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Semiglobal Robust Backstepping Output Tracking for Strict-feedback 

Form Systems with Nonlinear Uncertainty 
 

Yao Yu and Yi-Sheng Zhong 

 

Abstract: Output tracking controller design problem is dealt with for a class of nonlinear systems in 

strict-feedback form in the presence of time-varying nonlinear uncertainties and unmodeled dynamics 

with multi-operation points. A new method based on signal compensation is proposed to design a ro-

bust controller, which consists of a nominal controller and a robust compensator. It is shown that se-

miglobal robust tracking property can be achieved. A new feature of our results is that the controller is 

a linear and time-invariant one and “explosion of complexity” problem is avoided. 
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1. INTRODUCTION 

 

The problem of output tracking control of nonlinear 

systems is a widely encountered problem. A lot of 

approaches have been proposed under various 

restrictions on the controlled plants such as matching 

condition and growth condition [1,2], etc. One of the 

breakthroughs in nonlinear control theory is the 

introduction of backstepping algorithms for feedback 

linearizable systems [3-6]. The relative-degree constraint, 

matching condition and growth condition were removed 

by this algorithm. The technique was comprehensively 

developed as a design tool by [7-11]. In fact, for certain 

strict-feedback form systems, backstepping could 

achieve the goals of stabilization and tracking. In [12-14], 

parametric strict-feedback form systems were addressed. 

In [15-20], strict-feedback form systems with external 

disturbance and unknown nonlinearities were considered. 

Triangular systems whose linearization models were not 

stablizable were treated in [21,22]. 

In this paper, we consider robust output tracking 

control problem for a class of nonlinear strict-feedback 

form systems in the presence of nonlinear uncertainties 

and unmodeled dynamics with multi-operation points. 

The uncertainties are with both higher-order and lower-

order growing states, and the unmodeled dynamics is 

BIBS stable. A new method based on signal 

compensation [23] is proposed. The key point of this 

method is to utilize a compensator to produce a signal to 

reduce the influence of plant uncertainties on the closed-

loop control properties. The method involves two key 

steps: first, a nominal controller is designed to get 

desired output tracking for the nominal disturbance-free 

model; then, a robust compensator is added to restrain 

the effect of uncertainties and external disturbance. It 

will be shown that semiglobal stabilization of the closed-

loop system can be ensured and semiglobal output 

tracking to a reference output can be achieved. 

The basic idea of signal compensation method was 

first introduced in our early work [24] and [25] to deal 

with robust output tracking problem for linear time-

invariant (LTI) systems with parameter perturbations. 

Similar approaches, called disturbance observer(DOB) 

approaches, were proposed in the literature. The DOB 

methods are concerned with disturbance estimation and 

have been widely used in many applications. In [26,27] 

linear minimum phase systems were investigated. In 

[28,29] a class of strict-feedback form systems with 

nonlinear uncertainties satisfying matching condition 

were treated. Specially, in [28] the nonlinear 

uncertainties are required to be differentiable. In [30-32] 

a class of SISO plants in normal form with nonlinear 

uncertainties satisfying matching condition were 

considered. In the current paper we consider a more 

general case where the uncertainties are not required to 

satisfy matching condition or to be smooth. The designed 

controller is a linear time-invariant one and “explosion of 

complexity” problem [33,34,17] can be avoid. 

This paper is organized as follows. In Section 2, the 

plant description is presented. The assumptions are made 

on the uncertainties and reference output. In Section 3, 

controller design method is shown. Section 4 gives the 

statement and the proof of the main results. An example is 

shown in Section 5. Conclusions are stated in Section 6. 

Notations: For any ,

n m

H R
×

∈  define .ijH h =    

For any H∈R
n×m, x∈R

n and y∈R
m, one has T

x Hy ≤  

.
Tx H y  

For vector 
1 2

[ ]
T n

n
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2. PROBLEM DESCRIPTION 

 

Consider a SISO nonlinear plant with M operation 

points, which has the following description at the m-th 

operation point 

1 2 1

2 3 2

1 ( 1)

( ) ( ) ( , , , )

( ) ( ) ( , , , )

( ) ( ) ( , , , )

( ) ( ) ( , , , ),

m m

m m
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n n n m m

n nm m
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 (1) 

1

( ) ( , , , )

( ) ( )

1,2, , ,

m

z zm m

p

z t x z d t

y t x t

m M

φΣ =

=

=

�

�

 (2) 

where ( )( 1,2, , )
i
x t i n= �  and z(t) are the states, yp(t) is 

the output, ( )( 1, 2, , )
m

d t m M= �  are bounded external 

disturbance vectors, ( , , , )( 1, 2, , ; 1, 2,
im m

x z d t i n mφ = =�  

, )M�  are regarded as nonlinear time-varying uncer-

tainties and ( , , , )( 1, 2, , )
zm m

x z d t m Mφ = �  are vector 

fields describing dynamic uncertainties, which depend on 

operation point.  

It is required to design a linear controller which pro-

duces a control input u(t) to drive the output yp(t) of the 

plant to track a reference output, denoted by yd(t). 

The plant (1) and (2) and the reference output are as-

sumed to satisfy the following assumption. 

Assumption A: 

A1) There are known positive constant vectors [ ],j i imξ  

1, 2, ,[ ]j im j im ji imξ ξ ξ= �  and positive valued func-

tions ςim such that 

[ ] [ ]

( )

,

1

0

( , , , ) ( )

( ) , ( ) ,

i
ij

k
l

im m j i im i
j

im m

x z d t x t

d t z t

φ ξ

ς

=

≤

+

∑
 (3) 

where t0 is the initial time. ( 1,2, , ; 1, 2, ,ijl i n j= =� �  

ki) are known constants great than or equal to 1. 

A2) The subsystem m
zΣ  given by (2) is bounded-

input (x(t) and dm(t)) bounded-state (z(t)) (BIBS) stable. 

A3) yd(t)∈C1 and there exist known and positive 

constants η1 and η2 such that 

1 2 0
( ) , ( , .)

d d
y t y t t tη η≤ ≤ ∀ ≥�  

Remark 1: By adding this positive valued function ςim, 

we can cover nonlinear systems with both higher-order 

and lower-order growing states, as it is not required 

(0, .0) 0
im

ς =  When 1( 1,2, , ; 1, 2, ,, )ij il i n j k= = =� �  

the uncertainties are linear norm-bounded. 

Example 1: As a special case of Assumption A1, let 

1 1
3

2 5 75 3
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6 sin ,
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where 2

1
,x
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3 ,x

1
3
3

2
4 ,x

7

2
x  are the higher-order terms of 

states, and 

1

5

1
2 ,x

1

2
2

6 x  the lower-order terms of states. 

Due to the states x3 and x4, the uncertainty 
2m

φ (x, z, d
m
, 

t) does not satisfy the lower triangular form, but the 

bound of the uncertainty 
2

( , , , )
m m

x z d tφ  still has lower 

triangular form. The nonlinear uncertainty satisfies the 

following inequality 

1
3

2 5 3
2 1 1 1 2 2

7

2

| ( , , , ) | 2 3 6 4

10,

m m

m

x z d t x x x x x

x d

φ ≤ + + + +

+ + +

 

which has the form as inequality (3). 

For simplicity of statement, in the sequel, ( , ,
im

x zφ  

d
m
, t) will be denoted as ( )( 1, 2, , .)

im
t i nφ = �  

 

3. CONTROLLER DESIGN 

 

In this section, a robust output tracking controller is 

designed by our new method. The main idea behind the 

method is that at each step, the influence of the 

uncertainties and external disturbance is regarded as an 

equivalent disturbance, and a robust compensator is 

designed to restrain the effect of the equivalent 

disturbance on the output tracking properties. 

The design of the controller begins with the following 

subsystem 

1 2 1
( ) ( ) ( )

m
x t x t tφ= +�  

with x2(t) regarded as a virtual control input and 
1
( )

m
tφ  

as a disturbance. For the above subsystem, a virtual 

controller is constructed as 

2 1 1 1
ˆ ( ) ( ) ( ),x t u t f w t= +  (4) 

where u1(t) is a nominal control input given by 

1 1 1 1
( ) ( ) ( ),

d
u t x t y tα α= − +  (5) 

w1(t) is a robust compensating input given by a robust 

compensator to be designed, and f1 is a positive constant 
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to be determined. To perform backstep, apply the 

variable change 

1 1
( ) ( ) ( ) ( ) ( )p d dy t y t y t x t y t= − = −  (6) 

2 2 2 2 1 1 1 1
ˆ( ) ( ) ( ) ( ) ( ) ( )y t x t x t x t y t f w tα= − = + −  (7) 

then one has 

1 1 1 1 1 1
ˆ( ) ( ) ( ) ( ),
m

y t y t t f w tα φ= − + +�  (8) 

where 
1 1 2
ˆ ( ) ( ) ( ) ( ).
m m d
t t y t y tφ φ= + − �  

The robust compensating input is constructed as 

1 1 1
ˆ( ) ( ) ( ),
m

w t F s tφ= −  (9) 

where F1(s) is a robust filter of the form 

1

1

1
( )F s

s f
=

+

 

and s is a differential operator (or the Laplace operator). 

If f1 is positive and sufficiently large, one can expect that 

f1w1(t) would approximate 
1
ˆ ( )
m
tφ−  and restrain the 

effect of 
1
ˆ ( )
m
tφ  to obtain robust property. 

Since 
1
ˆ ( )
m
tφ  can be expressed in the form 

1 1 1 1 1
ˆ ( ) ( ) ( ) ( )
m
t s y t f w tφ α= + −  

to get the robust compensating input w1(t), only y1(t) is 

needed as shown in the following form 

1

1 1
( ) 1 ( ).w t y t

s

α 
= − + 

 
 (10) 

From (7), (1), (8) and (9), one has 

2 3 2
( ) ( ) ( ),

m
y t x t tφ= +

��  (11) 

where 

2

2 2 1 1

1 1 1 1 1

( ) ( ) ( )

ˆ( ) ( ) ( ) .

m m

m

t t y t

f t f w t

φ φ α

α φ

= −

 + + + 

�

 (12) 

As the second step, consider the subsystem (11) with 

2
( )

m
tφ� as a disturbance and x3(t) as a virtual control input 

and continue the design procedure. At the i th step, 

consider the subsystem 

1
( ) ( ) ( )
i i im
y t x t tφ

+
= +

��  

and regard xi+1(t) as a virtual control input with the form 

1
ˆ ( ) ( ) ( ),
i i i i
x t u t f w t
+

= +  

where ui(t) is a nominal control input given by 

( ) ( )
i i i
u t y tα= −  

with αi a positive constant. Let 

1 1 1

1

ˆ( ) ( ) ( )

( ) ( ) ( ).

i i i

i i i i i

y t x t x t

x t y t f w tα

+ + +

+

= −

= + −

 

Then 

ˆ( ) ( ) ( ) ( ),
i i i im i i
y t y t t f w tα φ= − + +�  

where 

1
ˆ ( ) ( ) ( ).
im im i

t t y tφ φ
+

= +
�  

To restrain the effect of ˆ ( )
im

tφ  the robust compensat-

ing input wi(t) is constructed as 

ˆ( ) ( ) ( ),
i i im

w t F s tφ= −  

1
( ) ,
i

i

F s
s f

=

+

 

where fi is a positive constant to be determined. Note that 

ˆ ( ) ( ) ( ) ( )
im i i i i

t s y t f w tφ α= + −  

so the robust compensating input wi(t) can also be given 

by 

( ) 1 ( ).i

i i
w t y t

s

α 
= − + 

 
 

Differentiating yi+1(t), one has 

1 2 ( 1)( ) ( ) ( ),
i i i m
y t x t tφ
+ + +

= +
��  

where 

2
( 1) ( 1)( ) ( ) ( )

ˆ( ) ( ) ( ) .

i m i m i i

i i im i i

t t y t

f t f w t

φ φ α

α φ

+ +
= −

 + + + 
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Finally, one has 

( ) ( ) ( ),
n nm
y t u t tφ= +

��  (13) 

where 

1 1 1 1

2
1 1

1 1 ( 1) 1 1

( ) ( ) ( ) ( ),

( ) ( ) ( )

ˆ( ) ( ) ( ) .

n n n n n n

nm nm n n

n n n m n n

y t x t y t f w t

t t y t

f t f w t

α

φ φ α

α φ

− − − −

− −

− − − − −

= + −

= −

 + + + 

�  

The control input u(t) is constructed as 

( ) ( ) ( )
n n n

u t u t f w t= +  

with the nominal control input u
n
(t) given by 

( ) ( )
n n n

u t y tα= −  (14) 

and the robust compensating input w
n
(t) by 

ˆ( ) ( ) ( ),

1
( ) ,

n n nm

n

n

w t F s t

F s
s f

φ= −

=

+

 

where ,ˆ ( ) ( )
nm nm

t tφ φ= �  α
n
 and f

n
 are positive constants. 

w
n
(t) can be expressed as 

( ) 1 ( ).n

n n
w t y t

s

α 
= − + 

 
 

From (13) and (14) it follows that 
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ˆ( ) ( ) ( ) ( ).
n n n nm n n
y t y t t f w tα φ= − + +�  

Summarizing the design results, one has 

( ) ( ) 1 ˆ ( )
( ) 0 ( ) 1

1,2, , ,

i i i i

im

i i i

y t f y t
t

w t f w t

i n

α
φ

−       
= +       − −      

=

�

�

�

 

and the whole controller description 

1 1

1 1 1 1

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ) ( ),

2, , ,

( ) 1 ( ), 1, , .

n n n n

d

i i i i i i

i

i i

u t y t f w t

y t x t y t

y t x t y t f w t

i n

w t y t i n
s

α

α

α

− − − −

=− +

= −

= + −

=

 
= − + = 

 

�

�

 (15) 

One sees that the designed controller is a linear time-

invariant one and has the same structure for all operation 

points. Positive constants ( 2,3, , )
i
i nα = �  are chosen 

so that ( )( 2,3, , )iy t i n= �  have desired convergence 

speed to zero, if ˆ ( ) 0( 2,3, , ).
im

t i nφ = = �  Positive con-

stants ( 1, 2, , )if i n= �  are needed to be determined to 

achieve semiglobal robust stability and semiglobal robust 

output tracking properties. 

 

4. CLOSED-LOOP CONTROL PROPERTIES 

 

Let 

T

1 2

T

1 2

( ) [ ( ) ( ) ( )] ,

( ) .[ ( ) ( ) ( )]

n

n

x t x t x t x t

w t w t w t w t

=

=

�

�

 

It will be shown that the closed-loop control system 

designed as in previous section has robust properties 

stated in the following theorem. 

Theorem 1: Under Assumption A, the closed-loop 

system, composed of the controlled plant (1) and (2) and 

controller (15), has semiglobal robust control property, 

that is, for any given constants 0,ε > 0
y
r ≥  and wr ≥  

0, if 
0 0

( ) , ( ) ,y wy t r w t r≤ ≤  one can find sufficiently 

large constants ( 1,2, , )
i
f i n∗

= �  and positive constant 

0
,T t≥  such that if ( 1, 2, , )

i i
f f i n∗

≥ = �  and 
1if + �  

( 1,2, , 1 ,)
i
f i n= −�  then at any operation point, the 

states x(t), z(t) and w(t) are bounded and, moreover 

( ) , ( ) , .y t w t t Tε ε≤ ≤ ≥  

If the initial values y(t0) and w(t0) are zero, then 

0
( ) , .( ) ,y t w t t tε ε≤ ≤ ≥  

To prove the main results stated in Theorem 1, the 

following lemma is need. 

Lemma 1: At the m-th operation point, for any given 

positive constant εφ , one can find sufficiently large posi-

tive constants ( 1, 2, , ,)
im
f i n∗

= �  such that if fi > 

( 1,2, , )
im
f i n∗

= �  and 
1

( 1, 2, , 1 ,)
i i
f f i n
+

= −��  then 

1

[2]

1

ˆ ( )
( ) 1 ,

m
l

t
y t

f
φ

φ
ε  ≤ +

 
 (16) 

[ 1] [ 1]

ˆ ( )
( ) ( ) 1 ,

2,3, , 1,

im
l l

i i

i

t
y t w t

f

i n

φ

φ
ε

+ −

 ≤ + +
 

= −�

 (17) 

[ ] [ 1]

ˆ ( )
( ) ( ) 1 ,

nm
l l

n n

n

t
y t w t

f
φ

φ
ε

−

 ≤ + +
 

 (18) 

where 1 ,1j i i n ijl max l
≤ ≤ ≤ ≤

=  

Proof: See Appendix A.          � 

To prove Theorem 1, consider the m-th operation 

point where 1,2, ,m M= �  and consider the following 

positive function 

1

,

n

i

i

V V

=

=∑  

where 

( ) 1 1
[ ( ) ( )] , 1, 2, , .

( ) 1 2

i

i i i

i

y t
V y t w t P i nP

w t

   
= = =   

  
�  

The derivative of V along the trajectories of the 

closed-loop system is given by 

1

2 2

1

2 2

1

2

2 2

1

ˆ2 ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) 2( ) ( ) 2 ( ) ( )
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n
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V V
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f

α α φ

α α α φ

φ

α α α

=

=

=

=

=
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 
 
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 

 
 
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∑

∑

∑

∑
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From Lemma 1, it follows that at any operation point, 

for any given positive constant εφ , one can find 

sufficiently large positive constants
1 2

max{ , ,
i i i
f f f∗ ∗ ∗

=  

, }( 1, 2, , ),
iM
f i n∗

=� �  such that if fi ( 1, 2, ,
i
f i∗

≥ = � n) 

and 
1

( 1, 2, , 1 ,)
i i
f f i n
+

= −� �  then 
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2
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2
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n
l l

i i

i

l l
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n
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f
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y t w t

n y t w t

φ

φ

φ

φ

φ
ε

ε

ε

ε

−

=

−

+ −

=

 
≤ +  

 
+ + +  

 
+ + +  
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∑

∑
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1,2, , .m M= �  
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Let 

0
min{ , 1,2, , },

max{ , 1,2, , }.

i

M i

i n

i n

α α

α α

= =

= =

�

�

 

One has 

2 2

0 0 1

2 2
2

( ) ( 2 ) ( )

3 ( ) ( ) 1 .

M

l l

V V y t f w t

n y t w tφ

α α α

ε

≤ − − − −

 + + +  

�

 

Consider a set ( , )
a b
r rΩ  in R2n defined as 

( , ) , , .| n n

a b b a

y
r r r V r y R w R

w

   
Ω = ≤ ≤ ∈ ∈  

   
 

For the case where V≤ r
a
, one has 

2 2

1 1

( ) , ( ) ,a a

p p

r r
y t w t

λ λ
≤ ≤  

where 
1 min

),(
p

Pλ λ=  and 

2

2( 1)

2

2

2( 1)

2

( )
( ) ,

( )

( )
( ) ,

( )

l

l

l

l

y t
y t

y t

w t
w t

w t

β

β

−

−

= ≤

= ≤

 

where 

1

1

.

l

a

p

r

β
λ

−

 
=  
 
 

 If choose 
1
f  and φε  to satisfy 

0

1
2

2
M

f
α

α≥ +  (20) 

and 

0
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respectively, where 
2 max

),(
p

Pλ λ=  then for any 

( )
( , ,)
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r r
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≥

 

Therefore, for any given constants 0,ε > 0
y
r ≥  and 

r
w
≥ 0, if choose 

2

1

2 2

2
max{ , ( )}

b p

a b p y w

r

r r r r

λ ε

λ

=

≥ +

 (22) 

then V(t0) ≤ r
a
, and one can find sufficiently large 

positive constant f1 satisfying inequality (20) and 

sufficiently small positive constant εφ satisfying inequal-

ity (21) such that 

( )0

( )
( ) ( ), , ,

( )
a b

y t
V t V t r r

w t
α

 
≤ − ∀ ∈Ω 

 

�  (23) 

which implies that y(t) and w(t) are bounded, converge 

exponentially to the following domain and stay in it 

( )
( ) , ( ) .

( )
|

y t
y t w t

w t
ε ε

   
≤ ≤  

   
 

From above analysis it follows that at any operation 

point, for any given constants 0,ε > 0
y
r ≥  and r

w
≥ 0, 

if 
0 0

( ) , ( ) ,y wy t r w t r≤ ≤  one can find sufficiently 

large constants 
1 2

max{ , , , }( 1,2, ,
i i i iM
f f f f i∗ ∗ ∗ ∗

= =� � n), 

such that if ( 1, 2, , )
i i
f f i n∗

≥ = �  and 
1

( 1,i if f i
+

=�  

, 1 ,2 , )n −�  then y(t) and w(t), hence x(t) and z(t), are 

bounded, and ( ) , ( ) , ,y t w t t Tε ε≤ ≤ ≥  where T =  

0

0

1
t

α

+  in .

a

b

r

r

 If the initial values y(t0) and w(t0) are 

zero, then 
0

( ) , .( ) ,y t w t t tε ε≤ ≤ ≥  

Remark 2: For the case where the uncertainties are 

linear norm bounded, one can choose ra = ∞, so global 

robust output tracking can be achieved. 

Remark 3: The values of ( 1, 2, , )
i
f i n= �  need to be 

determined to satisfy (16), (17), (18), (20) and (21) for ra 

and rb chosen as in (22). 

 

5. SIMULATION RESULTS 

 

Consider a series DC motor system which suffers from 

the considerable nonlinearities including the square of 

current, the product of current and speed, changeable 
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load torque and parameters uncertainties. The motor can 

be modeled as [35] 

2

1

2

( ) ( ) ( ) ( ) ( ( ), ( ), ),

( ) ( ) ( ) ( ) ( ) ( ( ), ( ), ),

Lm m m

m m

J t Mi t D t T t q t d t t

Li t Ri t Mi t t u t q i t d t t

ω ω ω

ω

= − − +

= − − + +

�

�
 

where u(t) is the input voltage, i(t) the armature current, 

ω(t) the rotational speed of the motor, TLm(t) the load 

torque, J the moment of inertia associated with both 

motor and the load, M the motor constant, D the viscous 

friction coefficient, L the total armature and field current 

inductance, R the total armature and field circuit 

resistance. 
1
( ( ), ( ), )

m m
q t d t tω  and 

2
( ( ), ( ),

m
q t i tω dm(t), t) 

are nonlinear uncertainties, which include the modeling 

error. dm(t) is bounded external disturbance, which 

depends on operation condition. Assume that the system 

has two operation points, i.e., m =1,2. For a 10kw, 

1500rpm series DC connected motor [36] 

2

1 1

2 2

0.5Kg m , 0.027N m /Wb A,
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under operation point one, we have 

1 1 1
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55 5sin(2 ),
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under operation point two, we have 

2 2 2
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π π
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The initial values are given by (0) (0 .) 0.1iω = =  The 

system can be transformed into a strict-feedback form 

system by means of the following choice of states 

T

1 2 2 

( )

( ) [ ( ) ( )] .
( )

t

x t x t x t M
i t

J

ω 
 = =
 
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In this case, the system appears as 
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0 0 1
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x t x t v t t
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where [ ]
2 ( )

( ) ( ) ( ) ( ) ( ) ,
Mi t

v t u t Ri t Mi t t
LJ

ω= − −  and 

1
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( ) ( ) ( )

( ) .2
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L m

m

m

D t T t q t

t M
i t q t

LJ

ω

φ

− − + 
 =
 
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The reference output is given by 

( ) 25 ( ) 25 ( ), ( ) 150, 0.
d d
y t y t r t r t t= − + = ≥�  

It is required that ε = 0.005. The controller is described 

by (15). Choose αi =25(i =1,2), and choose f1=100, 

f2=1000. Simulation results are shown in Figs 1 through 

4. We can see that, with distinct motor parameters, load 

torque and external disturbances, the tracking error can 

be driven into the desired small neighborhood of the 
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Fig. 1. Plot of tracking error of motor rotational speed 

at operation point one. 
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Fig. 2. Plot of robust control input at operation point 

one. 
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Fig. 3. Plot of tracking error of motor rotational speed 

at operation point two. 



Yao Yu and Yi-Sheng Zhong 

 

 

372 

origin and the robust control input is bounded. In order to 

illustrate the effectiveness of the proposed method, 

classical PID controller [35] is also designed and applied 

to the motor system. The motor control system is 

simulated with parameters in condition two. 

The transient responses of the rotational speed and the 

armature current are shown in Fig. 5. It is evident that the 

transient behavior (settling time and maximum overshoot 

of speed) of the robust control system is better than that 

of the conventional PID control system. 

 

6. CONCLUSIONS 

 

For a class of nonlinear systems in strict-feedback 

form with time-varying nonlinear uncertainties and 

unmodeled dynamics with multi-operation points, a new 

method has been proposed to design a robust controller. 

By this method, a nominal controller is first designed to 

get exact output tracking property for the nominal plant, 

and a robust compensator is then added to achieve 

semiglobal tracking property for the real controlled plant. 

The robust controller is a linear and time-invariant one, 

so it can be realized easily. 
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Fig. 4. Plot of robust control input at operation point

two. 
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(b) Armature currents. 
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(c) Input voltages. 

Fig. 5. Plots of transient response for step reference

input at operation point one. 
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Proof: From the definition of ( 1, 2, , )iy i n= �  it 

follows that 
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where we have applied the inequality 1,
k K

a a K≤ + ∀ ≥  

.1, 0k a≥ ≥  From Assumption A and the inequalities 

above, one sees that the conclusions of Lemma A hold. � 
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Together with Assumption A and Lemma A, the 

conclusions of Lemma B hold. � 
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We only show the proof of (17). The proof of (16) and 

(18) can be performed in a similar way. For 2,3, ,i = �  

1,n −  from Lemma B and (A1), one has 
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REFERENCES 

[1] S. Sastry and A. Isidori, “Adaptive control of linea-

rizable systems,” IEEE Trans. on Automatic Con-

trol, vol. 34, no. 11, pp. 1123-1131, November 

1989.  

[2] I. Kanellakopoulos, P. V. Kokotovic, and R. Marino, 

“An extended direct scheme for robust adaptive 

nonlinear control,” Automatica, vol. 27, no. 2, pp. 

247-255, March 1991.  

[3] J. Tsinias, “Sufficient Lyapunov-like conditions for 

stabilization,” Mathematics of Control, Signals, and 

Systems, vol. 2, no. 4, pp. 343-357, December 1989. 

[4] C. I. Byrnes and A. Isidori, “New results and ex-

amples in nonlinear feedback stabilization,” Sys-

tems and Control Letters, vol. 12, no. 5, pp. 437-

442, June 1989. 

[5] E. D. Sontag and H. J. Sussmann, “Further com-

ments on the stabilizability of the angular velocity 

of a rigid body,” Systems and Control Letters, vol. 

12, no. 3, pp. 213-217, April 1989. 

[6] A. Saberi, P. V. Kokotovic, and H. J. Sussmann, 

“Global stabilization of partially linear composite 

systems,” Proc. of the 28th IEEE Conference on 

Decision and Control, vol. 2, pp. 1385-1391, De-

cember, 1989.  

[7] R. A. Freeman and P. V. Kokotovic, “Backstepping 

design of robust controllers for a class of nonlinear 

systems,” Proc. of the IFAC Nonlinear Control Sys-

tems Design Symposium, pp. 307-312, June, 1992. 

[8] R. Lozano and B. Brogliato, “Adaptive control of a 

class of first order non-linear systems without a 

priori information on the plant parameters,” Proc. 

of the 29th IEEE Conference on Decision and Con-

trol, pp. 2710-2711, December 1990. 

[9] R. Marino and P. Tomei, “Robust stabilization of 

feedback linearizable time-varying uncertain nonli-

near systems,” Automatica, vol. 29, no. 1, pp. 181-

189, January 1993. 

[10] C. Wen, “Decentralized adaptive regulation,” IEEE 

Trans. on Automatic Control, vol. 39, no. 10, pp. 

2163-2166, October 1994. 

[11] C. Wen and Y. C. Soh, “Decentralized adaptive 

control using integrator backstepping,” Automatica, 

vol. 33, no. 9, pp. 1719-1724, September 1997. 

[12] I. Kanellakopoulos, P. V. Kokotovic, and A. S. 

Morse, “Systematic design of adaptive controllers 

for feedback linearizable systems,” IEEE Trans. on 

Automatic Control, vol. 36, no. 11, pp. 1241-1253, 

November 1997. 

[13] Z. Cai, M. S. de Queiroz, and D. M. Dawson, “Ro-

bust adaptive asymptotic tracking of nonlinear sys-

tems with additive disturbance,” IEEE Trans. on 

Automatic Control, vol. 51, no. 3, pp. 524-529, 

March 2006. 

[14] K. Y. Lian and H. W. Tu, “LMI-based adaptive 

tracking control for parametric strict-feedback sys-

tems,” IEEE Trans. on Fuzzy Systems, vol. 16, no. 5, 

pp. 1245-1258, October 2008. 

[15] R. A. Freeman, M. Krstic, and P. V. Kokotovic, 

“Robustness of adaptive nonlinear control to 

bounded uncertainties,” Automatica, vol. 34, no. 10, 

pp. 1227-1230, October 1998. 

[16] R. Marino and P. Tomei, “Robust adaptive state-

feedback tracing for nonlinear systems,” IEEE 

Trans. on Automatic Control, vol. 43, no. 1, pp. 84-

89, January 1998. 

[17] M. Krstic and M. Bement, “Nonovershooting con-

trol of strict-feedback nonlinear systems,” IEEE 

Trans. on Automatic Control, vol. 51, no. 12, pp. 

1938-1943, December 2006. 

[18] Y. G. Hong and Z .P. Jiang, “Finite-time stabiliza-

tion of nonlinear systems with parametric and dy-

namic uncertainties,” IEEE Trans. on Automatic 

Control, vol. 51, no. 12, pp. 1950-1956, December 

2006. 

[19] S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive 

dynamic surface control for disturbance attenuation 

of nonlinear systems,” International Journal of 

Control, Automation and Systems, vol. 7, no. 6, pp. 

882-887, December 2009. 

[20] B. Wang, H. Ji, and J. Zhu, “Robust control design 

of a class of nonlinear systems in polynomial low-

er-triangular form,” International Journal of Con-

trol, Automation and Systems, vol. 7, no. 1, pp. 41-

48, February 2009. 

[21] S. Celikovsky and J. Huang, “Continuous feedback 

practical output regulation for a class of nonlinear 

systems having nonstabilizable linearization,” Proc. 

of 38th IEEE Conference Decision Control, vol. 5, 

pp. 4796-4801, December 1999. 

[22] C. J. Qian and W. Lin, “Practical output tracking of 

nonlinear systems with uncontrollable unstable li-

nearization,” IEEE Trans. on Automatic Control, 

vol. 47, no. 1, pp. 21-36, January 2002. 

[23] Y. S. Zhong, “Robust output tracking control of 

SISO plants with multiple operating points and 

with parametric and unstructured uncertainties,” In-

ternational Journal of Control, vol. 75, no. 4, pp. 

219-241, March 2002. 

[24] Y. S. Zhong, T. Eisaka, and R. Tagawa, “Robust 

model matching with stability guaranteed,” Trans. 

of Institute of Electronics, Information and Com-

munication Engineering, vol. J71-A, no. 10, pp. 

1820-1827, 1987. 

[25] Y. S. Zhong, Low-order Robust Model Matching 

Controller Design, Ph.D. Thesis, Department of El-



Semiglobal Robust Backstepping Output Tracking for Strict-feedback Form Systems with Nonlinear Uncertainty 

 

375

cetrical Engineering, Hokkaido University, Sapporo, 

Japan, 1988. 

[26] X. Chen, T. Fukuda, and K. D. Young, “A new non-

linear robust disturbance observer,” Systems and 

Control Letters, vol. 41, no. 3, pp. 189-199, Octo-

ber 2000. 

[27] X. Chen, C. Su, and T. Fukuda, “A nonlinear dis-

turbance observer for multivariable systems and its 

application to magnetic bearing systems,” IEEE 

Trans. on Control Systems Technology, vol. 12, no. 

4, pp. 569-577, July 2004. 

[28] A. Saengdeejing and Z. Qu, “Simplified robust 

control for nonlinear uncertain systems: a method 

of projection and online estimation,” Automatica, 

vol. 41, no. 6, pp. 1079-1084, June 2005. 

[29] A. Chakrabortty and M. Arcak, “a two-time-scale 

redesign for robust stabilization and performance 

recovery of uncertain nonlinear systems,” Proc. of 

the American Control Conference, pp. 4643-4648, 

July 2007. 

[30] Z. L. Liu and J. Svoboda, “A new control scheme 

for nonlinear systems with disturbances,” IEEE 

Trans. on Control Systems Technology, vol. 14, no. 

1, pp. 176-181, January 2006. 

[31] Z. Yang, H. Tsubakihara, S. Kanae, K. Wada, and C. 

Su, “A novel robust nonlinear motion controller 

with disturbance observer,” IEEE Trans. on Control 

Systems Technology, vol. 16, no. 1, pp. 137-147, 

January 2008. 

[32] J. Back and H. Shim, “Adding robustness to no-

minal output-feedback controllers for uncertain 

nonlinear systems: a nonlinear version of distur-

bance observer,” Automatica, vol. 44, no. 10, pp. 

2528-2537, October 2008. 

[33] Z. P. Jiang and D. J. Hill, “A robust adaptive back-

stepping scheme for nonlinear systems with unmo-

deled dynamics,” IEEE Trans. on Automatic Con-

trol, vol. 44, no. 9, pp. 1705-1711, September 1999. 

[34] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. 

Gerdes, “Dynamic surface control for a class of 

nonlinear systems,” IEEE Trans. on Automatic 

Control, vol. 45, no. 10, pp. 1893-1899, October 

2000. 

[35] S. Mehta and J. Chiasson, “Nonlinear control of a 

series DC motor: theory and experiment,” IEEE 

Trans. on Industrial Electronics, vol. 45, no. 1, pp. 

134-141, February 1998. 

[36] Z. Z. Liu, F. L. Luo, and M. H. Rashid, “Nonlinear 

speed controllers for series DC motor,” Proc. of 

IEEE International Conference on Power Electron-

ics and Drive Systems, vol. 1, pp. 333-338, July 

1999. 

 

Yao Yu received her B.S. degree in Elec-

trical Engineering from Huazhong Uni-

versity of Science and Technology in 

2004. She is currently a Ph.D. student in 

Tsinghua University. Her research inter-

ests are nonlinear control, and robust 

control. 

 

 

 

Yi-Sheng Zhong received his Ph.D. 

degree in Electrical Engineering from 

Hokkaido University in 1988. From 1996, 

he is a professor of Electrical Engineer-

ing in Tsinghua University. His research 

interests include complex problems, and 

nonlinear systems. 

 

 


