators, spacecraft systems, and so on; thus, 

there have been many recent studies on finite time 

stabilization [1-6]. 

Sliding mode control (SMC) is one of the robust 

control schemes [7-11]. It is well known that the SMC 

has the invariance property to parameter uncertainties 

and external disturbances. Recently, to obtain finite time 

convergence, terminal sliding mode control schemes 

have been studied actively [3-5]. The conventional 

terminal sliding surfaces have been designed with a 

power function whose exponent is a rational number 

with positive odd numerator and denominator. However, 

there are lots of different kinds of sliding surfaces that 

guarantee finite time convergence to the origin in the 

state space. Thus, in this paper, we propose a generalized 

terminal sliding surface for second-order systems. It is 

shown that the proposed method guarantees that the 

system state gets to zero in a finite time, and the 

proposed generalized terminal sliding surface is a 

superset of the conventional terminal sliding surfaces. 

Some of the experimental results are given to show the 

validity of the main results. 

2. MAIN RESULTS 

 

Consider a second-order nonlinear system with the fol-

lowing form: 

( , ) ( , ) ,x f x x b x x u= +�� � �  (1) 

where x and x�  are state variables, ( , )f x x� is a nonli-

near term, u is a scalar input, and ( , ) 0.b x x ≠�  

In the previous works on terminal sliding mode con-

trol systems, the conventional terminal sliding surfaces 

have been designed as 

/
,

p q
s x cx= +�  (2) 

where c > 0, 0 1,
p

q
< <  and p and q are positive odd 

integers [3-5]. Although, the conventional terminal slid-

ing surface (2) ensures finite time convergence, it is not 

the only one solution. Thus, we propose a generalized 

terminal sliding surface as follows: 

( ),s x g x= +�  (3) 

where 1( )g C⋅ ∈  is an odd function, i.e., (0) 0g =  and 

0 ( )x g x< ⋅  if 0,x ≠  and it holds the following condi-

tion: 

( )dg x

dx
→∞  as 0.x→  (4) 

The above condition (4) implies that the proposed slid-

ing surface has a slope of −∞  at 0x =  in the state 

space (x vs. ).x�  Since a sliding surface should be de-

signed such that the system is stable in the sliding mode, 

we derive the stability of the proposed sliding surface (3) 

in the following theorem. 

Theorem 1: The proposed sliding surface (3) is stable. 

Proof: Consider the Lyapunov function candidate: 

21
( ) .

2
V x x=  (5) 

In the sliding mode, s = 0, and it means that 

© ICROS, KIEE and Springer 2011 

__________  

 Manuscript received December 31, 2010; revised February 9,
2011; accepted February 23, 2011. Recommended by Editor Myo-
taeg Lim. This work was supported by a Korea University Grant.
 Young-Hun Jo, Yong-Hwa Lee, and Kang-Bak Park are with
the Department of Control and Instrumentation Engineering, Ko-
rea University, 208 Seochang-dong, Yeongi-gun, Chungnam 339-
700, Korea (e-mails: {heyguy84, now1217, kbpark}@korea.ac.kr).

* Corresponding author. 



Design of Generalized Terminal Sliding Mode Control for Second-Order Systems 

 

607

( ).x g x= −�  Thus, V� can be derived as 

( ) ( ).V x xx x g x= = − ⋅
� �  (6) 

It is clear that above V�  is a negative definite func-

tion since g(x) is an odd function. It implies that the sys-

tem is stable provided that the system is in the sliding 

mode, i.e., the proposed sliding surface (3) is stable.   � 

In the following theorem, finite time convergence is 

derived for the proposed sliding surface. 

Theorem 2: The proposed sliding surface (3) guaran-

tees that the system state gets to zero in a finite time if 

the system is in the sliding mode. 

Proof: If the system is in the sliding mode,  

( ) 0.s x g x= + =�  (7) 

Since g(x) is an odd function, assume that g(x) is in the 

sector (0, k], where k is a finite positive number, i.e., 

20 ( )     0.xg x kx x< ≤ ∀ ≠  (8) 

Applying (7) to (8), one can derive the following in-

equalities: 

2 2( )     .
x

xg x kx xx kx k
x

≤ ⇒ − ≤ ⇒ − ≤
�

�  (9) 

Integrating both sides of (9), one can easily obtain the 

following inequality: 

0

0 (0)
ln  ln (0) ,r

xt t

rt x x
k t x k t x

==

= =

⋅ ≥ − ⇒ ⋅ ≥ +∞  (10) 

where tr represents the relaxation time, at which the sys-

tem state gets to zero. Clearly, the last inequality (10) 

should hold for any (0) 0.x ≠  However, it is obvious 

that there is no finite positive number k such that tr to be 

finite for any (0) 0.x ≠  That is, no matter how small 

(0) 0x ≠  is, there is no finite positive number k satisfy-

ing the inequality (10). It implies that the sliding surface 

guaranteeing finite time convergence should satisfy the 

condition (4).              � 

Remark 1: It is clear that the proposed generalized 

terminal sliding surface (3) is a superset of the conven-

tional terminal sliding surface (2), that is, g(x)=cxp/q sa-

tisfies the condition (4). 

Remark 2: From Theorem 2, it is possible to design a 

variety of another terminal sliding surfaces guaranteeing 

finite time convergence as that shown in Fig. 1. In this 

figure, the solid line represents the following circular 

terminal sliding surface (CTSS): 

2

sgn( ) if  ,

2 sgn( ) otherwise,

x r x x r

s

x x r x x

 + ⋅ >
= 

+ − +

�

�

 (11) 

where 
1

,x x=
2

,x x= � 1r =  and sgn( )x  represents a 

signum function. The dotted line shows the following 

extended terminal sliding surface (ETSS): 

/
sgn( ),

p q

s x c x x= +�  (12) 
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Fig. 1. Examples of terminal sliding surfaces. 
 

where c =1 and 
1
.

2

p

q
=  Obviously, both of the two 

sliding surfaces (11) and (12) hold the condition (4), i.e., 

they have a slope of −∞ at x = 0 in the state space 

(x vs. ).x�  

Remark 3: For the sliding surface (12), note that the 

exponent of the power function can be any real number 

in (0, 1). In the conventional terminal sliding surface (2), 

it should be a rational number with positive odd numera-

tor and denominator. However, it is shown that it can be 

extended to a real number by using the proposed sliding 

surface. 

Remark 4: In some cases, the sliding surface (11) can 

be useful because the physical limits of hardware sys-

tems can be applied to designing the sliding surface. For 

example, if the maximum speed, | x� |, of the plant is li-

mited by 10, one can design a terminal sliding surface 

(11) with r = 9 < 10. 

Since all of the above results have been derived under 

the condition that the system is in the sliding mode, we 

give the following theorem to show the existence of the 

sliding mode for the stability of the overall system. 

Theorem 3: For the system (1) with the proposed slid-

ing surface (3), the following controller guarantees that 

the system state gets to zero in a finite time. 

1 2

1 ( )
( , ) sgn( ) .

( , )

dg x
u f x x x k s k s

b x x dx

 
= − − − − 

 
� �

�
 (13) 

Proof: Let the Lyapunov function candidate be 

21
( ) .

2
V s s=  (14) 

Applying (1) and (3) to ,V�  the following inequality 

can be obtained. 

( )1 2

2

1 2

( )
( )

( )

sgn( )

.

dg x
V s ss s x x

dx

dg x
s f bu x

dx

s k s k s

k s k s

 
= = + 

 

 
= + + 

 

= − −

= − −

� � �� �

�  (15) 
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From (15), it is clear that the reaching time is shorter 

than 
2

(0)
,

s

k
 i.e., the system gets in the sliding mode in 

a finite time. In addition, from Theorem 2, if the system 

is in the sliding mode, then the system state goes to zero 

in a finite time. Thus, the system state gets to zero in a 

finite time.              � 

Remark 5: The proposed sliding surface (3) can be a 

guideline for designing a terminal sliding surface for 

second-order systems. That is, to get the finite time con-

vergence, a terminal sliding surface should be designed 

in the state space such that the condition (4) holds, i.e., it 

should have a slope of −∞  at x = 0 in the state space (x 

vs. ).x�  

Remark 6: From condition (4), it can be known that 

one should check out whether or not controller (13) suf-

fers from the singularity problem. If it does, then the 

singularity problem can be avoided by several methods 

as in the previous works [3,4]. The following switching 

control law is one of them: 

0    at singular points,

(13)    otherwise.
u


= 


 (16) 

Remark 7: If the system is in the sliding mode, then it 

is shown that ( )x g x= −�  since s = 0. Thus, using a sim-

ilar method to those of previous works, the controller 

(13) can be modified as 

2

1 ( )
( , ) ( ) sgn( ) .

( , )

dg x
u f x x g x k s

b x x dx

 
= − + − 

 
�

�
 (17) 

Note that the function g(x) can be designed such that 

( )
( ) 0

dg x
g x

dx
=  at x = 0. Actually, terminal sliding sur-

faces (11) and (12) satisfy the above condition so that the 

modified controller (17) does not suffer from singularity 

problem if the system is in the sliding mode. 

 

3. EXPERIMENTAL RESULTS 

 

To show the validity of the proposed scheme, the ex-

perimental results for the actual DC motor system are 

given. In the experimental setup, a TMS320F2812 DSP 

processor was used, and sampling time was set to 1msec. 

The following model is used for the DC Motor: 

40.65 46.67 .x x u= − +�� �  Two examples of the proposed 

generalized terminal sliding surface (4) have been ap-

plied to the system: the circular terminal sliding surface 

(11) and the extended terminal sliding surface (12). 

Figures 2-6 show the experimental results of the circu-

lar terminal sliding surface when) r = 2, k1 =70, k2 =100, 

and x(0) = −π(rad.). The output angle and angular veloci-

ty are shown in Figs. 2-3. Figure 2 represents that the 

output gets to zero in a finite time. As can be seen in Fig. 

4, the reaching phase is very short so that the relaxation 

time is almost the same as the sum of the elapsed time 

for the signum function part and circular part. For the 

signum function part, i.e., the constant velocity part, it is 

easy to obtain the elapsed time since | x| decreases at a 

constant rate r. The approximated elapsed time can be 

calculated by 
 const

(0) 2

2
r

x r

t

r

π− − −

≅ = ≅  0.571 

seconds. For the circular part, 
 circular

2
r
t

π

= (sec.) can be 

easily derived from (11). Thus, the approximated total 

relaxation time can be derived as 
1

0.571
r
t ≅ +  

2.142
2

π

≅  seconds. It is clear from Fig. 2 that the 
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Fig. 2. Output (x). 
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Fig. 3. Angular velocity ( ).x�  
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experimental result, 2.218 seconds, is almost the same as 

t
r1. In the phase portrait (see Fig. 5), it is obvious that the 

system state reaches the sliding surface, the red line, and 

the overall system is in the sliding mode thereafter. Fig. 

6 shows that the control input shows the chattering phe-

nomena almost all the time since the reaching phase is 

very short (see Fig. 4). The actual reaching time was 

0.040 seconds. 

The results of the extended terminal sliding surface  

 
(12) are shown in Figs. 7-11. The parameters of the slid-

ing mode controller (13) were set to c = 2, 
1
,

2

p

q
=  

k1 =70, 
2

100,k =  and x(0) = −π(rad.). The output angle 

and angular velocity curves are given in Figs. 7 and 8. 

Figure 7 shows that the output gets to zero in a finite 

time. Since the system gets in the sliding mode very ra-

pidly (0.041 seconds) as can be seen in Fig. 9, the relaxa-
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Fig. 8. Angular velocity ( ).x�  

 

0 1 2 3 4 5
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time (sec.)

S
lid
in
g
 v
a
ri
a
b
le
 s

Fig. 9. Sliding variable (s). 
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tion time is almost the same as 
1

2
(0)

1.772
1

p
q

r
x

t
pc
q

−

≅ ≅
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

seconds. The experimental data, 1.846 second, shows 
almost the same result (see Fig. 7). Figure 10 shows that 
the system is in the sliding mode. The control input is 
given in Fig. 11. It can be seen that the control input does 
not suffer from the singularity problem. 

 
5. CONCLUSIONS 

 
In this paper, a generalized terminal sliding surface for 

the second-order systems has been proposed. It has been 
shown that a terminal sliding surface should be designed 
such that it has a slope of −∞  at x = 0 in the state space 
in order to obtain finite time convergence. It has been 
also shown that the proposed generalized terminal sliding 
surface is a superset of the conventional terminal sliding 
surfaces, and several other terminal sliding surfaces have 
been introduced. The experimental results have shown 
the validity of the main result. 
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