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A Stability-Guaranteed Integral Sliding Disturbance Observer for Systems 

Suffering from Disturbances with Bounded First Time Derivatives 
 

Yu-Sheng Lu and Chien-Wei Chiu 

 

Abstract: This paper presents an integral sliding disturbance observer (I-SDOB) to compensate for 

unknown disturbances for a class of nonlinear systems. To guarantee the existence of a sliding mode 

for disturbance estimation, the proposed I-SDOB needs only a small switching gain compared with 

conventional sliding disturbance observers, which leads to further alleviation of chatter. Moreover, the 

stability analysis of the controller-observer system is given based on the Lyapunov theory. Applications 

of the proposed scheme to a two-link robotic manipulator have been conducted, and experimental re-

sults confirm the effectiveness of the proposed scheme. 
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1. INTRODUCTION 

 

Disturbance observers are feasible tools to compensate 

for unknown disturbances and are widely adopted in 

motion control systems. In contrast to the high-gain 

feedback control, the compensator based on a 

disturbance observer estimates the unknown disturbance, 

and generates just minimal control to govern system 

dynamics to nominal dynamics. The structures of 

disturbance observers can be divided into four main 

categories. One category [1-3] uses the time-delayed 

estimation technique and requires the information on the 

time derivative of state vector, to which the access is 

however usually contaminated with noise in most 

practical implementations. The second category [4-6] 

requires the knowledge of system parameters to construct 

a disturbance observer free from the necessity of 

evaluating the time derivative of state vector. Increasing 

the bandwidth of the disturbance observer could enforce 

its transient performance but decreases its immunity 

against noise. As an extreme case, the disturbance 

observer with a bandwidth of infinity implicitly 

differentiates the state vector with respect to time. The 

third category [7-9] adopted structures similar to a state 

estimator, employed the technique of appending a 

disturbance state to the conventional state observer, and 

assumed that the time variation of an unknown 

disturbance is zero. The last category [10-16] is related 

to designing a sliding disturbance observer. Due to the 

inherent invariance property of a sliding mode, a sliding 

state observer possesses design simplicity and favorable 

robustness against modeling errors and disturbances. It is 

thus natural to apply the structure of a sliding state 

observer to designing a sliding disturbance observer such 

that the estimation process is robust to system 

perturbations. 

Concerning disturbance estimation using a sliding 

disturbance observer, the estimate of disturbance in [10] 

contains switching components which, when introduced 

to disturbance compensation, may excite unmodeled 

dynamics and lead to oscillations in state vector at finite 

frequency. These oscillations, normally referred to as 

chatter, are known to result in low-control accuracy, high 

heat loss in electric power circuit, and high wear of 

moving mechanical parts [14]. A smooth saturation-type 

function is adopted in [11,12] to approximate the 

discontinuous function, alleviating control chatter at the 

sacrifice of estimation precision. Moreover, the analysis 

in [12] assumed that the time variation of disturbance has 

negligible effect. In [13-16], the disturbance is shown to 

be equal to the equivalent value of some switching signal, 

and its estimate is obtained by feeding the switching 

signal through a low-pass filter. It was stated in [17] that 

the equivalent value is equal to the average value 

measured by a first-order linear filter with switched 

actions as its input if the time constant of this filter is 

coordinated with the width of the area where motion in 

sliding mode takes place. However, this kind of filter 

with its bandwidth instantly adapted according to the 

situation of real sliding motion is almost unrealizable in 

practice. By using a fixed-bandwidth low-pass filter with 

the switching signal as its input for disturbance 

estimation, there exists trade-off between the estimation 

precision and the chatter. This means that, when the 

bandwidth of the filter is increased, the equivalent value 

of the switching signal is better preserved in the low-

frequency range, yielding more precise estimation but 

leading to more chatter. On the other hand, decreasing 

the bandwidth of the filter alleviates chatter but distorts 
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the equivalent value, giving poorer disturbance 

estimation. Moreover, switching gains in these designs 

must be greater than the bounds on disturbances. Large 

switching gains imply significant chatter. 

In [18], the conventionally assumed upper bound 

restriction on the disturbance is relaxed to the restriction 

on its estimation error, thus requiring a much smaller 

switching gain to ensure the existence of a sliding mode. 

Through this reduction of a switching gain together with 

the low-pass filtering characteristics of the estimation 

process, the chatter problem is further alleviated without 

the sacrifice of estimation precision. Nevertheless, the 

stability of the overall system in [18] is not ensured. 

Moreover, only single-input single-output systems are 

considered in [18]. This paper proposes the design of an 

integral sliding disturbance observer (I-SDOB) that both 

requires only a small switching gain and also guarantees 

stability of the disturbance-compensated system. Besides, 

this paper deals with a class of nonlinear multiple-input 

multiple-output systems. To demonstrate its effective-

ness, the proposed design is applied to a two-link robotic 

manipulator with various payloads. 

 

2. AN INTEGRAL SLIDING DISTURBANCE 

OBSERVER (I-SDOB) 

 

Consider fully-actuated Euler-Lagrange mechanical 

systems described by 

  ( ) ( , ) ( ) ( ) ( ),t t+ + = +M q q B q q q g q u d�� � �  (1) 

in which q∈R
n is the vector of Lagrangian coordinates, 

u∈R
n is the vector of generalized control torques, M(q) 

is the n×n symmetric inertia matrix being positive 

definite,  ( , )B q q� is the n×n matrix containing Coriolis 

and centripetal terms, and g(q)∈R
n is the gravitational 

torque vector. Here, d(t)∈R
n denotes unknown lumped 

disturbances, including external disturbances and the 

effect of modeling uncertainties referred to the actuator 

inputs. Define the tracking error as e=q−qr, in which qr 

denotes the reference trajectory assumed to be twice 

differentiable with respect to time. Moreover, define a 

filtered error vector s to be 

,= +s e Ce�  (2) 

in which 
1 2

diag[ , , ,  ],
n

c c c=C �  and ci > 0 for 1,i =  

2, , .n�  Let the control be in an additive form 

ˆ ,
n

= −u u d  (3) 

in which d̂  denotes the disturbance estimate by a 

disturbance observer, and the nominal control un is 

described by 

,
n
= + + −u Mv Bv g Φs�  (4) 

in which ,
r

= −v q Ce�  and the parameter matrix =Φ  

1 2
diag[ , , ,  ]

n
φ φ φ�  with 0

i
φ >  for 1,  2, ,  .i n= �  

Taking the time derivative of (2), multiplying it by M(q), 

and substituting (1), (3) and (4) into the resulting 

equation gives 

( ) ˆ

ˆ ˆ.

Ms M q v Bq g u d d Mv

Bq Bv Φs d d Bs Φs d d

n
= − = − − + − + −

= − + − − + = − − + −

� �� �� �

�

 (5) 

Consider a Lyapunov candidate 

2 .
T

n
V = s Ms  (6) 

Taking the time derivative of (6) and substituting (5) into 

the resulting equation gives 

1

2

ˆ( )

ˆ( ),

T T

n

T T

T T

V = +

= − − + − +

= − + −

s Ms s Ms

s Bs Φs d d s Bs

s Φs s d d

� ��

 (7) 

in which the property of ( ) ( , ) ( , )= +M q 2B q  q J q  q� � �  has 

been employed. Here, ( , )J q  q� is a skew-symmetric 

matrix of appropriate dimension. In the ideal situation 

when ˆ ,=d d  we have ,

T

n
V = −s Φs�  showing the 

negative definiteness of 
n

V�  and thus guaranteeing the 

asymptotic convergence of the error vector e. 

An integral sliding disturbance observer (I-SDOB) is 

to be designed to generate d̂  in order to compensate for 

the disturbance d. Consider an artificially introduced 

auxiliary process described by 

ˆ sgn( ),= − − + + − −Mz Bq g u d Bσ Ψ σ��  (8) 

in which z∈R
n is the state vector of the auxiliary process, 

the switching function ,= −σ z q� sgn( )⋅  denotes the 

sign function, the switching gain 
1 2

diag[ , , ,ψ ψ=Ψ �  

],
n

ψ  and 0
i

ψ >  for 1,2, ,  .i n= �  Subtracting (1) 

from (8), one has 

ˆ sgn( ).= − + − −Mσ d d Bσ Ψ σ�  (9) 

To verify the existence of the sliding mode ( ) ,t =σ 0  

consider a Lyapunov candidate 

2 .
T

o
V = σ Mσ  (10) 

Taking the time derivative of (10) and substituting (9) 

into the resulting equation gives 

1

2

ˆ( sgn( ))

ˆ( sgn( )).

T T

o

T

T T

V = +

= − + − −

+ = − + −

σ Mσ σ Mσ

σ d d Bσ Ψ σ

σ Bσ σ d d Ψ σ

� ��

 (11) 

Provided that 
i

ψ > | ˆ
i i

d d− | for 1,2, ,  ,i n= �  in which 

di and ˆ
i

d  denote the ith components of d and ˆ ,d  

respectively, then 
o

V�  is negative definite, ensuring the 

satisfaction of the so-called sliding condition, which 

guarantees the existence of the sliding mode ( )t =σ 0  

when the representative point is close to the sliding 
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regime. A disturbance can be considered to be composed 

of low-frequency and high-frequency components. In 

practical applications, the low-frequency components of 

a disturbance are often much larger in magnitude than its 

high-frequency components; e.g., the dc component 

usually has the largest magnitude. Since the low-

frequency components of a disturbance can be easily and 

precisely estimated by a disturbance observer, the 

magnitude of the estimation error | ˆ
i i

d d− | can be kept 

small compared with the magnitude of the original 

disturbance that mostly contains low-frequency 

components. In the previous sliding disturbance 

observers [10-16], the switching gain must be greater 

than the magnitude of the disturbance to ensure the 

fulfillment of the sliding condition. In the proposed I-

SDOB, the switching gain ψi needs only to be greater 

than the magnitude of the estimation error | ˆ
i i

d d− |, 

reducing the required magnitude of a switching gain and 

thus further alleviating the chatter. 

By setting the initial state of the auxiliary process 

(0) (0),=z q�  one obtains (0) .=σ 0  This together with 

the negative definiteness of 
o

V�  yields ( )t =σ 0  for 

0,t ≥  demonstrating that the sliding mode σ = 0 exists 

throughout an entire response. Since ( ) ,t =σ 0  one has 

( )t =σ 0�  that further gives from (9) 

ˆ sgn( ) ,− = − −d d Ψ σ Bσ
 (12) 

in the sense of equivalent values [17]. Consider the 

following integral law for disturbance estimation 

[ ]ˆ sgn( ) ,
d s

k= − − +d K Ψ σ Bσ s
�

 (13) 

in which 
1 2

diag[ , , ,  ],
d d d dn

k k k=K � 0
di
k >  for i =  

1,2, , ,n�  and k
s 

> 0. Fig. 1 shows the schematic 

diagram of the proposed approach. To confirm the 

stability of the overall controller-observer system, 

consider a Lyapunov function 

1 1 ˆ ˆ( ) ( ),
2 2

s Ms d d d d
T T

s s
V k= + − −  (14) 

which is radially unbounded. Similar to (7), the time 

derivative of the first term on the right-hand side of (14) 

can be derived as 

( )1 ˆ( ).
2

T T T

s s s

d
k k k

dt
= − + −s Ms s Φs s d d  (15) 

Furthermore, taking the time derivative of the second 

term on the right-hand side of (14) and using (12) and 

(13), one has 

1 ˆ ˆ( ) ( )
2

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) .

d d d d

d d d d d d

d d d d d K d d d d s

T

T T

T T T

d s

d

dt

k

 − − 

= − − −

= − − − − − −

��

�

 (16) 

Combining (15) and (16) gives 

ˆ ˆ ˆ( ) ( ) ( ) .s Φs d d K d d d d d
T T T

s s d
V k= − − − − + −
� �  (17) 

Using the fact that  2

1
ˆ( ( ) 2) 0,

di i i i
k d d dγ− − − ≤

�  in 

which γ1 is a positive constant, one has 

2 2 2 2

1 1
ˆ ˆ( ) ( ) 4 0.

di i i di i i i i
k d d k d d d dγ γ− − + − − ≤

� �  (18) 

Assume that the first time derivative of disturbances is 

bounded, i.e., |
i

d� |
i

D≤  for 1,2, , ,i n= �  in which Di is 

an upper bound on |
i

d� |. Then, (18) further gives 

2 2

2

1

1 1

ˆ ˆ( ) ( ) .
4 4

i i

di i i i i i

di di

d D
k d d d d d

k k
γ

γ γ
− − + − ≤ ≤

�
�  (19) 

Let 
0 1

( ) ,
d d

γ γ= +K K  in which 
0 1

1,γ γ+ =
0

0,γ >  

and γ1 > 0. Using this relation and (19) yields 

0
ˆ ˆ( ) ( ) ,s Φs d d K d d

T T

s s d
V k γ δ≤ − − − − +�  (20) 

where 2

1

1

4 .

n

i di

i

D kδ γ

=

=∑  Define { }min 1
min

n

i i
λ φ
Φ =

=  

and { }Kdmin 1
min ,

n

di i
kλ

=

=  which represent the smallest 

eigenvalues of Φ and Kd, respectively. Rewrite (20) as 

22

min 0 Kdmin
ˆ .

s s
V k λ γ λ δ

Φ
≤ − − − +s d d�  (21) 

Finally, one obtains 

0
s

V <
�  when 

s
∉Ωs  or ˆ( ) ,

d
− ∉Ωd d  (22) 

in which 
0 Kdmin

ˆ ˆ ,d d d d
d

δ

γ λ

  
Ω = − − ≤ 

  
 and Ωs= 

min

.

s
k

δ

λ
Φ

  
≤ 

  
s s  The sets, Ωs and Ωd, represent two 

regions in the hyperspace ˆ( ,  ).−s d d  The result (22) 

shows that, when 
s

∉Ωs  or ˆ( ) ,
d

− ∉Ωd d  the time 

derivative of the Laypunov function is negative definite. 

This means that the representative point (s, ˆ )−d d  will 

 

Fig. 1. Block diagram of the proposed control scheme.
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eventually enter a region that is the intersection of Ωs and 

Ωd. Since the intersection of Ωs and Ωd is a compact set 

in the hyperspace ( ,s ˆ ),−d d  the result (22) implies the 

global stability of the controller-observer system. From 

the definition of Ωs and Ωd, it is seen that the intersection 

of Ωs and Ωd shrinks when the values of controller-

observer parameters increase. Thus, the upper bounds on 

the filtered tracking error s and the compensation error 

ˆ( )−d d  decrease with increased ks and λkdmin, meaning 

that increasing ks and Kd of the I-SDOB can improve the 

tracking and the estimation precision. When the 

unknown disturbance is time-invariant, i.e., Di's are equal 

to zero, then δ = 0, 
s

V�  is negative definite, and the 

equilibrium at the origin of the hyperspace (s, ˆ )−d d  is 

globally asymptotically stable; that is, the I-SDOB 

completely rejects the unknown constant disturbance d, 

and the tracking error asymptotically converges to zero. 

Remark 1: There are two main differences between 

the proposed scheme and the previous one in [18]. One 

difference is that the proposed scheme ensures the 

stability of the overall system through Lyapunov analysis 

whereas the previous scheme [18] does not. The other 

difference is that the proposed design deals with 

multiple-input multiple-output nonlinear systems 

whereas the previous design [18] only handles single-

input single-output linear systems. Although both 

disturbance estimation laws are of the integral form, their 

integrands are different. The proposed law introduces 

some additional terms into the integrand of the previous 

law, such as the term kss in (13), so as to ensure the 

stability of the overall system. 

Remark 2: The choice of Kd and ks in the I-SDOB is 

not unique. According to (13), the switching signal 

Ψsgn(σ) is equivalent to the disturbance estimation error. 

Whenever the estimation error is not null, the switching 

signal excites the integration process (13) to estimate the 

disturbance. Roughly speaking, with larger eigenvalues 

of Kd, the estimation error converges faster. On the other 

hand, increasing ks increases the convergence rate of the 

filtered tracking error s. Theoretically, any strictly 

positive ks and Kd with strictly positive eigenvalues can 

stabilize the system. Moreover, according to the 

Laypunov analysis, larger ks and Kd leads to smaller 

tracking and estimation errors. However, some physical 

constraints would limit the admissible values of ks and 

Kd, such as measurement noise, actuator saturation, 

digital implementation, and the existence of unmodeled 

plant dynamics. 

 

3. AN APPLICATION TO A TWO-LINK ROBOTIC 

MANIPULATOR 

 

3.1. Plant description and system model 

Consider the position control of a two-link revolute-

joint manipulator subject to an unknown constant 

payload. For a two-link robot manipulator moving in the 

vertical plane as shown in Fig. 2, the dynamic equation is 

given by 

 

Fig. 2. Experimental planar robot manipulator. 

 

 

11 12 1 11 12 1 1

21 22 2 21 22 2 2

1 1

2 2

,

M M q B B q g

M M q B B q g

u d

u d

         
+ +         

         

+ 
=  + 

�� �

�� �

 (23) 

in which 

2 2

11 1 1 1 1 2 2 1

2 2

2 2 2 2 2 2

2 2 2 1 2

( )

2( ) cos ,

c m p

c m M p

c p

M m I I m m m

m I I I m

m m q

= + + + + +

+ + + + +

+ +

� � �

� �

�

� �

� �

� � �

12 21

2 2

2 2 2 2 2

2 2 2 1 2
( ) cos ,

c m p

c p

M M

m I I m

m m q

=

= + + +

+ +

� �

�

� �

� � �

2 2

22 2 2 2 2 2
,

c m p
M m I I m= + + +

� �
� �  

11 2 2 2 1 2 2
2( ) sin ,

c p
B m m q q= − +

�
�� � �  

12 2 2 2 1 2 2
( ) sin ,

c p
B m m q q= − +

�
�� � �  

21 2 2 2 1 1 2
( ) sin ,

c p
B m m q q= +

�
�� � �  

22
0,B =  

2 2 2 2 1 2
[( )cos( )],

c p
g g m m q q= + +

�
� �  

1 1 1 2 1 2 1 1 1

2 2 2 1 2

[( )cos

( )cos( )].

c p

c p

g g m m m m q

m m q q

= + + +

+ + +

� �

�

� � � �

� �
 

Here, 
i

m
�

is the mass of link i, 
i

I
�

is its moment of 

inertia about mass centre, 
i
� denotes the length of link i, 

ic
� is the distance between the joint i and the mass centre 

of link i, Imi is the rotor moment of inertia of motor i, IM2 

is the stator moment of inertia of motor 2, m2 is the mass 

of motor 2, g is the gravitation constant, and mp denotes 

the mass of the unknown constant payload. 

The robot in the experimental setup is directly driven 

by two permanent-magnet ac servomotors. Fig. 3 shows 

the configuration of the robot control system, in which ac 

motors 1 and 2 are with rated output power of 400 W and 

100 W, respectively, and both are SGMAH Servomotors 

manufactured by Yaskawa Electric. The control inputs 
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are constrained by |u1(t)| ≤ 1.4 (N⋅m) and |u2(t)| ≤ 0.3 

(N⋅m). The shaft encoder mounted to each ac servomotor 

has 2,048 lines, which yields a resolution of 8,192 

pulses/rev after the A and B signals from the encoder 

have been processed by the FPGA (Field- Programmable 

Gate Array), model XCV50PQ240-C6 from Xilinx, Inc. 

The velocity information is measured by a digital 

tachometer that measures the time interval of the encoder 

pulses to achieve more accurate estimation than the 

direct differentiation of the position signal. The tasks of 

both position counting and velocity detection are 

implemented in the FPGA. The controller core is a 

floating-point TMS320C6711 digital signal processor 

(DSP) that executes an ISR at a rate of 12.2 kHz. In that 

ISR, the DSP obtains information on position and 

velocity from the FPGA, calculates control algorithms, 

and sends control efforts to regulated current converters 

through 12-bit digital-to-analog converters and some 

analog signal processing circuits. In the experimental 

system, a personal computer was used to develop the 

control program written in C language, to compile it, to 

download the resulting code into DSP for execution, and 

to acquire experimental data. Estimated parameter values 

of the robot are 
1

m
�

= 0.064, 
2

m
�

= 0.039, 
1

I
�

= 1.93× 

10−4, 
2

I
�

= 6.63×10−5, 
1
� = 0.117, 

2
� = 0.105, 

1c
� =0.055, 

2c
� = 0.037, Im1 = 6.16×10−5, Im2 = 3.64×10−6, IM2 =1.8× 

10−4, and m2 = 0.54 in SI units. The main system 

uncertainties are due to the payload and external 

disturbances including joint frictions. In the following 

experiments, various payloads with known mass, i.e., 

mp = 0.1, mp = 0.2, and mp = 0.3 (kg), are employed to test 

the performance of the proposed scheme. Since the range 

of the payload is between 0.1 kg and 0.3 kg, its nominal 

value ˆ (0.3 0.1) 2 0.2
p

m = + =  (kg) is then used in the 

controller/observer design. Note that the nominal value 

ˆ
p

m  in the controller/observer is fixed in spite of 

payload changes.  

3.2. Controller/observer design and experimental results 

According to (3), the control law in an additive form is 

ˆ.
n

= −u u d  The nominal control is given by 
n
=u  

,+ + −Mv Bv g Φs�  in which ,
r

= −v q Ce�  ,= +s e Ce�  

diag[10, 10],=C  and diag[0.2, 0.06].=Φ  For the I-

SDOB, the artificially introduced auxiliary process is 

described by ˆ sgn( ),= − − + + − −Mz Bq g u d Bσ Ψ σ��  in 

which (0) (0),=z q�  ,= −σ z q�  and diag[0.2, 0.2].=Ψ  

Then, the integral law for disturbance estimation is 

[ ]ˆ sgn( ) ,
d s

k= − − +d K Ψ σ Bσ s
�

in which Kd =diag[20, 

20] and ks = 0.01. In the following experiments, 

discontinuous step references and a continuously time-

varying reference were examined, and the plant was 

initially at rest, i.e., 

 (0) [ 2 0]Tπ= −q (rad) and (0) =q�  

[0  0]T.  

Consider the following reference in radians 

( ) (0) ( )[1 1] ,T

r
t H t= +q q  (24) 

in which ( )H ⋅ denotes an unit-step function. Fig. 4 

Fig. 3. Hardware configuration of the control system. 
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shows the dynamic responses with various payloads by 

the nominal control without disturbance compensation, 

i.e., u=un. It is seen that the performance with the 

nominal control is sensitive to the variations of payload. 

Fig. 5 shows the dynamic responses with various 

payloads by the proposed control, demonstrating that the 

output responses are almost invariant to the payload 

variations. Furthermore, consider the following reference 

trajectory in radians 

( ) (0) [ ( 2) ( 4) ( ) ( 4)] ,T

r
t H t H t H t H t= + − − − − −q q

 (25) 

in which the second link is required to move a 

displacement of 1 rad at the beginning, the first link is 

afterwards commanded to rotate 1 rad at 2 s, and finally 

both links start to move toward the initial position at 4 s. 

Fig. 6 shows the dynamic responses subject to payload 

variations and by the nominal control only, 

demonstrating that the output performance is much 

influenced by the payload variations. It is also seen that 

the system with the payload of 0.3 kg exhibits output 

overshoot when returning to the initial position q(0). Fig. 

7 presents the dynamic responses with different payloads 

by the proposed control, showing that the disturbance 

compensation by the I-SDOB greatly improves system 

robustness and yields almost zero-overshooting output 

responses. 

To investigate tracking performance in a Cartesian 

coordinate system defined in Fig. 2, consider the 

following reference trajectory for the end effector of the 

robotic manipulator 

  

  

0.08 (1 sin( )cos( ),

0.08 (1 sin( )) cos( ),

r

r

x r t t

y r t t

ω ϕ ω ϕ

ω ϕ ω ϕ

= + − + +


= − + − + +
 (26) 

in which r = 0.05 (m), 3 2ϕ π= (rad), and 1.278ω = −  

(rad/s). Note that the origin of the stationary Cartesian 

coordinate system is located at the rational center of 

motor 1, and the initial position of the end effector 

associated with q(0) is at 
1 2

( (0),  (0)) (0,  ).x y = − −� �  

The desired trajectory in the joint space is obtained 

through the inverse kinematics of this manipulator. Fig. 8 

depicts the dynamic responses with various payloads by 

the nominal control, illustrating that the nominal control 

alone cannot yield adequate tracking performance. Fig. 9 

shows the dynamic responses with various payloads by 
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the proposed control, demonstrating that the compensa-
tion by the I-SDOB significantly improves the tracking 
precision with robustness to the constant payload 
uncertainty. In the Cartesian coordinate, Figs. 10-12 
depict the position responses of the end effector with 
payloads of 0.2, 0.1, and 0.3 kg, respectively. It suggests 
that, as compared with the nominal control alone, the I-
SDOB reduces the contour error during the transient 
period and effectively achieves precise trajectory 
tracking. 

 

 
Fig. 10. Histories of the end effector with mp = 0.2. 

 

 
Fig. 11. Histories of the end effector with mp = 0.1. 

 

 
Fig. 12. Histories of the end effector with mp = 0.3. 

4. CONCLUSIONS 
 
This paper presents an integral sliding disturbance 

observer (I-SDOB) for a class of nonlinear systems. 
Compared with the conventional sliding disturbance 
observers, the proposed I-SDOB requires only a small 
switching gain for guaranteeing the existence of a sliding 
mode, further alleviating the chatter due to the switching 
actions. Moreover, the stability of the overall controller-
observer system is ensured using the proposed I-SDOB. 
The stability analysis is based on the Lyapunov theory 
under the assumption that the disturbance has a bounded 
first time derivative. In case the disturbance is constant, 
the proposed scheme yields global asymptotic 
convergence of the tracking error. Experimental results 
on a two-link robotic manipulator show that the proposed 
I-SDOB effectively compensates for unknown 
disturbances induced by constant payload discrepancy 
and improves the positioning accuracy. The introduction 
of the I-SDOB yields an enhanced control structure for 
rigid mechanical systems. Despite the success in 
implementing the proposed continuous-time control law 
in the discrete-time domain, the effect of digital 
implementation is not explored in this paper. Further 
study is required to investigate the influence of the delay 
due to digital implementation on the feedback system. 
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