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Abstract: Complete coverage path planning (CCPP), specifically, the efficiency and completeness of 

coverage of robots, is one of the major problems in autonomous mobile robotics. This study proposes a 

path planning technique to solve global time optimization. Conventional algorithms related to tem-

plate-based coverage can minimize the time required to cover particular cells. The minimal turning 

path is mostly based on the shape and size of the cell. Conventional algorithms can determine the op-

timum time path inside a cell; however, these algorithms cannot ensure that the total time determined 

for the coverage path is the global optimum. This study presents an algorithm that can convert a CCPP 

problem into a flow network by exact cell decomposition. The total time cost to reach the edge of a 

flow network is the sum of the time to cover the current cell and the time to shift in adjacent cells. The 

time cost determines a minimum-cost path from the start node to the final node through the flow net-

work, which is capable of visiting each node exactly once through the network search algorithm. 

Search results show that the time-efficient coverage can obtain the global optimum. Simulation and 

experimental results demonstrate that the proposed algorithm operates in a time-efficient manner. 

 

Keywords: Cellular decomposition, cleaning robot, complete coverage path planning, multi-robot, 

time efficiency. 

 

1. INTRODUCTION 

 

The complete coverage path planning (CCCP) 

algorithm determines the path that a robot must follow to 

pass through every space in a given workspace. The 

CCPP algorithm has gained considerable attention in 

recent decades because of its wide application in robotics, 

including functions such as cleaning, mining, inspection, 

and exploration, among others.  

Completeness and time efficiency of coverage are key 

factors to consider to improve the performance of the 

algorithm. With completeness taken into consideration, 

various approaches to coverage algorithms have been 

proposed. Cellular decomposition is one of the most 

robust approaches to the completeness problem. Choset 

[1] introduced boustrophedon decomposition, a coverage 

algorithm based on exact cellular decomposition. 

Boustrophedon decomposition is an enhancement of 

trapezoidal decomposition. In the aforementioned study, 

the narrow cells were merged into one cell to reduce the 

excessive motions because the trapezoidal decomposition 

requires excessive redundant back-and-forth motions to 

cover a number of narrow cells between IN and OUT 

events to achieve completeness. Wong and McDonald 

[2,3] proposed a cell decomposition algorithm based on 

the topological structure of a map representation. 

In the early stage of coverage development, research 

focus was directed on the completeness of coverage [1-3]. 

Such interest has currently been expanded to include 

both time efficiency and completeness of coverage [4-6]. 

Existing methods have been combined to address these 

issues. For instance, several studies [5,6] combined 

template-based path planning with heuristic coverage 

planning. The use of predefined templates for a given 

small region ensures completeness of coverage, whereas 

a heuristic coverage algorithm can help optimize energy 

and time according to the shape of a given region. This 

type of algorithm only determines the optimal time path 

inside a particular cell despite its role in time 

optimization, which indicates that the solution to time 

efficiency is only a local and not a global optimum. 

Other studies [4,7] used cell decomposition with a grid 

map representation, a technique similar to the 

boustrophedon approach, to achieve completeness. These 

studies also adopted template-based path planning to 

achieve efficiency with two kinds of template motions. 

In the present study, back-and-forth as well as spiral 

motions have been selected depending on the current cell. 

Surve et al. [8] minimized the coverage time by using the 
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curvature path instead of the back-and-forth motion. 

However, this path is incompatible with small 

environments with obstacles. Multi-robot systems can 

more rapidly complete and further execute a task 

compared with single robots [9]. Therefore, multi-robots 

can reduce the time required to complete a task over an 

entire area.  

This study proposes a time-efficient CCCP algorithm 

that can achieve both completeness and time efficiency. 

The algorithm converts the CCPP problem into a flow 

network problem by exact cellular decomposition. 

Therefore, the total time cost to reach the edge of 

network equals the total time required to cover the 

present cell and the time spent to shift between adjacent 

cells. The algorithm then determines a minimum-cost 

path from the start node to the final node through the 

flow network, which visits each node exactly once by 

using the network search algorithm. The search result 

provides the global optimum time-efficient covering 

order over the cells, thus generating a set of predefined 

template paths for each cell. 

 

2. TIME-EFFICIENT AND COMPLETE 

COVERAGE PATH PLANNING ALGORITHM 

 

The coverage algorithm used in this study primarily 

aims to determine the global optimum time required to 

cover an entire environment. A robot covers each cell 

with one of the 12 templates consisting of several back-

and-forth motions. 

 

2.1. Cell decomposition algorithm  

One of the most robust approaches to the complete-

ness problem involves the divide-and-conquer strategy, 

which is a generalization of cellular decomposition. Cell 

decomposition methods are commonly classified into 

exact and approximate methods by map representation. 

Trapezoidal, boustrophedon, and Morse decompositions 

are typical techniques related to exact cellular decom-

position. This study uses boustrophedon decomposition 

for coverage. The environment 
2

ε = �  is assumed to 

contain an obstacle region .ο ε⊂  If both ε and ο  can 

be of any polygonal shape; the free space 
f

,ε ε⊆  is 

defined as 

f
,ε ε ο= −  (1) 

which is the free section of the environment. 

The purpose underlying the exact cellular decom-

position is to partition the free space of the environment 

into disjoint sets called cells. These cells form the nodes 

of a flow network, which is a non-directed connectivity 

graph G. Two nodes are connected by an edge if and 

only if the corresponding cells are adjacent.  

The boustrophedon decomposition assumes that a 

vertical line referred to as slice and is denoted by a thick 

red line in Fig. 1 sweeps from left to right through a 

bounded environment with arbitrarily shaped obstacles. 

Cells are formed via a sequence of open and close events, 

which occurs when the slice meets the first or the last 

point of an obstacle. The open and close events are 

referred to as IN and OUT, respectively. When the slice 

meets the first obstacle, denoted by the leftmost thick 

dotted line in Fig. 1, the current cell, Cell1, is closed; two 

new cells, Cell2 and Cell3, are opened at an IN event. An 

OUT event is the opposite case of an IN event. Denoted 

by the rightmost thick dotted line in Fig. 1, Cell8 and 

Cell9 are closed, and a new cell, Cell10, is opened at the 

OUT event. The IN event can be viewed as a cell 

breaking up into two cells, whereas the OUT event 

consists of two cells merging into one [1]. 

When arbitrarily shaped obstacles are present in the 

workspace, each decomposed cell is either rectangular 

such as Cell1, or a figure with two parallel sides such as 

Cell8 in Fig. 1. Despite its non-straight line(s) on more 

than one side, such as Cell8 or Cell9, the cell can be 

approximated as a trapezoid. The trapezoid is 

represented by a shaded shape similar to that in Cell8, or 

as a combined shape with more than a trapezoidal area 

similar to that in Cell9.  

The input to the algorithm is a type of information on 

the environment; this information consists of obstacle 

vertices and the size of the environment. Fig. 2 shows the 

output of the algorithm, which includes the cell size and 

the flow network that indicates the adjacency of the cells. 

The flow network is implemented using modern adjacen-

cy lists. 

 

 

Fig. 2. Output of cellular decomposition and flow net-

work. 

Fig. 1. IN and OUT events. 
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2.2. Search algorithm 

The robot can search for the global optimum path in 

time by decomposing the environment into cells and 

using the flow network. This study primarily aims to 

implement this approach. The goal of the search algo-

rithm is to determine the minimum cost path from the 

start node to the final node by visiting every node exactly 

once in the given flow network. Simply stated, the 

solution to the problem is the path that contains every 

node in the flow network. Thus, the path must begin at 

the start node and end at the final node. 

 

2.2.1 Comparison study with different network search 

problems 

Several problems in combinatorial optimization are 

similar to the one addressed in this study. Problems that 

involve combinatorial optimization include the minimum 

spanning tree (MST) problem, the traveling salesman 

problem (TSP), and the shortest path problem (SPP). The 

solution to the MST problem includes every node in one 

graph; however, the solution is a tree instead of a path. 

The solution to the SPP contains the minimum cost path 

from the initial node to the final node but may not 

include every node. The solution to the TSP includes all 

nodes in a graph; this solution is a path but ends with the 

initial node. All algorithms for the TSP assume that a 

graph is completely connected. However, the flow 

network is not completely connected, and only adjacent 

nodes are joined by an edge. Thus, the existing algo-

rithms cannot be used directly. The proposed search 

algorithm performs two functions: identification of all 

possible spanning paths from the initial node to the final 

node and determination of the minimum cost-spanning 

path among all possible paths. 

 

2.2.2 Templates 

As mentioned in Section 2.1, decomposed cells are 

either rectangular or trapezoidal. A cell consists of two 

parallel sides regardless of the shape and can be 

quantitatively equivalent to a rectangle with the same as 

the target cell. Fig. 3 shows the equivalent rectangles of 

Cell8 and Cell9. The equivalent rectangle has the same 

path topology and time cost as those of the original cell; 

that is, a case with arbitrarily shaped obstacles can be 

handled by using a case with rectangular obstacles. The 

non-rectangular cells are replaced with corresponding 

rectangular cells. Henceforth, the case in which all 

obstacles are rectangles will be described.  

The robot covers each cell with only back-and-forth 

motions if all decomposed cells are rectangles. The main 

path inside a cell is the path along the long axis of the 

cell because such movement along the main path reduces 

the number of turns, thus improving time efficiency. A 

path connecting adjacent main paths is referred to as an 

interval, as shown in Fig. 4. The interval path of a cell 

starts at one corner, which is called the start point, and 

moves back and forth along the main paths and ends at 

another corner, which is called the end point. The 

number of such 2 permutations of the four corners of a 

rectangular cell is denoted by 4P2= 12. Fig. 4 shows 12 

cases classified as templates depending on the positions 

of their start and end points, where the first and second 

numbers are the corner numbers of the start and end 

points, respectively. The corner number is equal to the 

number at the left bottom and increases clockwise by one.  

We denote a minimum number of main paths and 

intervals for each template. Any sized cell can be 

covered with the 12 templates provided, and no alterna-

tive template remains. The templates are classified into 

odd-spaced and even-spaced templates according to the 

number of intervals used. If the start and end points of 

the template are placed along the horizontal axis, then 

the template is odd-spaced. Otherwise, the template is 

even-spaced, which can be further decomposed into 

Types 1 and 2, depending on the time computation 

method used. 

 

2.2.3 Computation of time cost of the templates 

The total time required to cover the current cell is a 

function of cell size, template type, and robot size and 

speed. The template of the current cell is determined by 

the location of the previous and consequent cells. The 

cell size is determined by cell decomposition. The size of 

the robot and its speed are known from specification. 

Given the above information, the time cost for a 

particular template is computed by the following steps: 

First, the width (wc) and the height (hc) of the 

configuration space are calculated from the size of the 

cell and the diameter of the robot (DR). The configuration 

space is a set of all robot configurations in which the 

robot does not overlap an obstacle, as shown in Fig. 5. 

Fig. 3. Equivalent rectangles. 

 

Fig. 4. Twelve templates used in the study. 
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Fig. 5. Configuration space and even/odd templates. 

 

 

Fig. 6. Definition of the number of main paths, intervals, 

and turns. 

 

,
c R
h h D= −  (2) 

,
c R

w w D= −  (3) 

where h and w represent the height and the width of the 

cell, respectively.  

Second, the length of the interval (ws) is computed 

while maintaining completeness and without increasing 

the redundancy of coverage. The interval depends on the 

size of the configuration space and the type of template. 

As depicted in Fig. 5, the odd and even templates have 

different lengths of interval.  

Finally, the time cost of the template is computed as 

follows: 

24 M M s s t t
t N t N t N t= ∗ + ∗ + ∗ (Type1), (4) 

23
1 2

M M s s t t
t N t N t N t t t= ∗ + ∗ + ∗ + + (Type2), (5) 

where t24 and t23 are the total times required to cover 

Templates 2-4 and 2-3, respectively; tt represents the 

time required for a turn, and tM is the time required to 

cover a main path; ts denotes the time required to cover 

an interval, which can be expressed as (6). Fig. 6 shows 

that the number of intervals (Ns), the number of main 

paths (NM), and the number of turns (Nt) in the current 

template are defined by (7) and (8). 
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where n denotes the number of different speeds (n = 6), 

/ ,
i i
t d V=  and d is distance between the current position 

of the robot and the turning point. 

/
s c s

N w w= , 1
M H

N N= + , 2
t H

N N= ∗ (type1), (7) 

/
s c s

N w w= , 
M H

N N= , 2
t H

N N= ∗ (type2). (8) 

 

2.2.4 Computation of time cost between two adjacent 

cells 

To calculate the time cost between adjacent cells, each 

node of the flow network must carry the information of 

the corresponding cell. This information includes the 

geometry, start point, and end point of the cell. After cell 

decomposition, the nodes in the flow network retain only 

the information on the size of the corresponding cells, 

except for the start node. However, the start node stores 

the information on the size of the corresponding cells, as 

well as the information at the start point. The start point 

of the start node is the point closest to the location of the 

initial location of the robot to one of the four cell corners. 

The cost between adjacent cells is computed in two 

steps. As illustrated in Fig. 7, the start and end points of 

the current cell are determined based on the previous and 

subsequent cells, respectively. The start point of the 

initial node is determined from the initial location of the 

robot. Therefore, within each step of the search 

algorithm, an end point of the current cell and a start 

point of the next cell are determined by searching the 

closest couple points between one of the four corners of 

the current cell and one of the four corners of the next 

cell. 

 

 

Fig. 7. Two different time costs to an edge. 
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A corresponding template is chosen based on the set of 

the start and end point of the current cell. The cost 

between adjacent cells is the summation of the time 

required to cover the current cell and the time spent to 

shift between the adjacent cells. As shown in Fig. 7, the 

time cost between Cell2 and Cell4 may vary depending 

on the previous cell.  

1

24 23 1
,C t s= +  (9) 

3

24 43 1
,C t s= +  (10) 

where 1C24 is the time cost covering Cell2 and Cell4 

when the previous cell is Cell1; 3C24 is the time cost 

covering Cell2 and Cell4 when the previous cell is Cell3; 

t23 and t43 denote the time costs for Templates 2–3 and 4–

3, respectively; and s1 is the time required to shift 

between adjacent cells. 

 

3. SIMULATION 

 

Simulation using a single robot is conducted in a 

LabView environment to verify the influence of the 

proposed algorithm on the time efficiency of the 

generated path. The robot is assumed to be operated in an 

enclosed rectangular workspace, and information on the 

workspace is obtained by the same method used in a 

previous study [1]. Map building and localization are 

completed by wall following with a laser range finder 

(LRF) and StarGazer. During wall following, LRF also 

gathers information on obstacles. With the combination 

of the LRF data reconstruction and the StarGazer 

position data, the contours of the obstacles are obtained 

by line extraction. The workspace measures 5 m × 5 m 

and has two rectangular obstacles. The speed control of 

the robot is the same in simulation and experiment. The 

robot can move at six different speeds (Vi), and its 

normal operating speed equals the maximum speed of 

22.6 cm/sec. The robot must decelerate when it 

approaches a turning point; the robot begins to decelerate 

before it reaches 40 cm from a turning point and 

gradually slows down with constant distance. Further-

more, the turning time (tt) of the robot is assumed as 5 

sec in the simulation.  

Figs. 8 and 9 show the generated minimum cost path 

with the flow network as well as the coverage path from 

the simulation. The time-efficient order in which the 

cells are to be cleaned by the robot is presented as Path = 

{Cell1, Cell2, Cell3, Cell4, Cell6, Cell5, Cell7}. The 

optimum time-efficient path is compared with all other 

possible paths to show the improved time efficiency of 

the proposed algorithm. Table 1 shows the simulation 

result in which all possible paths are compared. The total 

number of turns and the time spent to complete the 

coverage task are also shown. 

 

4. EXPERIMENT 

 

Experiments with two robots are conducted with two 

different obstacle placements. To demonstrate the prac-

tical efficiency and robustness of the proposed algorithm, 

the experimental results are compared with the simula-

tion results by using the two performance indexes. 

 

4.1. Experimental setup 

The size and shape of the workspace and obstacle 

locations of the experimental setup are similar to those in 

the simulation. The landmarks are attached beneath the 

ceiling of the room for localization, as shown in Fig. 10. 

Figs. 11 and 12 illustrate the two different experimental 

setups. The purpose of changing the obstacle location is 

to validate the robustness of the proposed algorithm for 

various environments. The lines attached on the floor do 

not contribute to the experiments and are merely used to 

estimate visually the sensor error of localization. The 

marked lines also provide convenience in observing the 

experiments with the naked eye. 

 

 

Fig. 8. Minimum cost path through a flow network. 

 

Fig. 9. Generated coverage path. 

 

Table 1. Simulation result. 

Covering order # of turns Total time (sec)

1-2-3-4-6-5-7 41 602  

1-2-3-4-5-6-7 46 650 

1-3-2-4-6-5-7 54 682 

1-3-2-4-5-6-7 50 665 
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Fig. 10. Passive landmarks beneath the ceiling. 

 

 
Fig. 11. The first layout of obstacles for experiment. 

 

 
Fig. 12. The second layout of obstacles for experiment. 

 
4.2. System setup 

Two differential-driven mobile robots (“X-bot” from 
Yujin Robot Co., Ltd.) are used to accomplish the 
experiment on the proposed CCPP algorithm. The robots 
are equipped with two sensors, as illustrated in Fig. 13. 
One is a laser range sensor for recognizing indoor 
environmental components such as walls and static 
obstacles. This sensor is also used to avoid collision with 
obstacles and other robots. 

Stargazer, a landmark-based indoor navigation sensor 
system, is used for localization to execute the coverage 
task, The robots determine their positions by detecting 
and recognizing landmarks beneath the ceiling (Fig. 10) 
with the onboard sensor unit. Stargazer provides robust 
data on its position and heading angle with high 
resolution for localization. All sensors and robot 
controllers are interfaced to the remote supervisory 
control computer with a wireless universal serial bus hub. 

The main control code is written in the “VI” of LabView, 
and the experiment is processed online through wireless 
communication. 

 
4.3. Experimental complexity 

The complexity of the experiment stems primarily 
from the errors and jumps of the localization sensor. 
Some data jump and become lost when the sensor shifts 
from one landmark to another because the localization 
sensor uses landmarks to obtain its position data. The 
data corresponding to the current landmark jump sudden-
ly to different values belonging to a new landmark. 
When the robot speed increases, the jump error tends to 
increase. Thus, the maximum speed of the robot is 
limited to 22.6 cm/sec in the experiment. 

 
4.4. Experimental results 

The experimental results are obtained for different 
experimental setups and different numbers of robots 
(Figs. 14 and 15). The traced path of the cleaning robots 
is denoted as a thick curve in the figures. Fig. 14 shows 
the same suggested path in the simulation in Fig. 9. The 
path of the experiment is plotted with the acquired data 
from the localization sensor of the robots; thus, this path 
may vary from the trajectory of the real robot because of 
sensor errors and jumps. The first experiment is accom-
plished in the environment setup shown in Fig. 11; two 
cleaning robots are used to compare the experimental 
results with the simulation results. The first robot, 
Robot1, starts at a global coordinate (250, 250) and 
covers Cell1 to Cell4. The order in which the cells are to 
be cleaned by the first robot is described by Path1 = 
{Cell1, Cell2, Cell3, Cell4}. The second robot, Robot2, 
begins at a coordinate (4750, 4750) and covers Cell5 to 
Cell7. The order of the path of the second robot is 
presented as Path2 = {Cell7, Cell6, Cell5}. The second 
experiment is conducted in the environment setup illus-

 

Fig. 13. Robots used in the experiment. 

 

Fig. 14. Experimental result for the first layout. 
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trated in Fig. 8. The traced path of a single cleaning robot 

for the second experiment setup is illustrated in Fig. 15, 

where the order in which the cells are to be cleaned by 

the robot is described by Path1 = {Cell1, Cell2, Cell3, 

Cell4, Cell5, Cell6, Cell7}. Table 2 shows the total 

number of turns as well as the time spent to complete 

coverage for both the experiment and simulation. The 

experimental result of the proposed algorithm is 

compared with the experimental result of the algorithm 

used in each of [1,10], and [11]. The sizes of the 

workspaces in [10] and [11] are 3.7 m × 3.5 m and 4 m × 

7 m, respectively. These dimensions vary considerably 

that direct comparison of the workspaces provides no 

relevant result. The numbers in the parentheses of Table 

2 are approximately normalized values with respect to 

the experimental condition. The approximately normal-

ized number of turns is obtained by dividing each result 

by the ratio of the area. The total time cannot be 

normalized because the maximum robot velocities in the 

previous studies are different and the speed of the robot 

changes during the experiment. However, a higher total 

time can be estimated given a larger normalized number 

of turns.. Thus, the approximate normalized total time is 

determined using the same calculations as that of the 

approximate normalized number of turns. 

5. CONCLUSION 

 

This study suggests a path planning method that plans 

the coverage path within a minimum time. The results 

show that the proposed path planning involves a smaller 

number of turns than do other existing methods when the 

cleaning robot path plan is in an environment with 

obstacles. A mobile robot requires a considerably long 

time to change its direction because the robot must first 

stop or decelerate. Path planning for an entire workspace 

is completed after planning the covering order of cells 

and deciding on the templates within each cell. These 

results indicate that the proposed CCPP is beneficial for 

practice as demonstrated by both simulation and experi-

ment.  
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