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Design of Stabilizing Control for Synchronous Machines via Polynomial 

Modelling and Linear Matrix Inequalities Approach 
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Abstract: This paper deals with the design and evaluation of a nonlinear state feedback controller to 

improve the global asymptotic stabilization and transient performance of synchronous machines. The 

nonlinear Park’s model is developed around the working point on a third order polynomial system. An 

innovative technique is used to design a nonlinear polynomial controller, based on the Lyapunov’s di-

rect method and Linear Matrix Inequalities (LMIs) approach. The control laws are derived from the 

resolution of a sufficient LMI stabilization condition. The proposed polynomial control has been tested 

numerically on a generator infinite-bus power system and the simulations results show an excellent 

damping of the system oscillations over a wide range of operating conditions whilst retaining good 

voltage control. 
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1. INTRODUCTION 

 

Control system design and analysis methods are very 

useful to be applied in real time development. A 

literature survey on power system control shows that 

there has been a great deal of interest in synchronous 

machine modelling along with its controlling equipments 

[1-6]. The considered electrical power generator is a 

single machine connected to an infinite bus through a 

transmission network and which is used almost 

exclusively in power system as a source of electrical 

energy [7,8]. In the past, a lot of attempts have been 

made to design controllers for synchronous generators 

[9,10]. However, the most of known works have 

considered the linearized model of the electrical machine 

[11] and less attention has been devoted to nonlinear 

control solutions which are more reassuring in the case 

of a more aggressive perturbation [12]. The 

mathematical models of synchronous generators are 

developed and simulated based on Park’s transformation 

which is a widely used transformation in the modelling 

and analysis [13,14]. Such transformation leads to 

nonlinear models which can be turned out to be difficult 

to apply for the synthesis of a performant controller. An 

idea to reduce the complexity of this model, but without 

loosing the nonlinear character of the process, one can 

develop the Park’s model in polynomial series with an 

order greater than one, which yields a nonlinear 

polynomial model.  

In this paper, we consider the description of such 

electrical process by polynomial approximation of the 

nonlinear functions based on the Kronecker product and 

the Kronecker power of the state vector [15-20]. The 7th 

order state space model of the synchronous machine is 

developed around the operating point on a third order 

polynomial system to improve the performances of the 

considered power system controlling, and particularly in 

the sense of the widening of the stability domain around 

the operating point. Furthermore, in this present work, 

we make use of recent results on nonlinear polynomial 

system stabilization [21], to derive a polynomial 

stabilizer of a synchronous machine connected to an 

infinite busbar. This approach has the advantage to lead 

to a closed loop system, which stability is guaranteed in a 

large domain around the operating point. This 

enlargement of the stability domain is due to the accurate 

polynomial development of the original nonlinear system. 

The proposed technique is associated to Linear Matrix 

Inequalities (LMIs) principle [22-24] for the research of 

a quadratic stabilizing polynomial controller. Thus, 

important algebraic manipulations have been elaborated 

and implemented to lead to the derived results.  

This paper is organized as follows: Section 2 reviews 

the synchronous machine modelling. The design of 

polynomial feedback stabilizing controller is expressed 

in Section 3. Section 4 presents some simulation results. 

Finally, some conclusions and future works are presented 

in the last section.  

 

2. SYNCHRONOUS MACHINE MODELLING 

 

2.1. Nonlinear Park’s model of a synchronous machine 

A great simplification in the mathematical description 

of the synchronous machine is obtained using the Park’s 
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transformation which is widely used in the analysis and 

control of electrical machines [25,8]. The variables used 

to describe a synchronous generator are the following:  

- d qi i, : stator currents in d and q axis circuits 

respectively;  

- fi : field current;  

- D Qi i, : damper currents in d and q axis circuits 

respectively;  

-ω : rotor speed;  

-δ : torque angle;  

The control variables are:  

- Vf : field voltage;  

- Cm: mechanical torque;  

The output variables are considered as:  

- if : the field current;  

- is: the stator current;  

- Pe: the electrical power of the machine which can be 

expressed as:  

- 3 ( ( ) ( ) ),e q dP V cos i sin iδ α δ α
∞

= − − −  (1) 

where V∞ is the infinite-busbar voltage and α is 

the angle of infinite-busbar voltage.  

The parameters involved in modelling of the synchron-

ous machine are listed as follows:  

rs : stator resistance; 

rf : field resistance; 

r : armature resistance; 

rD : damper resistance; 

Lsd : direct-axis stator inductance; 

Lsq : quadrature-axis stator inductance; 

Lf : self inductance of field winding; 

LD : self inductance of damper windings along d-axis; 

LQ : self inductance of damper windings along q-axis; 

MF : mutual inductance between stator and field 

windings; 

MD : mutual inductance between stator and d-axis 

damper windings; 

MQ : mutual inductance between stator and q-axis 

damper windings; 

MR : mutual inductance between field and d-axis 

damper windings; 

H : inertia constant; 

D : mechanical damper constant; 

ωr : the synchronous speed; 

k : constant 
3

.
2

 
  
 

 

All the above quantities are considered in p.u except time 

(seconds), torque angle (radians), the angular speed 

(rad/s) and the inertia constant H (seconds). A detailed 

representation of synchronous machine system is shown 

in Fig. 1. 

The derived model, called Park’s model, is 

characterized by the following state vector: 

[ ]
T

d f D q Qi i i i iX ω δ=  (2) 

and described by the following state space equation [8]. 

 

Fig. 1. Pictorial representation of a synchronous machine. 
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Fig. 2. Single machine infinite bus system. 
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with Ll and Rl are respectively, the inductance and 

resistance of infinite bus (see Fig. 2). 

 

2.2. Polynomial model approximation 

The nonlinear Park’s model (3) can be approximated 

by a polynomial model obtained from a Taylor-series 

expansions. The description of polynomial systems can 

be simplified using the Kronecker product and power of 

vectors and matrices [15,17,26,27] which recognize the 

advantage of widening the domain of validity of the 

approximated model of the power system compared to 

linearized systems. 

The exact Park’s model (3) characterized by the state 

vector (2) and controlled by U = [Vf  Cm]T is described 

by the following polynomial state equation: 

[2]
1 2 0( ) ( ),X F X U F X F X B U f δ= , = + + +�  (4) 

where 

• F(.)is a vectorial polynomial function of X; 

• X
[k] is the kth Kronecker power of the state vector X 

[15]; 

1
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 (5) 

• F2 is (7×49) matrix such as: 

2 2
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for the other values of i and j such as 1 7i≤ ≤  and 

1 49j≤ ≤  

with 
2 1 2 1 2
( )F i i j j: , :  means the sub-matrix of F2 

located between the rows i1 and i2 and columns j1 and j2. 

B0 and f (δ) are respectively the input matrix and a 

nonlinear trigonometric vector function of the torque 

angle δ defined as: 
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Let P0(U0, X0) an operating point of the synchronous 

machine defined by: 

0 0

0 0 0 0 0

0

0 0 0

0 0

[ ]
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T
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 =


=


, =

 (7) 

and consider some variation x around X0 and u around U0 

which can be expressed in operational form as: 

0 0
X X x U U u= + , = +  

with [
d

x i= ∆ fi∆ D
i∆

q
i∆ Qi∆ ω∆ ] ,

T
δ∆ [ fu V= ∆  

∆Cm]T and ∆ represents some deviation around the 

operating point. 

The equation describing the state variation x can be 

written as follows: 

[2] [2]
1 2 0 00( ) ( ) ( ).x F x F X X B u f fδ δ= + − + + −�  (8) 

The development of the nonlinear terms [2] [2]
0X X−  

and f (δ)− f (δ0) in the first order as: 

0

[2] [2]
0 00

0

( )

( ) ( )

n n
X X I X X I x

f
f f

δ

δ δ δ
δ

 − ≅ ⊗ + ⊗


∂  
− ≅ ∆  ∂ 

 (9) 

leads to a linear model of the form: 
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1 0
,x A x B u= +�  (10) 

where 

0

1 1 2 0 7 7 0
( )

f
A F F X I I X

δ

ξ
δ

∂ 
= + ⊗ + ⊗ +  ∂ 

 (11) 

and: 

[ ]0 0 0 0 0 0 1 .
T

ξ =  (12) 

Note that the linearized model (10) is available in a little 

neighborhood of the operating point. In order to obtain a 

more accurate model available in a greater domain 

around the operating point, we propose to consider a 

third order polynomial approximation of the nonlinear 

terms in (8): 
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By using the properties of Kronecker product and by 

adopting the following approximations: 
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where γ0 = δ0 − α, the polynomial model of a synchronous 

machine connected to an infinite busbar through a 

transmission line is given by the following state space 

equation: 

[2] [3]
1 2 3x A x A x A x Bu= + + +�  (13) 
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Several possibilities for simplifying the Park’s model 

order of the machine are considered in the literature 

[1,7,8]. Assuming the simplified model of synchronous 

machine obtained when neglecting the damper transients, 

the set of equations (13-14) are manipulated to obtain the 

following reduced 5th order polynomial state-space 

model: 

[2] [3]
1 2 3 ,X A x A x A x Bu= + + +

� � � �� �� � �  (15) 
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Remark 1: In what follows, the variables notation 

,x� B�  and 
1 2 3i iA , = , ,

�  are replaced respectively by x, B 

and 
1 2 3

,
i i

A
, = , ,

 to relieve the writing. 

 

The three mathematical models of the synchronous 

machine; the original Park’s model (3), the linear model 

(10) and the polynomial model (15) presented above, 

were translated to a Matlab model in order to simulate 

the different interesting aspects of the machine. The 
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parameter values of the studied synchronous generator, 

listed in Table 1 [8], are needed in order to make the 

mathematical model a representative one of an actual 

generator. 

This machine is connected to an infinite bus (see Fig. 

2) characterized by a resistance Rl = 0.02 and an 

inductance Ll = 0.4. The working point of the power 

process is defined by: 

0 0 0

0 0

1 59 1 826 0 701

314 1 53 735 .

d f qi i i

rd sω δ

= − . , = . , = . ,

= . / , = .
�

 (19) 

Figs. 3~7 represent the responses of the three proposed 

models of synchronous machine studied without the 

controller. It compares the state trajectories of the 

original Park’s model (3), the linear model (10) and the 

polynomial model (15). The study of the digital 

simulation results shows the superiority of the proposed 

polynomial model over the linear one. For a disturbance 

of 100% operating on the inductance current, it appears 

in the simulations that the polynomial approach is a more 

objective presentation of the real power process, since, 

we can’t distinguish the real system behavior and the 

polynomial one. Thus, this polynomial model (15) will 

be considered in the next section for developing a 

technique of designing a state feedback control law 

which stabilizes quadratically the studied system. 

 

3. DESIGN OF NONLINEAR FEEDBACK 

STABILIZING CONTROLLER 

 

Many research centres continue their efforts towards 

developing improved power system stabilizers. Since 

that the electrical power generator is a complex system 

with highly nonlinear dynamics, many methods of 

simplification are illustrated in the literature. In fact, 

Fig. 5. Evolution of the q-current variation (∆iq) without 

controller. 

 

Fig. 6. Evolution of the rotor speed variation (∆ω) 

without controller. 

 

Fig. 7. Evolution of the torque angle variation (∆δ) 

without controller. 

Table 1. Parameter values of the synchronous generator 

(p.u). 
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Fig. 3. Evolution of the d-current variation (∆id) without

controller. 

 

Fig. 4. Evolution of the field current variation (∆if )

without controller. 



Mohamed Moez Belhaouane and Naceur Benhadj Braiek 

 

 

430 

control of synchronous machines is usually leaded from 

linearized models, using a reduction order method or a 

decoupling of slow and fast dynamics by singular 

perturbations method, yielding reduced order or 

composite controllers [1] which were used after for 

optimal control of synchronous machines. With an 

ambition to achieve a better performance, we propose a 

new design for synthesis of a nonlinear polynomial 

control law using recent results on stabilization of 

polynomial systems associated to the LMI technique [21].  

 

3.1. Global stabilization condition of controlled 

synchronous machines 

We consider the variation model of synchronous 

machines around the operating point. We keep 

unchanged the mechanical torque Cm and we consider 

only the field voltage Vf to control the machine. The 

nonlinear model developed as a third order polynomial 

system is described as the following analytical control-

affine state-space equation: 

( ) ,x f x Bu= +�  (20) 

where f (x) is a vectorial polynomial function of the state 

vector x defined as: 

[2] [3]
1 2 3( ) ,f x A x A x A x Bu= + + +  (21) 

where 

• A1, A2 and A3 are constant parameter matrices given 

in (13); 

• B is a constant vector;  

• x n

∈�  is a variation state vector (n = 5); 

• u=∆Vf  is a control input. 

The main objective is to find a polynomial feedback 

control law: 

[ ]
3

1
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i

i

i

u k x K x

=

= =∑  (22) 

with K1, K2 and K3 are constant gain matrices which 

stabilize asymptotically the equilibrium X = X0 (defined 

in (19)) of the synchronous machine. 

Applying this control law to the open-loop system (21), 

one obtains the following closed-loop system: 

3
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= = +

= Γ∑

�

 (23) 

where 

.
i i i

A BKΓ = +  (24) 

The designed power system stabilizers of synchronous 

machine must achieve the following requirements: 

(i) Ensures global asymptotic stabilization of the 

equilibrium, with no need of tuning parameters or 

trial and error procedures. 

(ii) Provides satisfactory performance over a wide 

range of agressive state perturbations. 

Lyapunov’s direct method is concerned in this work for 

assessing the stability analysis and synthesis of the 

power dynamic system described by a set of nonlinear 

equations of the form (20-21). For this goal, we consider 

a quadratic Lyapunov function [28,29]: 

( ) ,TV x x Px=  (25) 

where P is a symmetric positive definite matrix and x is 

the state vector of the studied system. Then, it comes out 

that the equilibrium state X0 of the synchronous 

generator system (20) is asymptotically stable if the 

derivative V�  is negative definite along the trajectory 

X(t) (i.e., when 0).V <
�  Differentiating V(x) along the 

trajectory of the system (23-24), we obtain: 

[2] [3]
1 2 3

[2] [3]
1 2 3

3
[ ] [ ]

1

3
[ ]

1

( )

( )

( )

( )

2 .

T

TT

T

T

T k k T

k k

k

T k

k

k

V x Px x Pxx

x x x Px

x P x x x

x P x x Px

x P x

=

=

= +

= Γ +Γ +Γ

+ Γ +Γ +Γ

= Γ + Γ

= Γ

∑

∑

� ��

 

By means of some algebraic manipulations, appealing 

the vec-function and mat-function defined respectively in 

Appendix A.1-A.2, one has: 

[2]
1 2

[2][2]
3

( ) 2[

( ) ( ) ],

T T

T

n n n

V x x P x x P x

U P I M xx ×

= Γ + Γ

+ ⊗ Γ

�

 

where U
n×n represents the permutation matrix defined in 

[15,17] and M(Γ3) is expressed as: 

2

2
2 3

3
2 3

4
2 3

5
2 3

1
3( )

( )

3 ( )

( )

( )

( )

( )

( )( )

( )

( )

T

T

T

T

T

n n

n n

n n

n n

n n

mat

mat

matM

mat

mat

 
 , 
 

Γ ,
 
 Γ ,
 
 Γ ,
 
 Γ ,  

Γ

Γ =  

Fig. 8. Closed loop system that representing synchron-

ous generator (SG) and polynomial controller. 
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with 1 5

3

i i, = ,...,
Γ  is the th

i  row of the matrix Γ3.  

Using some manipulations and exploiting the properties 

of the Kronecker power, it can be shown that: 

( ) 2

( ) ,

T

h

T T

h h

V x =

= +

� X PM X

X PM M P X

 (26) 

where 

[2]
[ ]

T
T T
x x=X  (27) 

2

2

0

0

n n

n
n n

P

P I

×

×

 
=  

⊗  

P  (28) 

2

1 2

3

.
0 ( )h

n n
M

×

Γ Γ 
=  Γ  

M  (29) 

Using the non-redundant Kronecker product power form 

[15-17], defined in Appendix A.3, the vector X can be 

written as: 

,τ= �X X  (30) 

where [2][ ]
T TT

x x=� � �X  and τ  is defined by: 

1

2

0
.

0

T

T
τ

 
=  
 

 (31) 

Then ( )V x�  can be written in the following form: 

( ) ( ) .T T T

h h
V x Pτ τ= +
� � �X PM M X  (32) 

It can be shown that: 

( )( ) ,T
V x

η η×
=

� � �X Q X  (33) 

where 

1 2 3 1
( )

i i i i
P K βµ

, = , , , = ,...,
= , ,Q Q  (34) 

1
( ) ( ),T T

h h i i βτ τ µ
, = ,...,

= + +ΠQ PM M P  (35) 

2 2

1 1

1

j

j j

n j
n

j
η

= =

+ − 
= = . 

 
∑ ∑  (36) 

The matrix 
1

( )
i i βµ
, = ,...,

Π  is defined as: 

1 ( )

1

( ) ( ),
i i i i

i

mat C

β

β η ηµ µ
, = ,..., ,

=

Π =∑  (37) 

where the columns 
1i i

C β, = ,...,
 and the coefficients µi and 

β are detailed in Appendix A.4. 

A sufficient condition of the global asymptotic stability 

of the equilibrium point (X = X0) of synchronous 

machines is that the quadratic form ( )V x�  given by (33) 

is negative definite. This condition can be ensured if 

there exist P > 0, control gain matrices 
1 2 3i i

K
, = , ,

 and 

parameters 
1i i βµ

, = ,...,
 such that the matrix 

1 2 3
(

i i
P K

, = , ,
, ,Q  

1
)

i i βµ
, = ,...,

 is negative definite. 

According to (23-24), it can be shown that [30]: 

,h f k= +ΘM M M  (38) 

where 

2

1 2

3

,
0 ( )f

n n

A A

M A
×

 
=  
  

M

2

1 2

3( )
0 ( )Tk

n n n n

K K

mat K
×

,

 
 =
  

M  

2
1

0

.
0

n n

n
n

B

B I

×

×

 
Θ =  ⊗  

 

Finally, we obtain the following expression of the 

symmetric matrix Q : 

1

( ) ( )

( ),

T T T T T
f f k k

i i β

τ τ τ τ

µ
, = ,...,

= + + Θ + Θ

+Π

Q PM M P P M M P

 (39) 

which must be negative definite to guarantee the stability 

of the controlled system. 

 

3.2. LMI Approach for the controller design 

A number of important problems from system and 

control theory can be numerically solved by reformulat-

ing them as convex optimization problems with Linear 

Matrix Inequalities (LMI) approach [31,32]. This section 

introduces the LMI-based characterization of a nonlinear 

control law which can stabilize the considered power 

system (20-21). According to (39), the controller design 

problem of the synchronous machine can be formulated 

as an LMI feasibility problem given as follows: 

Find: 

• control gain matrices K1, K2 and K3; 

• a (5×5) symmetric matrix P; 

• real parameters 
1

;
i i βµ
, = ,...,

 

such that: 

0P >  (40) 

1

( ) ( )

( ) 0.

T T T T T
f f k k

i i

S

β

τ τ τ τ

µ
, = ,...,

= + + Θ + Θ

+Π <

PM M P P M M P

 (41) 

This problem is a NLMI (Non-Linear Matrix Inequal-

ities), since the inequality (41) is bilinear on optimization 

variables P and 
1 2 3

.

i
K

= , ,
 To overcome this problem, 

first, we make use of the following inequality [33]: 

For any matrices A and B with appropriate dimensions 

and for any positive scalar γ > 0, one has: 

1
.

T T T T
A B B A A A B Bγ γ

−

+ ≤ +  

Then, the inequality (41) yields the following one: 

1

1

[ ] ( )T T
f f i i

T T T T T
k k

βτ τ µ

γτ τ γ τ τ

, = ,...,

−

≤ + +Π

+ + Θ Θ

Q PM M P

P P M M

 (42) 

with γ > 0. 

Thus, to ensure that the matrix Q  is negative definite, it 

is sufficient to have: 

1

1

[ ] ( )

( ) ( ) 0.

T T
f f i i

T T T T T
k kI I

βτ τ µ

τ γ τ τ γ τ

, = ,...,

−

+ +Π

− − − Θ − Θ <

PM M P

P P M M

 (43) 
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Using now the Generalized Schur’s complement [22], 

the above inequality is equivalent to: 

1

1

( ) ( ) ( ) ( )

0 0.

0

T T T T
f f i i

k

I

I

βτ τ µ

τ γ

τ γ

, = ,...,

−

 + +Π ∗ ∗
 
 − <
 

Θ − 
 

PM M P

P

M

 (44) 

The symmetric terms in a symmetric matrix are denoted 

by ∗ . 

When pre-and post-multiplying the inequality (44) by 
1( ),diag I I Iγ

−

Ω = , ,  we get: 

1

1

1

( ) ( ) ( ) ( )

0

0

T T T T
f f i i

k

I

I

βτ τ µ

τ γ

τ γ

, = ,...,

−

−

 + +Π ∗ ∗
 
 −
 

Θ − 
 

PM M P

P

N

 (45) 

is negative definite, with 1
.

k k
γ
−

=N M  

This new inequality (45) is linear on the decision 

variables P, 
1 3i i

K
, = ,...,

 and 
1

,
i i βµ
, = ,...,

 then we can state 

the following result. The equilibrium (X = X0) of the 

synchronous machine, described by the polynomial 

model (20-21), is globally asymptotically stabilizable by 

the control law (22) if there exist: 

• a (5×5)-symmetric positive definite matrix P; 

• arbitrary parameters 
1 ...i i βµ

, = , ,
; 

• control gain matrices K1, K2 and K3; 

• a real γ > 0; 

such that: 

0P >  (46) 

and 

1

1

1

( ) ( ) ( ) ( )

0

0

T T T T
f f i i

k

I

I

βτ τ µ

τ γ

τ γ

, = ,...,

−

−

 + +Π ∗ ∗
 
 −
 

Θ − 
 

PM M P

P

N

 (47) 

is negative definite. 

The procedure of synthesis of a stabilizing control law 

for the considered power system (20-21) is as follows: 

(i) Solve the LMI feasibility problem i.e., find the 

matrices P, Nk, the parameters 
1i i βµ

, = ,...,
 and a scalar γ 

such that the inequalities (46), (47) are verified. 

(ii) Extract the gain matrices K1, K2 and K3 from the 

relation M k = γN k. 

 

4. SIMULATION RESULTS 

 

MATLAB software was used in the testing of the LMI 

stabilization condition of a synchronous machine infinite 

bus system. The parameters accorded in the simulation 

program for the considered power system are listed in 

Table 1. Then, the nonlinear polynomial model of the 

synchronous machine (20-21) with the constant matrices 

parameters of the open-loop power system are expressed 

as follows: 

1

11 3 0 1 1095 9 2 4 550 4

3 9 1 6 380 2 0 8 190 9

,1127 2 832 0 11 3 1 8 749 6

0 9 24 0 89 9 0 0

0 0 0 1 0

A

− . . − . − . . 
 . − . . . − . 
 = . . − . . .
 

. − . − . 
  

 (48) 

2 2 2

2 2 2

2 2 2

(1 18) 3 49 (1 25) 375 11 (2 18) 1 21,

(2 25) 130 13 (3 16) 3 59 (3 17) 2 65

(3 25) 274 98 (4 3) 1 33 (4 8) 34 24,

A A A

A A A

A A A

, = − . , , = − . , , = .

, = . , , = . , , = . ,

, = . , , = . , , = − .

2
( ) 0A i j, =  for the others values of i and j such as; 

1 5i≤ ≤  and 1 25,j≤ ≤  
 

3 3
(1 125) 91 73 (2 125) 31 82A A, = − . , , = . ,  

3 3
(3 125) 124 94 ( ) 0A A i j, = − . , , =  (49) 

for the other values of i and j such as 

1 5i≤ ≤  and 1 125,j≤ ≤   

and 

[ 186 4 2116 0 0 0] .
T

B = − .  (50) 

It’s required to stabilize the studied machine with a 

nonlinear polynomial control law as follows: 

[2] [3]
1 2 3( ) .fu V k x K x K x K x= ∆ = = + +  (51) 

The dynamic behavior of the state variables of the 

controlled power system and the performance of the 

proposed control strategy are illustrated in the next part. 

Solving the LMI optimization problem applied to 

synchronous machine by using LMI Toolbox, we get: 

4
10

0 5749 0 7403 0 0314 0 0181 0 3289

0 7403 1 3021 0 0092 0 0079 0 2490

,0 0314 0 0092 0 3354 0 0090 0 1803

0 0181 0 0079 0 0090 0 3090 0 0109

0 3289 0 2490 0 1803 0 0109 1 4799

P =

. . . − . . 
 . . − . . . 
 . . − . . . − .
 
− . . . . . 
 . . − . . . 
2 7066.γ = .  

The control gain matrices, extracted from M k, are given 

by: 

1
[ 0 8153 0 8153 0 5435 4 3744 3 5591] ,

T
K = − . − . − . . .

2 1 25
0K

×
= .  

For i=1,...,125 

3 3 3 3 3 3
(1) (6) (27) (32) (53) (58)

0 4989

K K K K K K= = = = =

= . ;

3 3 3 3
(79) (84) (94) (110) 0 4989K K K K= = = = . ;

3 3 3 3 3
(11) (37) (63) (89) (115) 0 3326K K K K K= = = = = . ;

3 3 3 3
(16) (42) (68) (120) 2 6771K K K K= = = = − . ;

3 3 3 3
(21) (47) (73) (125) 2 1782K K K K= = = = − . .  

3
(1 125) 0K i≤ ≤ =  for the other values of i.  
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The system controlled with the obtained polynomial 

control law was simulated for a perturbation of 100% on 

the field current. The simulation results (Figs. 9~13), 

present the state trajectories of the studied power system 

with the proposed nonlinear polynomial controller (dash-

dot line) and without controller (solid line) together in 

the same figure. The simulation depicted in Fig. 14 

describes the evolution of the performed stabilizing 

polynomial controller. The effect on the damping of the 

system’s oscillation is efficient and the power system is 

properly stabilized after a very short period of time and, 

thus, provides a satisfactory performance. The digital 

simulation study proves the robustness of the proposed 

controller in the case of more aggressive perturbations. 

 

 

Fig. 9. Simulation curve of the d-current variation (∆id) 

with the proposed feedback controller and with-

out controller for a perturbation of 100% on the 

field current. 

 

 

Fig. 10. Simulation curve of the field current variation 

(∆if ) with the proposed feedback controller and 

without controller for a perturbation of 100% on 

the field current. 

 

 

Fig. 11. Simulation curve of the q-current variation (∆iq) 

with the proposed feedback controller and with-

out controller for a perturbation of 100% on the 

field current. 

 

Fig. 12. Simulation curve of the rotor speed variation 

(∆ω) with the proposed feedback controller and 

without controller for a perturbation of 100% on 

the field current. 

 

 

Fig. 13. Simulation curve of the torque angle variation 

(∆δ) with the proposed feedback controller and 

without controller for a perturbation of 100% on 

the field current. 

 

 

Fig. 14. Simulation of the stabilizing polynomial control 

(51) of synchronous machine. 

 

5. CONCLUSION 

 

An original technique for the design of nonlinear 

stabilizing controller for the generator-infinite busbar 

system have been summarized in this paper. Based on 

the Park’s model of synchronous machine, a polynomial 

state-space model has been derived, based on the 

Kronecker product and power state formulation. This 

polynomial description has the advantage to describe the 

real dynamic behavior of the machine in a large domain 

around the working point. Applying Lyapunov’s direct 

method with a quadratic function, sufficient design 
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conditions have been derived as Linear Matrix 

Inequalities (LMIs).  

The simulation results have demonstrate the effective-

ness of this control technique to improve the stability and 

the transient performance of the studied machine under a 

variety of operating conditions. Moreover, it is clearly 

seen from the numerical simulations, that the proposed 

polynomial controller can rapidly damp the system 

oscillations and greatly enhance the transient stability of 

the considered power system. On the other hand, the 

robustness of the controller has been evaluated towards a 

more aggressive perturbation in the field current. Future 

work, will extend this approach to robust control with 

respect to model uncertainties of the synchronous 

machines.  

 

APPENDIX A 

The dimensions of the matrices used in this section are 

the following: A(p×q), C(q×f ), B(n×p). 

 

A.1. vec(.) function: 

An important vector valued function of matrix denoted 

vec(.) was defined in [15] as follows:  

1 2
[ ]

p q

q
A A A A

×

= ... ∈ ,�  (A.1) 

where 

1 2

{1 } ,

( ) [ ]

p
i

T pq
q

i q A

vec A A A A

∀ ∈ ,..., , ∈

= ∈ .

�

… �

 (A.2) 

We recall the following useful properties of vec-function: 

( ) ( ) ( ) ,T
vec BAC C B vec A= ⊗  (A.3) 

( ) ( ).T
p qvec A U vec A
×

=  (A.4) 

 

A.2. mat(.) function 

A special function mat(n,m)(.) can be defined as 

follows:  

If V is a vector of dimension p = n.m then M = 

mat(n,m)(V) is the (n×m) matrix verifying V = vec(M). 

 

A.3. Non-redundant Kronecker product power form 

[ ] ini

X ∈� �  where 
1

,
i

n i
n

i

+ − 
=  
 

 is the non-redundant 

Kronecker power of the state vector X defined as: 

[1][1]

1 1 2 2 3 3[ ]
1 1 2 1 1 1 2

2

[ ]
i i i i i i Ti

n n n

X XX

i

x x x x x x x x x xX
− − − −

= =

∀ ≥ ,

= , ,..., ,..., ,..., ,...,

�

�

 (A.5) 

i.e., the components of [ ]i
X�  are the same as those of 

[ ]i
X  with omission of the repeated terms. 

The relation between the redundant and the non-

redundant Kronecker power of the state vector X can be 

expressed by the transition matrix denoted 
i

in n

i
T

×

∈�  

as follows: 

[ ] [ ] ( ).i i

i
X T X i N= ∀ ∈

�  (A.6) 

 

A.4. Definition of the matrix 
1

( )
i i βµ
, = ,...,

Π  

According to the equality (34) and using the vec-

function (see Appendix A.1), it comes out: 

( ) [ ]2
( ) 0.T T T

h h
vec τ τ− + =�Q PM M P X  (A.7) 

But, it can be easily checked that [2]�X  can be written 

as: 

[ ]2
2
,=� �X RX  (A.8) 

where 

[ ] [ ] [ ]2 3 4

2
[ ]

T T T T
=� � � �X X X X  (A.9) 

and R is the matrix defined by: 

[ ]2
τ τ
+

= ⋅ ⋅ ⋅ �R U H  (A.10) 

with 

2 3 4
( ),j jdiag Tτ

, = , ,
=�  

2

2 2 2 2

( )

( ) ( )

0

,
0

n n n

n n n n n n

U

U

× +

× + × +

 
 =
 
 

U  (A.11) 

2

2 2 2 2 2

( )

( ) ( ) ( )

0

.
0

n n n

n n n n n n n n n

I

I

+

+ × + +

 
 =
 
 

H  (A.12) 

The proof of the expression (A.8) is given in [17]. 

Therefore, we get the following equation: 

( ) 0T
vec =R S  (A.13) 

with ( ) .T T

h h
τ τ= − +S Q PM M P  

The 2
η -vector ( )vec S  can be expressed as: 

2( ) ,T T
vec I

η

 
 
 
 

+

= −S R R Y  (A.14) 

where Y is an arbitrary vector of 
2

η
�  and η  is 

defined in (36). 

The matrix S is symmetric since Q is symmetric, then we 

can write: 

1
( )

2

T
= +S S S  (A.15) 

and, by using the second property of vec-function (see 

Appendix A.1), we obtain: 

2

1

1
( ) ( ) ( ) ,

2
i i

i

vec I U vec C

β

η ηη
µ

×

=

= + =∑S S  (A.16) 

where 

• 2 2

T T
rank I U I

η η
η η

β
  
  

  
  

  +
 ×
 

= + −R R  

• 
1i i

C β, = ,...,
 are β linearly independent columns of 
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2 2

T T
I U I

η η
η η

 
 
 
 

  +
 ×
 

+ −R R  (A.17) 

• 
1i i βµ

, = ,...,
 are arbitrary values. 

Finally, the matrix Q can be expressed by the relation 

(39), where 1 ( )

1

( ) ( )
i i i i

i

mat C

β

β η ηµ µ
, = ,..., ,

=

Π = .∑  
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