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Resilient Control for Wireless Networked Control Systems 
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Abstract: This paper proposes an approach to quantify the concept of resiliency in terms of Quality of 

Control (QoC) of a control system. Based on this concept, an intelligent resilient control algorithm 

(RCA) is presented for wireless networked control systems (WNCS) to maintain operational normalcy 

in face of wireless interference incidents, such as Radio Frequency (RF) jamming and signal blocking. 

The proposed algorithm closes the control loop with wireless sensors feasible by significantly increas-

ing control system’s tolerance to data packet loss and delay caused by wireless interference. The pro-

posed algorithm, along with other well developed wireless technologies, has the potential to enable 

implementing wireless sensors widely in the next generation of industrial automation and control sys-

tems. 
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1. INTRODUCTION 

 

Resiliency is the property of a material to absorb 

energy when it is deformed elastically and then, upon 

unloading to have this energy recovered. A broad 

definition of Resilient Control Systems is “… those that 

tolerate fluctuations via their structure, design parameters, 

control structure and control parameters” [1]. Many 

literatures discuss the definition, properties, measure-

ments, research areas and possible applications can be 

found in conference proceedings [2,3]. One definition of 

the resilient control system, “… one that maintains state 

awareness and an accepted level of operational normalcy 

in response to disturbances, including threats of an 

unexpected and malicious nature”, is proposed in [4]. We 

understand that a resilient control system is able to 

provide and maintain acceptable performance and 

functionalities of the controlled process and system in 

the face of undesirable incidents. The resiliency of a 

control system should be measured by 1) static response: 

for a given incident, how much performance in terms of 

production or quality it would lose; 2) dynamic response: 

when the incident is removed, how long does it take to 

get back to its original performance [5]. 

In this paper, we discuss the resilient control problem 

for wireless networked control systems (WNCS). A 

networked control system (NCS) is a distributed control 

system (DCS) whose components (sensors, controllers, 

actuators, etc.) are distributed using digital network 

technology. The use of this technology brings with its 

important advantages, such as low cost, improved usage 

of resources, simplicity of maintenance, and error 

diagnosis, and above all, the flexibility of reconfiguring 

the different components [6]. Consequently, NCSs have 

been finding applications in a broad range of areas such 

as, tele-surgery [7], remote control over the Internet [8,9], 

and automated highway systems and un-manned aerial 

vehicles [10]. Nevertheless, there are also disadvantages 

in this type of systems: implementing closed-loop control 

in a communication network leads to delay and data loss 

that inevitably can degrade its performance even lead to 

instability [10-15]. There has been a trend towards the 

implementation of NCS using wireless network 

(IEEE802.11) since wireless network is increasingly 

being adopted as a low level sensor and control network 

technology [13]. This type of NCSs is called wireless 

networked control systems. There is significant interest 

in wireless solutions for industrial and manufacturing 

environments where DCS is used. The challenges for 

closing the control loop over wireless networks are 

inherited from the nature of NCS and wireless network 

itself. Wireless networks in nature are subject to 

interference such as RF jamming and signal blocking 

which causes link failures and further degrading the 

performance of WNCSs, i.e., quality of control (QoC). 

Therefore, a practical resilient control algorithm (RCA) 

is needed to maintain the operational normalcy (i.e., 

certain guaranteed QoC) throughout the wireless link 

failure, which is the motivation of the research presented 

in this paper. The emphasis is on WNCSs using wireless 

sensors and having an unreliable wireless link affected 

by both data packet loss and delay in the sensor feedback 

loop. The data packet loss and delay are assumed random 

in nature and unknown in advance. To improve the QoC 

of NCSs, there are basically two kinds of approaches: 1. 

improving the network communication reliability by 

modifying network framework or protocol; 2. robust 

controller design to cope the network unreliability. The 

approach proposed in this paper is different from those 

two since it requires neither the change of network 

framework/protocol nor the controller design. It can be 
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implemented on the existing control framework to 

improve the system resiliency against network 

unreliability. The major ideas presented in this paper 

come from the delay and packet loss compensation 

algorithms presented in [6] and later work.  

 

2. PROBLEM STATEMENT 

 

2.1. Resiliency index 

In this paper, a new index called Resiliency Index (RI) 

is defined to indicate how resilient the control system is 

and try to quantify the concept of resiliency in terms of 

control performance. The generic Resiliency Index (RI) 

of a control system is defined as:  

( )
: ,incident

generic

T QoC
RI

QoC
=

∆
 (1) 

where Tincident(QoC) is the maximum incident time during 

which the system still maintains operational normalcy, 

i.e., meets certain QoC requirement. ∆QoC is the 

performace degradation. This definition is further 

illustrated in Fig. 1. Note that C.P. in Fig. 1 represents 

control performance. The difference between the 

maximum performance and the minimum performance 

during incident is defined as the ∆QoC. The rationale 

behind Eqn. (1) is that a control system has higher 

resiliency than others if it can tolerate longer incident 

time or deliver better QoC (i.e., less performance 

degradation) during the same incident. Based on the 

definition of the RI, a practical resilient control algorithm 

is proposed in this paper to deal with wireless link/sensor 

failure in WNCSs. 

 

2.2. WNCS implementation challenges 

There has been a growing interest in adopting wireless 

sensors for industrial automation and control applications, 

in particular, for distributed control systems in which the 

communication infrastructure uses wireless networks 

[17]. For example, in many retrofitting projects of old 

buildings, wireless temperature sensors can be added, 

without adding more cabling work in wall or ceiling if 

wired sensors were used, to improve efficiency of energy 

usage of Heating Ventilating and Air Conditioning 

(HVAC) systems. However, there are many challenges 

for closing the control loop over wireless networks: 

closed-loop control requires that data flows from the 

sensors to the controller, reliably; wireless networks are 

subject to interference and cannot guarantee the timely 

flow of data; and disruption in feedback data degrades 

control performance and even leads to system shutdown. 

In summary, the problem here is that there are possible 

incidents, e.g., link failures due to RF interferences, the 

sensor data received by the controller are disrupted 

which may lead to unnecessary and costly system 

shutdown, as depicted in Fig. 2. To address this problem, 

a model-prediction based resilient control algorithm 

(MPRCA) is proposed in this paper, as shown in Fig. 3. 

The MPRCA performs sensor data filtering and 

prediction based on a Modified Kalman Filter and 

provides alarm signal if the confidence level of the 

filtered or predicted sensor data are below certain 

tolerable threshold because of long-time link failure or 

sensor failure. The goal of this MPRCA is to enable 

resilient control against wireless link issue due to RF 

interferences to avoid unnecessary system shutdown. The 

risk assessment and alarm mechanism of the MPRCA 

works as a quality gauge and provides risk assessment of 

the wireless sensor data. It constantly monitors the data 

confidence level and takes specific actions (e.g., sending 

alarm if link failure or sensor failure happens for a 

certain period of time) when the risk becomes excessive. 

The users can set up the confidence level, the error 

 

Fig. 2. A WNCS with wireless link in the control loop.

 

Fig. 3. A WNCS with proposed MPRCA. 
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Fig. 1. Illustration of generic Resiliency Index (RI). 
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tolerance level, and etc. through a Human Machine 

Interface (HMI). 

The NCS shown in Fig. 2 can be described by 

1
,

,

k k k k

k k k

x Ax Bu w

z Cx v

+
= + +

= +

 (2) 

where xk ∈Rn is the state, uk ∈Rm is the control input 

and zk is the controlled process output. A, B and C are the 

corresponding system matrices with appropriate 

dimensions. The random variables wk and vk represent 

the process and measurement noise, respectively. They 

are assumed to be independent of each other, and with 

following normal probability distributions. 

~ (0, ),

~ (0, ).

w N Q

v N R
 (3) 

 

3. INTELLIGENT RESILIENT CONTROL 

ALGORITHM 

 

The proposed MPRCA shown in Fig. 3 has three basic 

functionalities: 

1) Sensor Data Filtering  

2) Sensor Data Prediction 

3) Risk Assessment & Alarm Mechanism. 

 

3.1. Sensor data filtering 

Based on Kalman Filtering [16], predicted state and 

error covariance for (2) are 

1

1

ˆ ˆ ,

,

k k k

T

k k
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P AP A Q

−

+

−

+

= +

= +

 (4) 

where 
1

ˆ
k
x
−

+
is the state prediction and 

1k
P
−

+
is the error 

covariance before correction. When new sensor 

measurement zk +1 is available, then the above state 

prediction and error covariance are updated as 

1
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 (5) 

The Kalman Filter is essentially a set of mathematical 

equations that implement a prediction-correction type 

estimator which minimizes the estimated error 

covariance and generates optimal estimate of the desired 

system states. Note that, we assume the applications the 

proposed algorithm can apply are linear control systems, 

therefore Kalman filter can be applied. The applicability 

of the Kalman Fitler is certainly an interesting topic but 

not the focus of this paper. 

 

3.2. Sensor data prediction 

If sensor measurement zk+1 are missing due to wireless 

link failure caused by RF interference, then the predicted 

sensor data are 

1

1 1

1 1 1 1

1 1

min
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Time-out scheme, as discussed in [8], is used in the 

MPRCA to guarantee timely delivery of sensor data. The 

MPRCA sends the filtered sensor data to the controller if 

the new sensor data are available. If no new sensor data 

are available within the timeout threshold, the MPRCA 

provides the predicted sensor data to the controller 

together with an updated confidence level to indicate 

how good the prediction is. If the new sensor data zk+1 
arrived after the timeout threshold, but before the end of 

the next sampling period, it will still be used to update or 

correct the current prediction as in (7). If the new sensor 

data arrived after the next sampling period, it is 

considered being lost. The basic idea is that older data 

gets discarded since the newer data is more accurate to 

reflect the real situation of the system for the controller. 

Therefore, in the MPRCA, sensor data packet delay and 

loss are dealt with in a unified way. 

1

1 1
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1 1

( ) ,

ˆ ˆ ˆ( ),

( ) .

T T

k k k

k k k k k

k k k

K P C CP C R

x x K z Cx

P I K C P

− −

+ +

+ + + +

+ +

= +

= + −

= −

 (7) 

If consecutive sensor measurements are missing due to 

link failures, then the corresponding consecutively 

predicted sensor measurements are 

1

1
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where n is the number of the consecutively missing 

sensor measurements. It is intuitive that the error 

covariance will increase when the predicted sensor data 

are kept being used instead of the real measurements. Fig. 

4 shows a generic relation between link failure and the 

 

Fig. 4. Error covariance vs. link failure. 
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estimation error covariance. The confidence level of the 

predicted sensor data will become lower and lower 

because of extrapolating from missing sensor data. There 

needs to be a risk assessment and alarm mechanism to 

constantly monitor the data confidence level and take 

specific actions when the risk becomes excessive. 

With this sensor data prediction algorithm, the issues 

of sensor data packet dropout, sensor data delay and 

jitters caused by the unreliability of wireless network are 

dealt with in a unified way. Controller computation can 

also cause delay which affects the control performance, 

but this is not the focus of this paper. Since now days the 

controllers usually have very high speed CPUs, e.g., 

SIMENS S7 PLCs, the computation delay can be ignored 

comparing with the delay caused by network data 

transmission. 

 

3.3. Risk assessment & alarm mechanism 

For (8), the error covariance of the predicted value is 

shown in Table 1. Note that n is the number of the 

consecutively missing sensor measurements 

 

3.4. Data confidence level and QoC 

The definition of sensor data confidence level has to 

be considered together with the control system QoC. The 

confidence level of the sensor data is defined in such a 

way that it is related to the system control performance. 

Most of the industrial process controls are regulator 

controls, i.e., the controlled process output value (PV) 

should follow the system set point (SP). Confidence level 

of sensor data is defined as the probability (Pro.) of that 

the difference between PV and SP is less than a certain 

PV error tolerance value a. This can be described as 

{ } { }

: Pro. .

Confidence Level Control Performance

SP PV
a

SP

=

  − 
= ≤  

  

 (9) 

The control system QoC can be defined based on above 

definition of control performance as 

{ }: {  }

Pro. ,

QoC Confidence Level b

SP PV
a b

SP

= ≥

  − 
= ≤ ≥  

  

 (10) 

where b is the user confidence tolerance value, i.e., QoC 

threshold. Poor QoC, i.e., the data confidence level or 

control performance becoming lower than what is 

desired or expected can be defined as: 

{ } Pro.

Pro. 1 .

SP PV
Confidence Level b a b

SP

SP PV
a b

SP

  − 
< = ≤ <  

  

  − 
= > ≥ −  

  
 (11) 

The confidence level can be used to indicate how good 

the prediction is and provides real time control 

performance information as defined in (9). When the 

confidence level drops below the threshold, as described 

in (11), alarm can be raised to notify the user. This 

continuously updating information of control 

performance or alarm can be sent to the HMI as shown in 

Fig. 3. This information also can be used in the control 

law design to further improve the control performance, 

but controller or control law design is not the focus of 

this paper. Actually, the controller design can be 

independent to this resilient algorithm. The resilient 

algorithm proposed in this paper can be used with 

existing controller design to provide a continuously flow 

of sensor data. 

 

3.5. Design principle 

The MPRCA is designed to tolerate short-time link 

failures to avoid costly system shut down. The design 

principle of this MPRCA is depicted in Fig. 5 with three 

possible failure scenarios. Two short-time link failures 

#1 and #2, and one long-time link failure #3 are assumed 

to illustrate the design principal. If there is no link failure, 

the controlled process value is close to the set point. 

When the short-time link failure (e.g., #1 or #2) occurs, 

with MPRCA, the system performance is acceptable, 

without MPRCA, the system may be out of control. 

When long-time link failure occurs (e.g., #3), the alarm 

is triggered if the MPRCA detects that the number of 

consecutive sensor data packet loss has past a threshold 

value N. MPRCA also enables users to configure this 

 

Fig. 5. MPRCA design principle. 
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threshold value N based on their defined QoC including 

confidence tolerance or QoC threshold b as defined in 

(10) and process value error tolerance a as defined in (9). 

It is intuitive that looser tolerance (low QoC 

requirement) will get bigger N and tighter tolerance (high 

QoC requirement) will get smaller N. 

 

3.6. Finding N 

The threshold N indicates how many sensor measure-

ments loss that the control system can tolerate due to the 

incident of wireless link failure. The conceptual 

expression of finding this N is to find the smallest value 

of N such that the confidence of prediction becomes 

lower than desired, i.e., Pro. .
SP PV

a b
SP

 − 
≤ < 

 
 

Numerical calculation can be done by solving the 

following equation: 

1 1 2 2

2

( ) ( ) ( )

... ,

1
exp

2 ( )

(1 ).
2 ( )

N T N N T N

T

a SP T

T

P N A P A A Q A

AQA Q

tr CP N C

x
dx b

tr CP N C

π

− − − −

∞

⋅

= +

+ + +

 ⋅  

 
 − ≥ −
  ⋅   

∫
 (12) 

Through the HMI, the user can define system model, 

QoC requirements including PV error tolerance a and 

confidence tolerance b. Then the MPRCA can compute 

the smallest value of N as the threshold value for the 

alarm setting. 

 

3.7. Resiliency index of MPRCA 

We can apply the generic RI definition in Eqn. (1) to 

the proposed MPRCA and one possible definition of the 

Resiliency index of WNCS with MPRCA can be 

: ,
(1 )

MPRCA

NT
RI

a b
=

−

 (13) 

where N, a and b are defined in (8), (9) and (10), 

respectively. T is the sampling period of the control 

system. This definition of resiliency is further illustrated 

in Fig. 6. Control performance defined in (9) and QoC 

defined in (10) are used to evaluate the system resiliency. 

From (13) and Fig. 6, it is clear that bigger N indicates 

higher resiliency which means the system can tolerate 

longer link failure without jeopardizing control perform-

ance. For the same N, smaller a or bigger b indicates 

higher resiliency which means that better control 

performance can be expected comparing with systems 

with lower resiliency in the presence of certain link 

failure. 

 

4. CASE STUDY 

 

Two applications were developed to verify the 

MPRCA algorithm proposed in the previous section. 

 

4.1. Light intensity control 

4.1.1 Demo setup 

The first example is a SISO (Single Input Single 

Output) control system: light intensity control, which is a 

typical closed loop feedback control system. The purpose 

of this demo is to show the impact of losing sensor data 

and demonstrate that the MPRCA can improve control 

system resiliency with respect to wireless link failures. 

Fig. 7 shows the demo setup. The process to be 

controlled is the light intensity in the circled area. 

Wireless light intensity sensor is used to feed the light 

intensity information back to the controller. There are 

two light bulbs. The bulb #1 is the main light source. It is 

driven by the actuator, and controlled by the controller 

that is implemented in a laptop. The bulb #2 is working 

as an independent light disturbance which is randomly 

changing. The control objective of this system is to keep 

the light intensity constant in the presence of light 

disturbance. The MPRCA function is implemented in the 

laptop with the controller. Wireless gateway receives the 

sensor data from the wireless sensor and provides them 

to the MPRCA and controller. Another laptop directly 

connected to the wireless sensor is working as a monitor 

only to display the original sensor data, and it does not 

participate in any control tasks. So there are two sensor 

data display windows. 

The monitor laptop displays the original sensor data 

before they are transmitted through the wireless link. The 

controller laptop displays the received sensor data from 

the wireless link. To build up a strong and steady RF 

interference source, a WiFi video streaming set up is 

used. This video streaming set up is placed in the same 

room and causes strong RF interference to the light 

intensity control system. When the video is being 

streamed through WiFi, it causes a lot of RF jamming to 

the wireless sensor data transmission and there are many 

link failures between the wireless light sensor and the 

wireless gateway, i.e., there are many sensor data delays 

and losses in the closed control loop. 

The transfer function model of the process shown in 

Fig. 7 is 

0.66
( )

1 0.125
G s

s
=

+

 (14) 

with sampling time of 0.125 second the corresponding 

 

Fig. 6. Illustration of the RI of MPRCA. 
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system parameter A = 0.367879, B = 0.079015, and C = 

5.28. 

 

4.1.2 Experiment results 

1) MPRCA turned off 

In the first experiment, the MPRCA was turned off, 

when the video streaming was turned on, the light 

intensity control system went out of control and the main 

light bulb just kept flashing, as shown in Figs. 8 and 9. In 

Fig. 9, the gaps between points clearly show that sensor 

data were lost. In this scenario, the controller uses the 

previously received sensor data if new sensor data is not 

available. 
 

2) MPRCA turned on 

In the second experiment, the MPRCA was turned on, 

when the video streaming was turned on. The light 

intensity control system maintained its stability and the 

light intensity was under control, as shown in Figs. 10 

and 11. Note that in Fig. 11, the red points denote the 

predicted sensor data provided by the MPRCA when 

original sensor measurements are lost due to link failures. 

This demo verifies that the MPRCA can significantly 

improve system resiliency with respect to sensor data 

packet loss. The system with the MPRCA turned off can 

only tolerate about 20% packet losses, while with the 

MPRCA turned on it can tolerate about 80% packet 

losses. 
 

4.2. Distillation column simulation 

4.2.1 Simulation setup 

The second example is a MIMO system: distillation 

column which is very commonly used in refineries and 

chemical plants, as shown in Fig. 12. This distillation 

column is simplified to a 2 by 2 MIMO system of 

composition control, although the real model is very 

complex. Other control loops, e.g., levels, temperature 

and pressure control are controlled by separate 

controllers. These controllers are usually designed 

separately and omitted here for the sake of simplicity. 

Two materials are separated because of different boiling 

points. The two input variables are reflux flow L and boil 

up flow V. This is a so called LV-configuration. The 

output variables are distillate product composition xD 

and bottom product composition xB. The controller is a 

dynamic matrix controller (DMC) which is a type of 

model predictive controller (MPC). This example 

demonstrated that the alarm mechanism is a necessary 

component of the MPRCA. The simulation is imple-

mented in MATLAB/Simulink. The system parameters 

come for a practical process model which contains 4 by 4 

Fig. 10. Original sensor data (MPRCA on). 
 

Fig. 11. Received sensor data (MPRCA on). 

Fig. 8. Source sensor data (MPRCA off). 

 

Fig. 9. Received sensor data (MPRCA off). 

 

Fig. 7. Light intensity control demo setup. 
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matrices with very long floating point numbers. The 

detailed system model and controller model are omitted 

here for the sake of brevity. 

 

4.2.2 Simulation results 

Simulation results are shown in Figs. 13 and 14 (in the 

next page). Only one output variable xD is shown here, 

the bottom product xB has similar result. Three link 

failures were introduced, the first one had a relatively 

short failure N1 = 50, the second and the third ones had 

longer time N2 = 90. The system output without the 

MPRCA is shown on the top of Fig. 13. The system 

output with the MPRCA is shown on the bottom of Fig. 

13. To show the difference, the alarm mechanism was 

not set for the second link failure and was set for the 

third link failure. Fig. 13 clearly shows that the MPRCA 

can improve system resiliency with respect to link 

failures. Fig. 14 is a closer look at these three link 

failures. The PV error tolerance a is set as 5%, and the 

user confidence tolerance b is set as 99%. The MPRCA 

alarm configuration tool (12) computed the minimum N 

as 55. For the first link failure, N1 was less than 55, thus 

the PV didn’t go out of bound. For the second failure, N2 

is larger than 55, the alarm mechanism was not set. It is 

shown in Fig. 14 that the PV went out of the error bound. 

For the third failure, we set the alarm and when alarm 

was trigged, we resumed the link and the PV did not go 

out of bound. This example demonstrated that the alarm 

mechanism is a necessary supplement of the MPRCA, 

since predicted data cannot be used continuously without 

having any idea about how good the prediction is and 

how it will affect the control system performance. 

 

5. CONCLUSIONS 

 

This paper proposed a quantitative definition of 

“resiliency” which can be used for better evaluation of 

the performance of so-called “resilient control systems”. 

Based on this definition, an intelligent resilient control 

algorithm MPRCA for WNCSs with wireless sensors in 

the feedback loop is proposed. The objective of the 

MPRCA is to improve the resiliency of control systems 

that use wireless communication between sensors and the 

controller. Within this MPRCA, wireless sensor data are 

filtered or predicted by using Kalman Filtering theory 

depending on availability. The Risk Assessment & 

Alarm Mechanism automatically determines the risk of 

extrapolating from missing sensor data due to link 

failures and takes specific actions when the risk becomes 

excessive. Two applications were developed to verify 

and validate the feasibility and effectiveness of the 

 

Fig. 12. Simple distillation column controlled with the

LV-configuration. 

 

 

 

Fig. 13. MPRCA performance on distillation column. 
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proposed algorithm. The results show that the proposed 

method can improve the control system performance in 

terms of resiliency with respect to wireless link failure. 

We anticipate that this technology can be used for next 

generation of industrial automation and control systems 

over wireless networks. 

This paper is only focused on sensor data packet delay 

and loss, and addresses these issues accordingly. The 

system resiliency is defined based on QoC during 

undesirable incidents. However, further study is needed 

on how fast the system comes back to its original 

performance after the incident is removed. 
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Fig. 14. Closer look at the link failures with and without alarm set. 
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