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Abstract: This paper addresses a consensus problem for second-order agents with unknown but 
bounded (UBB for short) disturbance which may affect the measure of neighbors’ velocities. In this 
study, the communication topology of the multi-agent system is supposed to be connected. In order to 
solve this consensus problem, a new velocity estimation called distributed lazy rule is firstly proposed, 
where each agent can estimate its neighbors’ velocities one by one. Then, a group of sufficient condi-
tions for this second-order consensus problem are presented by adopting graph theory and the well-
known Barbalat lemma, and the bounded consensus protocol is taken into account due to actuator satu-
ration. Theoretically, the group of agents can reach consensus under the proposed control protocol, 
which is also validated by some numerical experiments. 
 
Keywords: Barbalat lemma, bounded consensus protocol, distributed lazy rule, multi-agent systems, 
unknown but bounded disturbance. 
 

1. INTRODUCTION 

 
The distributed control of multi-agent systems gives 

much insight into the collective behaviors of multiple 
agents in natural systems, e.g. flocks of birds, schools of 
fish, herds of animals, colonies of bacteria, etc. 
Meanwhile, it has also been widely used in many areas 
such as cooperative control of unmanned air vehicles, 
formation control, wireless sensor networks, mobile 
robotic swarms and military applications [1-7]. Generally, 
the distributed control for a group of agents always aims 
to seek their consensus state, i.e., reach an agreement on 
a certain quantity of interest through information 
exchange among them. The consistent quantity or so-
called consensus state, which may depend on the initial 
state of all agents, can be physical quantities such as 
altitude, position, temperature, voltage, and so on.  

In the literature, Vicsek et al. [8] presented a discrete-
time model of finite autonomous agents that move in the 
plane with the same speed but different headings in their 
pioneering work, where the concept of neighbors of 

agents was introduced for the first time, and some 
simulations were provided to demonstrate the nearest 
neighbor rule. Following this research, Jadbabaie et al. 
[9] provided a theoretical explanation for the behavior 
observed in [8] by using graph and matrix theories. 
Besides, Olfati-Saber and Murray [10] addressed a 
systematical framework to study the consensus problems 
in networks of dynamic agents with fixed or switching 
topologies and communication time delays. He and Cao 
[11] investigated the lth order consensus problem for 
multi-agent systems and established a linear consensus 
protocol to solve it. Song et al. [12] studied the second-
order leader-following consensus problem of nonlinear 
multi-agent systems with general network topologies, 
and several effective sufficient conditions were obtained 
based on graph theory, matrix theory, and LaSalle’s 
invariance principle. In practical applications, agents 
may update their states with different paces, which 
entails the consideration of the asynchronous consensus 
problem. Xiao and Wang [13] studied such asynchronous 
consensus problem in a continuous-time multi-agent 
system with discontinuous information transmission by 
using nonnegative matrix theory and graph theory. More 
recently, Wang and Cao [14] analyzed the second-order 
quasi-consensus of leader-following multi-agent systems 
in four cases, and a unified result was given.  

In a multi-agent system, the convergence rate used to 
measure how quickly the consensus state can be reached 
has been studied via various methods [15-17]. In all 
these methods, the communication topology plays a key 
role in the convergence of consensus processes. Cao et al. 
presented new graph-theoretic results appropriate for the 
analysis of a variety of consensus problems cast in 
dynamically changing environments in [15,16], where 
the concepts of rooted graph, strongly rooted graph, and 
neighbor-shared graph were introduced and the worst 
convergence rates of these graphs were derived. In [17], 
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Nedic et al. considered a constrained consensus problem 
and addressed a distributed projected consensus 
algorithm with its convergence rate well established. 
Moreover, since it may be required that the agreement or 
consensus is reached in finite time in some practical 
situations, finite-time consensus becomes a hot topic 
these years [18-22]. The two recent surveys [23,24] are 
recommended for a relatively complete coverage of the 
literature on consensus.  

Despite the extensive studies on consensus, only 
limited approaches considered the influence of 
disturbances on measuring position, velocity, and other 
physical quantities. However, in reality, disturbances are 
ubiquitously presented in multi-agent systems due to 
various uncertainties such as model mismatches, channel 
noises, measurement errors, etc. In fact, the consensus 
for a directed network of agents with disturbance is quite 
difficult to be achieved explicitly, because it breaks the 
condition that the row sum of Laplacian matrix must be 0. 
In [25], Lin et al. investigated consensus problems for 
directed networks of agents with external disturbances 
and model uncertainty on fixed and switching topologies. 
Meanwhile, in [26], Xiong and Daniel proposed an 
impulsive control scheme to solve the consensus 
problems for directed networks of agents with nonlinear 
perturbations where a sufficient condition was proposed 
to guarantee the consensus of all agents. On the other 
hand, in most literature regarding multi-agent systems, it 
has been implicitly assumed that the neighbors’ states are 
fully accessible, which however is not always the case in 
reality. In fact, some information is unmeasurable due to 
technology limitations or environment disturbance. 
Therefore, the state estimation for the multi-agent system 
has become vitally important. In [27], Bauso et al. 
considered stationary consensus protocol for first-order 
agents in the presence of UBB disturbance, and proposed 
a rule of state estimation called lazy rule. The main 
contribution of their work was the introduction and 
solution of the ε-consensus problem, where the states 
converge in a target set of radius ε asymptotically or in 
finite time.  

With this background, since many individual systems, 
especially mechanical systems, are of second-order dy-
namics [12,28,29], we investigate the consensus problem 
for second-order agents with UBB disturbance on 
measuring neighbors’ velocities. This consensus problem 
is resolved by utilizing a distributed lazy rule. Note that 
here only the bound of the disturbance is needed to 
establish the theoretical framework and there is no 
additional requirement of its other statistical properties.  

This paper is organized as follows. In Section 2, some 
basic definitions in graph theory and preliminary results 
are presented. In Section 3, a new framework to study 
the consensus problem of second-order agent systems 
under UBB disturbance is established and the distributed 
lazy rule is formulated. In Section 4, the consensus 
problem for second-order agent dynamics with UBB 
disturbance is theoretically solved. Then, some illustra-
tive examples are provided in Section 5. Finally, the 
paper is concluded in Section 6.  

2. PRELIMINARIES 

 
In this section, some basic definitions in graph theory 

and preliminary results are briefly introduced for 
subsequent use.  

In a multi-agent system, each agent can only 
communicate with several other neighboring agents. Its 
communication topology is always represented by a 
weighted undirected graph ( )G V Aζ= , ,  of order n  
with a set of nodes 

1 2
{ },

n
V π π π= , ,�  a set of edges 

,V Vζ ⊆ ×  and a nonnegative symmetric matrix A =  
[ ].

ij
a  Here, the node indexes belong to a finite index set 

{1 2 }I n= , ,�  and an edge of G is denoted by an 
unordered pair of vertices, i.e., ( ).

ij i j
e π π= ,  Then, agent 

i and j can communicate with each other only when 
( )

i j
π π ζ, ∈  which is equivalent to the condition aij > 0. 

At this time, we say agents i and j are adjacent. Moreover, 
it is always assumed that the graph has no self-loop, i.e., 

0
ii
a =  for all .i I∈  Besides, A is a weight matrix and 
aij is the weight of ( ).

ij i j
e π π= ,  The set of neighbors 

of node πi is denoted by { |( ) },
i j j i

N π π π ζ= , ∈  and 
the Laplacian matrix is given as [ ]

n n
ijL l R

×

= ∈  with lii = 

i

ij

j N

a

∈

∑  and 
ij ij
l a= − , .i j≠  A path in a graph from πi 

to πj is a sequence of different vertices starting with πi 
and ending with πj such that consecutive vertices are 
adjacent. An undirected graph is connected if there is a 
path between any pair of nodes.  

In the sequel, the dynamics of each agent is described 
by a second-order differential system: 

( ) ( )

( ) ( )

i i

i i

t v tx
i I

t u tv

=⎧
∀ ∈⎨

= ,⎩

�

�

 (1) 

with initial conditions 
0

(0) ,
i i
x x=

0
(0) ,
i i
v v=  where 

(1) ( )( ) [ ] ,m T m

i i i
x t x x R= , ∈�

(1) ( )( ) [ ] ,m T m

i i i
v t v v R= , ∈�  

and ( ) m

i
u t R∈  denote the position, the velocity, and 

the control input or the protocol in consensus problem, 
respectively. For the second-order system (1), the 
consensus protocol [28,29] is: 

( ) ( ( ) ( ))

( ( ) ( )) ( ),

i

i

i ij j i

j N

ij j i i

j N

u t a x t x t

a v t v t bv t

α

β

∈

∈

= −

+ − −

∑

∑
 (2) 

where α > 0 and β > 0 are the coupling strengths, b > 0 
denotes the velocity damping gain and ( )

i
bv t−  denotes 

the velocity damping term which is assumed to be in 
proportion to the magnitude of velocity. 

Definition 1: For the multi-agent system (1)-(2), seco-
nd-order consensus is considered to be achieved if, for 
any initial conditions, we have  

( ) ( ) 0lim

( ) ( ) 0,lim

i j

t

i j

t

x t x t

v t v t

→∞

→∞

⎧ − =
⎪
⎨

− =⎪
⎩

 , .i j I∀ ∈  (3) 
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It is worthy to note that there are two different types of 
consensus in second-order agent dynamics, i.e., static 
consensus and dynamical consensus. For static consensus, 
it is required that ( ) ( ) 0,lim i j

t

x t x t

→∞

− = ( ) 0,lim i

t

v t

→∞

=  

,i j I∀ , ∈  i.e., each agent will eventually static, while 

for dynamical consensus, it is required that ( )lim i

t

x t

→∞

−  

( ) 0,jx t = ( ) ( ) 0lim i j

t

v t v t

→∞

− =  and ( ) 0,lim i

t

v t

→∞

≠ i j∀ ,  

,I∈  i.e., the agents still move in some space, while only 
the distance between each pair of agents and their 
relative velocities from each other tend to zero.  

Next, the Barbalat lemma [30] is introduced due to its 
usefulness in the stability analysis of time-varying 
dynamic systems.  

Lemma 1: Let R Rφ : →  be a uniformly continuous 

function on [0,∞), suppose that 
0

( )lim
t

t

dφ τ τ
→∞

∫  exists 

and is finite, then ( ) 0tφ →  as t →∞ .  

Note that ( )tφ  is a uniformly continuous function 
under the condition that the derivative of ( )tφ  is 
bounded. As an alternative, Lemma 1 has the following 
modified version.  

Lemma 2: If the derivative of ( )tφ  is bounded on 

[0,∞) and 
0

( )lim
t

t

dφ τ τ
→∞

∫  exists and is finite, then ( )tφ  

0→  as t →∞ .  
 

3. SYSTEM MODEL 

 
In this section, a new framework to study the 

consensus problem of second-order agent systems (1)-(2) 
under UBB disturbance is established and the distributed 
lazy rule is formulated. 

In reality, some variables of the agents in a multi-
agent system may not be measured precisely due to 
various kinds of disturbances, such as time delay, model 
uncertainty, external disturbances and asynchronism of 
clocks, which might cause the multi-agent system to 
diverge or oscillate. Since it is believed that UBB 
disturbance widely exists in many different fields, such 
as mobile robotics, vision, multi-inventory, data fusion, 
and unmanned air vehicles, in this paper, it will be 
considered and integrated into second-order agent 
dynamics. 

When agent j is a neighbor of agent i, 
ij
v�  is a 

disturbed measure of vj obtained by agent i, where 
(1) ( )

[ ]
m

ij ij ijv v v= ,� � ��  reflects the influence of dij on 
estimating v'ij, as shown in Fig. 1. Apparently, we have 
v'ij = ,j ijv d+  where (1) ( )

[ ]
m m

ij ij ijd d d R= , , ∈�  is a UBB 
disturbance, i.e., ( )

[ ],
k

ijd ξ ξ∈ − , {1 }k m∀ ∈ ,�  with a 
prior known constant 0.ξ >  Note that all agents have a 
perfect measure of their own velocities, that is, 0

ii
d =  

for all .i I∈  
For a given UBB disturbance with a priori known 
0,ξ >  the component of 

ij
v�  must belong to the 

interval 

 ( ) ( )  ( )k k k
ij ij ijv v vξ ξ
′ ′

− ≤ ≤ + ,
�  {1 }.k m∀ ∈ ,�  (4) 

Then, the problem is how to select 
ij
v�  from the above 

interval. Different from the lazy rule in [27], we define a 
distributed lazy rule: 

( ) ( )( )

( ) ( )
*( )

[ ]

minarg ,

{1, },

' k ' kk
ij ij ij

k k
k ij i

ij
v v v

v v
v

k m

ξ ξ∈ − , +

⎧ ⎫−= ⎨ ⎬
⎩ ⎭

∀ ∈

�

�
�

�

 (5) 

where * *(1) *( )

[ ] .
m T

ij ij ijv v v= , ,� � ��  According to this rule, 
each agent estimates its neighbors’ velocities as equal to 
the values *

ijv  that induces the minimal of ( )k
i

v v−  on 
the internal  ( )  ( )

[ ].
k k

ij ijv vξ ξ
′ ′

− , +  
Remark 1: When 0,ξ =  i.e., ( ) 0 [0 ),

ij
d t t≡ ,∀ ∈ ,∞  

it follows from (5) that .

ij j
v v
∗

=  In other words, for 
0ξ =  (no disturbance), all agents have a perfect 

measure of their neighbors’ velocities. According to the 
lazy rule in [27], each agent estimates its neighbors’ 
states together, i.e., 

( )
( ) ( )

( )
arg min

' k ' k
ij iij ij

k
i ij i

x x x j N

x x x

ξ ξ

∗

⎡ ⎤∈ − , + ∈⎢ ⎥⎣ ⎦

⎧ ⎫
⎪ ⎪

= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑
�

� � , 

thus the estimate of each neighbors’ state is not unique, 
and this results in an ε-consensus problem, where the 
agents converge into a target set of radius ε 
asymptotically. However, in the distributed lazy rule (5), 
it is required that each agent estimates its neighbors’ 
velocities one by one, such that the existence and 

uniqueness of *

ij
v�  is obvious and thus improve the 

robustness of the estimator, as a result, second-order 
consensus could be achieved. Moreover, the agent in 
[27] is first-order dynamical system, and the lazy rule 
cannot be directly used to establish consensus for 
second-order agents. Because, in the case of second-
order agents, according to the lazy rule, only the 
velocities of agents may achieve ε-consensus, i.e., 

( ) ( ) ,
i j
v t v t ε− ≤ ,i j I∀ , ∈  and the relative positions of 

agents may tend to infinite. 
 

Given the distributed lazy rule (5), the consensus 
protocol (2) is transformed as follows: 

Fig. 1. Velocity estimate between agent i and agent j. 
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*

( ) ( ( ) ( ))

( ( ) ( )) ( )

i

i

i ij j i

j N

ij ij i i

j N

u t a x t x t

a v t v t bv t i I

α

β

∈

∈

= −

+ − − , ∀ ∈ .

∑

∑ �

 (6) 

According to (5), there are three cases of the term 
*( ) ( )k k
ij iv v−� : 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

k k
ij i

k k k
j ij i

k k k
j ij i

k k k
j ij i

k k k
j ij i

k k k
j ij i

vv

v d v

if v d v

if v d v

v d v

if v d v

ξ

ξ

ξ

ξ

ξ

∗ − =

⎧ + − + ,
⎪
⎪ + − ≤ − ,
⎪
⎪
, + − ≤ ,⎨

⎪
+ − − ,⎪

⎪
+ − ≥ .⎪⎩

�

 (7) 

In fact, equation (7) is a dead-zone function which has 
been used in many different fields and applications, 
especially in the robust adaptive control [31]. Since the 
UBB disturbance dij could cause drift in the velocity 
estimates, the dead-zone function is adopted in this study 
to analyze second-order consensus, which can overcome 
this problem and guarantee the velocity convergence. For 
simplification, denote 

( ) 0

x if x

D x if x

x if x

ξ

ξ ξ

ξ

ξ ξ

+ ≤ − ,⎧
⎪

= ≤ ,⎨
⎪ − ≥ .⎩

 (8) 

From (7) and (8), we have 

* ( )
ij i j ij i
v v D v d vξ− = + − ,
�  (9) 

( ) ( ( ) ( )) ( )

( ( ) ( ))

( ( ) ( )) ( )

( ) ,

i

i

i

i

i ij j i i

j N

ij ij i

j N

ij j i i

j N

ij j ij i

j N

u t a x t x t bv t

a v t v t

a x t x t bv t

a D v d v i Iξ

α

β

α

β

∈

∗

∈

∈

∈

= − −

+ −

= − −

+ + − , ∀ ∈

∑

∑

∑

∑

 (10) 

where the function (1) (1) (1)( ) [ ( )j ij i j ij iD v d v D v d vξ ξ+ − = + − ,  

( ) ( ) ( )( )] .m m m T
j ij iD v d vξ, + −�  Thus, the second-order multi- 

agent system with UBB disturbance evolves as follows: 

( ) ( )

( ) ( ( ) ( )) ( )

( )

i

i

i i

i ij j i i

j N

ij j ij i

j N

x t v t

t a x t x t bv tv

a D v d v i Iξ

α

β

∈

∈

=⎧
⎪

= − −⎪
⎨
⎪ + + − , ∀ ∈ .⎪
⎩

∑

∑

�

�
 (11) 

Note that dij is a vector-valued function of t, and (11) is 
the time-varying dynamic system. In this case, the 
consensus analysis is more challenging since LaSalle’s 
invariance principle is no longer applicable here. In fact, 

LaSalle’s invariance principle is used to establish the 
consensus of the time-invariant system. Instead, Barbalat 
lemma will be adopted for consensus analysis of the 
proposed algorithm. 

 

4. CONSENSUS 

 
In this section, some conditions are obtained for 

solving a consensus problem of second-order agent 
dynamics (11), based on the following two assumptions: 

(A1): the communication topology G is connected; 
(A2): dij(t) = – dji(t), .i j I∀ , ∈  

Note that in assumption (A2) the disturbances dij and 
dji are of the same size but opposite direction. As a 
matter of fact, dij and dji have the same size because they 
exist in the same channel generated by agent i and j. 
Meanwhile, in the terms ( )j ij iD v d vξ + − , (

i ji
D v dξ + −  

),jv j iv v−  and 
i j
v v−  are the relative velocities with 

opposite direction, which infers that dij, dji are opposite in 
direction. The disturbance satisfying assumption (A2) is 
called anti-symmetric disturbance [32], which has been 
widely applied in various fields. 

The main result of this paper is given in the following 
theorem: 

Theorem 1: Given system (11), assume that both (A1) 

and (A2) are satisfied, then 
1

lim

i

n

ij
t i j N

a

→∞
= ∈

∑ ∑ ||
i j
x x− ||2 

exists, and ( ) 0,lim i

t

v t

→∞

= .i I∀ ∈  

Proof: Consider the following auxiliary function 

22

1 1

1 1

( )
2

( ) ( )
2

i

i

n n

i ij j i

i i j N

n n
TT

j ii i ij j i

i i j N

V t v a x x

x xv v a x x

α

α

= = ∈

= = ∈

= + −

−= + − .

∑ ∑∑

∑ ∑ ∑

 (12) 

Firstly, in order to study the behavior of ( )V t�  for 
,t →∞  we can write 

1 1

1 1

1

1

1

( )2 ( )

2 ( ) 2

2 ( )

( )

( )

i

i

i

i

i

n n
TT

j ii j ii ij

i i j N

n n
T T
i ij j i i i

i j N i

n
T
i ij j ij i

i j N

n
T
i ij j i

i j N

n
T

ij j i j

i j N

dV
x xv av x x

dt

v a x x b v v

v a D v d v

v a x x

a v x x

ξ

α

α

β

α

α

= = ∈

= ∈ =

= ∈

= ∈

= ∈

−= + −

= − −

+ + −

− −

− − .

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑

� � �

 (13) 

Since the topology G is undirected, we have 

1 1

( ) ( )

i i

n n
T T

ij j i j i ij j i

i j N i j N

a v x x v a x x

= ∈ = ∈

− = − ,∑ ∑ ∑ ∑  
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and obtain 

1 1

2 ( ) 2

i

n n
T T
i ij j ij i i i

i j N i

dV
v a D v d v b v v

dt
ξβ

= ∈ =

= + − − .∑ ∑ ∑  (14) 

To show that ( ) 0V t ≤�  for all [0 ),t∈ ,∞  we consider 

the term 
1

( ).

i

n
T
i ij j ij i

i j N

v a D v d vξ

= ∈

+ −∑ ∑  By the defini-

tion of the dead-zone function (8), we can easily get that 
the dead-zone function is an odd function, i.e., 

( ) ( ) 0D x D x x Rξ ξ+ − = ,∀ ∈ .  (15) 

According to (A2), (15), and the undirected topology 
G, it follows that 

1

1

( ) ( )

1 1

( ) ( ) ( )

( )

1
( ) ( )

2

1
( )

2

( ) .

i

i

i

n
T
i ij j ij i

i j N

n
T

i jij i ji j

i j N

n m
k k

ij i j

i j N k

k k k
i ji j

v a D v d v

v va D v d v

a v v

D v d v

ξ

ξ

ξ

= ∈

= ∈

= ∈ =

+ −

−= − + −

⎡= − −⎣

⎤× + − ⎦

∑ ∑

∑ ∑

∑ ∑ ∑

 (16) 

Recall that we have 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

0

k k k
i ji j

k k k
i ji j

k k k
i ji j

k k k
i ji j

k k k
i ji j

k k k
i ji j

D v d v

v d v

if v d v

if v d v

v d v

if v d v

ξ

ξ

ξ

ξ

ξ

ξ

+ − =

⎧ + − + ,
⎪
⎪ + − ≤ − ,
⎪
⎪
, + − ≤ ,⎨

⎪
+ − − ,⎪

⎪
+ − ≥ .⎪⎩

 (17) 

In the first case, when ( ) ( ) ( )
,

k k k
i ji jv d v ξ+ − ≤ −  it is easy 

to infer that the two following results hold: ( ) ( )k k
i jv v−  

0≤  and ( ) ( ) ( )( ) 0,k k k
i ji jD v d vξ + − ≤  hence, we have 

( ) ( ) ( ) ( ) ( )( ) ( ) 0.k k k k k
i j i ji jv v D v d vξ− + − ≥  In the second case, 

it is trivially satisfied that ( ) ( ) ( ) ( )( ) (k k k k
i j i jiv v D v dξ− + −  

( ) ) 0.k
jv =  Finally, in the third case, when ( ) ( )k k

i jiv d+ −  
( )

,

k
jv ξ≥  a symmetric argument holds. Hence, it implies 

that 

( ) ( ) ( ) ( ) ( )( ) ( ) 0

{1 2 }

k k k k k
i j i ji jv v D v d v

k m

ξ− + − ≥ ,

∀ ∈ , , , .�

 (18) 

According to (14), (16) and (18), we get 

1

2 0

n

T

i i

i

dV
b v v

dt
=

≤ − ≤ .∑  (19) 

Apparently, V(t) is not increasing because ( ) 0.V t ≤�  

Since ( ) 0 [0 ),V t t≥ ,∀ ∈ ,∞  it yields that ( )lim
t

V t
→∞

 is 

bounded, and ( ) (0) [0 ).V t V t≤ ,∀ ∈ ,∞  

For any sequence 
0

{ }
k
t

∞  with 
1k k

t t
+

≥  for all k, 

0
0t =  and ,lim k

k

t

→∞

= ∞  we can write 

1

0

0

( ) (0) ( )lim

( ) .
k

k

t

t

t
k

V t V V d

V d

τ τ

τ τ
+

∞

→∞

∞

=

− =

=

∫

∑ ∫

�

�

 (20) 

Denote ( ) ( ) ,
k r

k

t

t

k r V dτ τ
+

Δ , = ∫ �  from Cauchy condition 

for convergence of a series, it follows that 

( ) 0 for all 1lim
k

k r r
→∞

Δ , = , ≥ .  (21) 

According to (21), we have 

1

( ) 2
k r k r

k k

n
t t

T

i i
t t

i

V d b v v dτ τ τ
+ +

=

≤ − .∑∫ ∫�  (22) 

Therefore, 

1

( )
0

2

k r

k

n
t

T

i i
t

i

k r
v v d

b
τ

+

=

Δ ,
≤ ≤ − ,∑∫  (23) 

which implies that 

1

0 for all 1lim
k r

k

n
t

T

i i
t

k i

v v d rτ
+

→∞
=

= , ≥ .∑∫  (24) 

Thus, 
0

1

n

T

i i

i

v v dτ

+∞

=

∑∫  exists and is finite. Denote 

1

( ) ,
n

T

i i

i

g t v v

=

=∑  and 
1

( ) 2 .
n

T

ii

i

g t v v

=

′ = ∑ �
 Since V(t) is 

bounded in [0 ),∞  and 
2

1

,

n

i

i

v

=

∑
2

1

n

ij j i

i j Ni

a x x

= ∈

−∑ ∑  

are also bounded, we can get that ,
i j
v v− ,

i
x x−  

i j I∀ , ∈  are bounded. According to (11), it follows that 

,
i
v� i j I∀ , ∈  are bounded. From the above analysis, g'(t) 

is a bounded function on t∈ [0,∞). Consequently, by 
Lemma 2, 

1

( ) 0.lim lim

n

T

i i
t t i

g t v v

→∞ →∞
=

= =∑  

By (12), we obtain 

2

1

2

1

lim

2
( ) .lim lim

n

ij i j
t i j Ni

n

i
t t i

a x x

V t v
α

→∞
= ∈

→∞ →∞
=

−

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

∑ ∑

∑

 (25) 

Hence, 
2

1

lim

i

n

ij i j
t i j N

a x x

→∞
= ∈

−∑∑  exists. This completes 

the proof.               � 
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Remark 2: In the robust adaptive control, the sign and 
the absolute value functions are also very important. 
However, if we choose the sign or absolute value 
function, rather than the dead-zone function, on the 
estimation process, there may be some problems which 
make it real a challenge to analyze consensus in the 
multi-agent system introduced here. For example, both 
the sign and absolute value functions could not hinder 
the drift in the velocity estimates caused by the UBB 
disturbance. Meanwhile, for the sign function, since it is 
discontinuous, then the multi-agent system is also 
discontinuous on the vector field, in this case, we have to 
resort to the tools from non-smooth analysis, Filippov 
solutions for consensus analysis of the proposed 
algorithm. For the absolute value function, different from 
the dead-zone function, it is an even function, as a result, 
the method of Theorem 1 cannot be directly used to 
establish consensus in this case. 

 

Note that in Theorem 1, the velocities of agents can 
achieve static consensus asymptotically. Then, another 
important problem is that under what condition the 
positions of agents can also achieve consensus 
asymptotically. The following theorem develops a 
sufficient condition to establish the position consensus. 

 
Theorem 2: Assume that both (A1) and (A2) are 

satisfied and there exists a positive number M such that 
 ( ) {1 } [0 ),k
ijd M i j I k m t
′

≤ ,∀ , ∈ , ∈ , , , ∈ ,∞�  then system 

(11) achieves consensus. 
 

Proof: According to Theorem 1, the velocities of 
agents can achieve consensus asymptotically. In the 
following, we show that ( ) 0 .lim i

t

t i Iv
→∞

= ,∀ ∈
�

 

Based on system (11), we have 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

i

i

k k k k
i ij j i i

j N

k k k
ij j ij i

j N

t a x x bvv

a D v d v i Iξ

α

β

∈

∈

= − −

+ + − , ∀ ∈ .

∑

∑

�

 (26) 

Firstly, we verify that ( )
( )

k

i tv�  is a uniformly continuous 

function on [0,∞). In fact, 

( ) ( ) ( ) ( )( ) ( ).

i i

k k k k
ij j i ij j i

j N j N

a x x a v vα α

′

∈ ∈

⎡ ⎤
− = −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑  (27) 

It follows from the boundedness of V(t) that the function 
( ) ( )( )

i

k k
ij j i

j N

a x xα

′

∈

⎡ ⎤−
⎢ ⎥⎣ ⎦
∑  is also a bounded function, i.e., 

1
0M∃ >  such that ( ) ( )

1( ) ,

i

k k
ij j i

j N

a x x Mα

′

∈

⎡ ⎤
− ≤⎢ ⎥

⎢ ⎥⎣ ⎦
∑ t∀ ∈  

[0. ).∞  Thus, the function ( ) ( )( )

i

k k
ij j i

j N

a x xα

∈

−∑  is a 

uniformly continuous function on [0,∞). 

Then, we consider the function 

( ) ( ) ( )( ).

i

k k k
ij j ij i

j N

a D v d vξβ
∈

+ −∑  

By the definition of ( ),D xξ  we get 

1 2 1 2
( ) ( )D x D x x xξ ξ− ≤ − ,  (28) 

Thus, 

( )

( )

( ) ( ) ( )
1 1 1

( ) ( ) ( )
2 2 2

( ) ( ) ( )
1 1 1

( ) ( ) ( )
2 2 2

 ( )  ( )  ( )
1 2

 ( )  ( )  (

( ( ) ( ) ( ))

( ( ) ( ) ( ))

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

k k k
j ij i

k k k
j ij i

k k k
j ij i

k k k
j ij i

k k k
j ij i

k k
j ij i

D v t d t v t

D v t d t v t

v t d t v t

v t d t v t

v d v t t

v d v

ξ

ξ

η η η

η η

′ ′ ′

′ ′ ′

+ −

− + −

≤ + −

− + −

≤ + − ⋅ −

≤ + +{ })
1 2( )k
t tη ⋅ − ,

 (29) 

where 
1 2

[ ].t tη∈ ,  Based on the boundedness of 
 ( ) ( ),k
ijd t
′

 ( ) ( )k

i
v t

′

, {1 }.i j I k m∀ , ∈ , ∈ , ,�  we have 
2

M∃  

> 0, such that    

2
( ) ( ) ( ) [0 ).j ij iv t d t v t M t
′ ′ ′

+ + ≤ ,∀ ∈ ,∞  

Hence, equation (29) can be further written as 

( ) ( ) ( )
1 1 1

( ) ( ) ( )
2 2 2 2 1 2

( ( ) ( ) ( ))

( ( ) ( ) ( )) .

k k k
j ij i

k k k
j ij i

D v t d t v t

D v t d t v t M t t

ξ

ξ

+ −

− + − ≤ −

 (30) 

From (30), it can be seen that the function 

( ) ( ) ( )( )

i

k k k
ij j ij i

j N

a D v d vξβ
∈

+ −∑  

is a uniformly continuous function on [0,∞). Based on 

the above analysis, ( )
( )

k

i tv�  is a uniformly continuous 

function on [0,∞). From Theorem 1, we see that 
( )

0
( )lim

t
k

i
t

v dτ τ

→∞

∫ �  exists and is finite. According to 

Lemma 1, ( ) ( ) 0lim
k

i
t

v t

→∞

= ,� i I∀ ∈ , {1 }.k m∈ , ,�  Hence, 

( ) 0,lim i

t

v t

→∞

=� .i I∀ ∈  

Taking limit in (11), we obtain 

( ) 0lim
i

ij j i
t j N

a x x i I

→∞
∈

− = , ∀ ∈ .∑  (31) 

Therefore, 0,lim i j

t

x x

→∞

− = .i j I∀ , ∈  This completes 

the proof.               � 
 

Note that in Theorem 2, due to the velocity damping 
term –

 

bvi (t), the agents achieve static consensus 
asymptotically. Moreover, the consensus protocol (10) 
does not explicitly take actuator saturation into account, 
while, in reality, almost every physical actuator is subject 
to saturation. So it is important to study the dynamical 
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properties for the multi-agent system with actuator 
saturation (a bounded consensus protocol). Furthermore, 
equation (10) can be extended to a bounded consensus 
protocol, i.e., 

[ ]tanh tanh

tanh ( ) ,

i

i

i ij j i i

j N

ij j ij i

j N

u a x x b v

a D v d v i Iξ

α

β

∈

∈

⎡ ⎤= − −⎣ ⎦

⎡ ⎤+ + − , ∀ ∈⎣ ⎦

∑

∑
 (32) 

where tanh(·) is the hyperbolic tangent function and 

defined component-wise, that is, 
1

[ ] ,
T m

m
x x R∀ , , ∈�  

1 1
tanh([ ] ) [tanh( ) tanh( )] .

T T

m m
x x x x, , = , ,� �  Also note 

that, with (32), one has ( ) {deg( )} ,max
i I

u i bα β
∞

∈

≤ + +  

where deg(i) is the degree of the node πi, i.e., deg(i) = 
.

i

ij

j N

a

∈

∑  Thus, the second-order multi-agent system with 

the bounded consensus protocol evolves as follows: 

[ ]

( ) ( )

( ) tanh tanh

tanh ( )

i

i

i i

i ij j i i

j N

ij j ij i

j N

x t v t

v t a x x b v

a D v d v i Iξ

α

β

∈

∈

=⎧
⎪

⎡ ⎤= − −⎪ ⎣ ⎦⎪
⎨
⎪

⎡ ⎤+ + − , ∀ ∈ .⎪ ⎣ ⎦
⎪⎩

∑

∑

�

�  (33) 

 

Corollary 1: Given system (33), assume that both 
(A1) and (A2) are satisfied, then ( ) 0,lim i

t

v t

→∞

= .i I∀ ∈  

Proof: Consider the following auxiliary function 

2

1 1

( ) 1 log cosh( )

i

n n
T

i ij m i j

i i j N

V t v a x xα

= = ∈

⎡ ⎤= + − ,⎣ ⎦∑ ∑ ∑  (34) 

where cosh(·) is the hyperbolic cosine function and 
defined component-wise. 

In order to study the behavior of ( )V t�  for ,t →∞  
we can write 

[ ]

1 1

1

1

1

( )2 tanh

2 tanh tanh

tanh ( )
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i

i

i

i

i
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ξ
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∑ ∑

∑

∑ ∑

∑ ∑

�
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[ ]

1

1

)

2 tanh

2 tanh

0.

ij i

n
T
i i

i

n
T
i i

i

v

b v v

b v v

=

=

⎡ ⎤−⎣ ⎦

−

≤ −

≤

∑

∑

 (35) 

Under the similar proof in Theorem 1, we obtain 
( ) 0,lim i

t

v t
→∞

= .i I∀ ∈  This completes the proof.    � 

 

The following corollary is similar to Theorem 2, 
which develops a sufficient condition to establish the 
position consensus in (33). 

 

Corollary 2: Assume that both (A1) and (A2) are 
satisfied and there exists a positive number M, such that 

 ( )

,

k
ijd M
′

≤ ,i j I∀ , ∈ {1 },k m∈ , ,� [0 ),t∈ ,∞  then sys-

tem (33) achieves consensus. 
 

5. NUMERICAL SIMULATION 

 
This section presents several numerical examples for 

the systems (11) and (33) in order to illustrate the 
theoretical results obtained in the previous sections. 

Here, we consider ten agents moving in a 3-
dimensional space with the control protocols (11) and 
(33). The coupling strengths are chosen as α = 1, β = 1.5, 
and the velocity damping gain is set to b = 0.2. Initial 
positions and velocities of the 10 agents are chosen 
randomly from the cube [0,20]×[0,20]×[0,20] and 
[0,4]×[0,4]×[0,4], respectively. Moreover, for each j∈  

,
i

N  the disturbance (1) (2) (3)( ) [ ( ) ( ) ( )]Tij ij ij ijd t d t d t d t= , ,  

satisfies (1) ( ) cos ,
ij

d t wt=

(2) ( ) sin ,
ij

d t wt=

2

2

(3)

1
( ) ,t

ij
t

d t
+

=  

and the parameter w is chosen randomly from [0, 100]. 
Therefore, with the definition of the dead-zone function 
Dξ, we have ξ = 1. The interaction topology of the ten 
agents is presented in Fig. 2. 

Here, the communication topology is connected, and 
the weight matrix is set to be 

0 0 0 9 0 0 0 6 0 0 0 0 6

0 0 0 6 0 8 0 0 5 0 0 0 0

0 9 0 6 0 0 0 0 0 0 0 0

0 0 8 0 0 0 0 8 0 7 0 9 0 0

0 0 0 0 0 0 5 0 0 0 0
.

0 6 0 5 0 0 8 0 5 0 0 0 0 0

0 0 0 0 7 0 0 0 0 0 0

0 0 0 0 9 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 8

0 6 0 0 0 0 0 0 0 0 8 0

A =

. . .⎡ ⎤
⎢ ⎥. . .⎢ ⎥
⎢ ⎥. .
⎢ ⎥

. . . .⎢ ⎥
⎢ ⎥.
⎢ ⎥
. . . .⎢ ⎥

⎢ ⎥.
⎢ ⎥

.⎢ ⎥
⎢ ⎥

.⎢ ⎥
⎢ ⎥. .⎢ ⎥⎣ ⎦
 

 
Fig. 2. The interaction topology of ten agents. 
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Case 1: The consensus protocol (11) with UBB dis-
turbance. 

As we can see,  ( ) ( ) 100k
ijd t
′

≤ , i I∀ ∈ ,
i

j N∈ , {1k ∈ ,  

2,3}. Consequently, it follows from Theorem 2 that 
second-order consensus in the multi-agent system (12) 
can be achieved. Fig. 3 depicts the motion trajectories of 
all agents from t = 0 to 60 s, from which one can see that 

 
(a) x (1). (b) x (2). (c) x (3). 

Fig. 3. Position convergence of ten agents for x axis. 
 

 
(a) v (1). (b) v (2). (c) v (3). 

Fig. 4. Velocity convergence of ten agents for v axis. 
 

 
(a) x (1). (b) x (2). (c) x (3). 

Fig. 5. Position convergence of ten agents for x axis. 
 

 
(a) v (1). (b) v (2). (c) v (3). 

Fig. 6. Velocity convergence of ten agents for v axis. 
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all agents eventually achieve the same position. Fig. 4 
shows the convergence of velocities. Here, the final 
velocities of the agents are zero, which means that the 
agents achieve static consensus asymptotically due to the 
velocity damping term. 

Case 2: The consensus protocol (33) with UBB dis-
turbance. 

It follows from Corollary 2 that second-order 
consensus in the multi-agent system (33) can be achieved. 
Fig. 5 depicts the motion trajectories of all agents from t 
= 0 to 60 s, from which one can see that all agents 
eventually achieve the same position. Fig. 6 shows the 
convergence of velocities, where one can see that the 
final velocities of the agents are also zero. 

From the simulation results, we see that distributed 
lazy rule can make the multi-agent system more robust 
against external disturbances. Meanwhile, by comparing 
the results in Case 1 and Case 2, it can be seen that the 
protocol (11) has better convergence performance than 
the protocol (33), while the fluctuation of the velocity on 
the protocol (11) is larger than the protocol (33). 
 

6. CONCLUSION 

 
This paper discussed the consensus problem for 

second-order agents with UBB disturbance. In this study, 
it was assumed that there was a UBB disturbance in the 
neighbors’ velocities feedback and only the bound of the 
UBB disturbance was provided. A new velocity 
estimation called distributed lazy rule was proposed in 
order to solve such consensus problem. According to this 
rule, each agent estimates its neighbors’ velocities from a 
compact set of candidate points. By adopting the graph 
theory and the Barbalat lemma, sufficient conditions for 
second-order consensus in the multi-agent system were 
presented. Furthermore, the bounded consensus protocol 
was proposed by considering actuator saturation. Finally, 
the effectiveness of the proposed theoretical results has 
been demonstrated by several numerical examples. 
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