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Abstract: This paper deals with global exponential synchronization in arrays of coupled delayed neur-

al networks with both delayed coupling and one single delayed one. Through employing Kronecker 

product and convex combination technique, two novel synchronization criteria are presented in terms 

of linear matrix inequalities (LMIs), and these conditions are dependent on the bounds of both time-

delay and its derivative. Through employing Matlab LMI Toolbox and adjusting some matrix parame-

ters in the derived results, we can realize the design and applications of the addressed systems, which 

shows that our methods improve and extend those reported methods. The efficiency and applicability 

of the proposed results can be demonstrated by three numerical examples with simulations. 
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1. INTRODUCTION 

 

In past decades, synchronization of various chaotic 

systems has gained considerable attention since the 

pioneering works of Pecora and Carroll [1,2]. Presently, 

it is widely known that many benefits of having 

synchronization or chaos synchronization can be existent 

in various engineering fields. Also, the existence of 

synchronization in language emergence and development 

results can help come up with the common vocabulary 

and agents’ synchronization in organization management 

can improve their work efficiency. Recently, the problem 

on synchronization has been extensively investigated in 

chaotic systems owing to the potential applications in 

various engineering areas. Especially, since chaos 

synchronization in arrays of linearly coupled dynamical 

systems was firstly considered by [3], arrays of coupled 

systems including coupled delayed chaotic ones have 

attracted the researchers’ attention as they can exhibit 

some interesting phenomena [4,5], and many elegant 

results have been derived in [6-21].  

As one typical complex systems, delayed neural 

networks (DNNs) have been verified to exhibit some 

complex and unpredictable behaviors such as stable 

equilibria, periodic oscillations, bifurcation, and chaotic 

attractors. Thus chaos synchronization for arrays of 

coupled DNNs have been discussed by the researchers, 

and many elegant results have been proposed in [7-21]. 

In [7], by applying adaptive feedback controllers, the 

paper has studied the global synchronization of coupled 

complex networks with delayed coupling based on 

pinning control. The stability of synchronized state has 

been studied in arbitrarily coupled delayed complex 

networks in [8], where coupling configurations are not to 

be symmetric and irreducible. The synchronization of 

linearly coupled DNNs was investigated in [9], in which 

the dynamical behavior of the uncoupled system can be 

chaotic or others and the coupling configuration is 

variable. The authors in [10] have considered the robust 

synchronization of coupled DNNs under general 

impulsive control. In [11], this paper has proposed an 

adaptive procedure to the synchronization for coupled 

identical Yang-Yang type fuzzy DNNs based on one 

simple adaptive controller. In [12], with all parameters 

unknown, the authors studied the robust synchronization 

between two coupled DNNs that were linearly and 

unidirectionally coupled. Yet, those above-mentioned 

results were presented via some kind of complicated 

inequalities, which makes them uneasily checked and 

applied to real ceases by the most recently developed 

algorithms. Though employing Lyapunov functional and 

Kronecker product, the global synchronization and 

cluster one have been studied for DNNs including robust 

ones and discrete-time ones with delayed coupling or one 

single delayed coupling via LMIs in [13-21], and some 

easy-to-test sufficient conditions have been obtained. Yet, 
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the system forms in [13-21] seemed simple and the most 

improved techniques in [22,23] weren’t utilized to 

achieve the criteria, which make these results 

inapplicable to deal with DNNs of more general forms. 

Thus it is important and challenging to derive some less 

conservative results ensuring the global synchronization 

of coupled DNNs.  

In this paper, the global exponential synchronization 

of N identical DNNs with delayed couplings is 

considered and two novel LMI-based conditions are 

derived by utilizing Kronecker product technique. It 

shows that the chaos synchronization of coupled DNNs 

is ensured by a suitable design of inner coupled linking 

matrix and inner delayed coupled linking ones. The 

addressed systems can include some present models as 

its special cases and some effective mathematical 

techniques are employed to reduce the conservatism. 

Finally, the efficiency of the synchronization criteria can 

be demonstrated by utilizing three numerical examples.  

Notations: Rn
 denotes the n-dimensional Euclidean 

space, and n m×

R  is the set of all n m×  real matrices. 

For the symmetric matrices X, Y, X >Y (respectively, X ≥  

Y) means that 0X Y− > ( 0)X Y− ≥  is a positive-

definite (respectively, positive-semidefinite) matrix; AT 

represents the transpose of the matrix A; 
max

( )Aλ ,  

min
( )Aλ  denote the maximum eigenvalue and minimum 

one of matrix A, respectively; In represents the n n×  

identity matrix; the symmetric term in a symmetric 

matrix is denoted by∗ , i.e., .

T

X Y X Y

ZY Z

   
=   ∗  

  

 

2. PROBLEM FORMULATIONS 

 

Suppose the nodes are coupled with states ( )
i
x t ,  

{1 },i N∈ , ,�  then the DNNs of general form can be 

described by 

1

1

1

( ) ( ( )) ( ( )) ( ( ( )))

( ) [ ( ) ( )]

[ ( ( )) ( )]

[ ( ( )) ( ( ))]

i i i i

N

ij j i

j j i

N

ij j i

j j i

N

ij j i

j j i

t C x t Af x t Bf x t tx

I t l F x t x t

l K x t t x t

l J x t t x t t

β τ

τ

τ τ

= , ≠

= , ≠

= , ≠

= − + + −

+ + −

+ − −

+ − − − ,

∑

∑

∑

�

 (1) 

in which 
1

( ) [ ( ) ( )]T n

i i in
x t x t x t= , , ∈R�  is the state 

vector of the i-th network at time t, ( )
i
xβ =

1 1
[ ( )

i
xβ ,  

( )]T
n in
xβ,� stands for the behaved function, ( ( ))

i
f x ⋅ =  

1 1
[ ( ( )) ( ( ))] ,T

i n in
f x f x⋅ , , ⋅�  and 

1
( ) [ ( ) ( )]T

n
I t I t I t= , ,�  

∈R
n is the external input vector; 

1
diag{ }

n
C c c= , ,� >0, 

A= [ ]ij n na
×
,  B= [ ] ;ij n nb

×
 here F= [ ]ij n nf

×
, [ ]ij n nK k

×
= ,  

[ ]ij n nJ j
×

=  are respectively the inner coupling matrices 

between the connected nodes i  and j  at time t  and 

( ).t tτ−  

For the network (1), the following assumptions are 

adopted throughout this paper. 

Assumption 1: ( )tτ  are the interval time-varying 

delay satisfying 

0
0 ( ) ( )

m
t tτ τ τ τ µ≤ ≤ ≤ , ≤ < +∞.�  (2) 

Here we set 
0
.

m m
τ ττ = −  

Assumtion 2: [ ]ij N NL l
×

= is the configuration matrix 

that is irreducible and satisfies 

1

N

ij ji ii ij

j j i

l l i j l l
= , ≠

= , ≠ , = − .∑  

Here 0ijl >  if there is a connection between node i  

and the one j  and otherwise, lij =0.  

Assumption 3: There exist two positive scalars iπ ,  

i
γ  such that ( )

i
β ⋅  satisfies 

( ) ( )
0 ,i i

i i

x y

x y

β β
γ π

−
< ≤ ≤

−
 

and 

[ ( ) ( ) ( ) ][ ( ) ( ) ( )]

0 1

i i i i i i
x y x y v x y x y

x y i n

β β λ β β ψ− − − − − −

≤ ∀ , ∈ , = , , .R

� � � �

�

 

Here we set 
1

diag{ },
n

π πΠ = , ,�  
1

diag{ },
n

γ γΓ = , ,�  

1
Π = ΠΓ,

2

1 ( ),
2

Π = Π +Γ  and 

1 1 1
diag{ }

n n
λψ λ ψΛ = , , ,�  

{ }1 1
2

diag
2 2

n n
λ ψλ ψ ++

Λ = ., ,�  

Assumption 4: For any ,x y, ∈R  and constants 
i

σ
+
,  

,
i

σ
−  and 1 ,i n= , ,�  the activation function ( )

i
f ⋅  in 

(1) satisfies the condition 

[ ( ) ( ) ( ) ][ ( ) ( ) ( )]

0

i i i i i i
f x f y x y f x f y x yσ σ

+ −

− − − − − −

≤ .

 

Here we denote 
1 1 1

diag{ }
n n

σ σ σ σ
+ − + −

Σ = , ,�  and 
2

Σ =  

1 1diag .
2 2

n n
σ σσ σ

+ −+ − ++
 , ,
 

�
 

Based on Assumption 2, system (1) can be rewritten as 

the following form: 

1 1

( ) ( ( )) ( ( )) ( ( ( )))

( ) ( ) ( )

( ( )) [ ( ( )) ( )]

i i i i

N N

ij j ij

j j

j ii i i

x t C x t Af x t Bf x t t

I t l Fx t l K J

x t t l K x t t x t

β τ

τ τ

= =

= − + + −

+ + + +

× − − − − .

∑ ∑

�

 (3) 

To address the problem, we denote the set { ( )x s= =S  

1 0 0
[ ( ) ( )] ( ) ([ ] ),T T n

N i m
x s x s x s t τ τ, , : ∈ − , ,R� C  xi(s)=xj (s), 

1 2 }i j N, = , , ,�  as the synchronization manifold for 
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system (3). In the case, system (3) reaches synchroni-

zation, i.e., 
1 2
( ) ( ) ( ) ( ),

N
x t x t x t s t= = = =�  we can 

deduce the following synchronized state equation 

( ) ( ( )) ( ( )) ( ( ( ))) ( )

[ ( ( )) ( )],
ii

s t C s t Af s t Bf s t t I t

l K s t t s t

β τ

τ

= − + + − +

− − −

�

 (4) 

where 1 2 .i N= , , ,�  Obviously, the synchronization is 

invariant for the coupled system (4). Therefore, to realize 

complete synchronization, the assumption 
11
l = =�  

NN
l l=  has to be imposed on system (4). 

Remark 1: In Assumption 3, the assumption on 

( )
i
xβ�  is reasonable and does not result in the 

conservatism in many cases such as that, for the 

appropriate scalars a, b, c, ( )
i
xβ  can be expressed by 

i i
ax ax, + sin( )

i
b x ,

i
ax + 2sin ( )

i
b x ,

i
ax + cos( )

i
c x ,

i
ax +

3cos ( )
i

c x ,
i

ax + tanh( ),
i

c x  respectively, which means 

that system (1) can include those addressed forms in [12-

20] as its special cases. 

As illustrated in [19], due to the communication delay, 

the array of coupled nodes cannot be decoupled, the 

synchronized state is always not the trajectory of an 

isolated node but a modified one as (4). Furthermore, 

delayed coupling matrix and the degree of the node play 

the important roles in the synchronized state. In the paper, 

we give an improved discussion for such synchronization. 

Together with the Kronecker product in [13-16], we 

can reformulate the system (3) as follows: 

( ) ( ) ( ( )) ( ) ( ( ))

( ) ( ( ( ))) ( )

( ) ( ) ( ( )) ( ( ))

( )[ ( ( )) ( )]

N N

N

N

t I C t I A t

I B t t t

L F t L K J t t

l I K t t t

τ

τ

τ

= − ⊗ + ⊗

+ ⊗ − +

+ ⊗ + ⊗ + −

− ⊗ − −

x b x f x

f x I

x x

x x

�

 (5) 

with 
1

( ) [ ( ) ( )] ,T T T

N
t x t x t= , ,x �

1
( ( )) [ ( ( ))T

t x tβ= , ,b x �  

( ( ))] ,T T

N
x tβ

1
( ( )) [ ( ( ))Tf x⋅ = ⋅ , ,f x � ( ( ))] ,T T

N
f x ⋅  and 

( ) [ ( ) ( )] .T T T
t I t I t= , ,I �  

The following definition and lemmas are adopted. 

Definition 1 [14]: Dynamical networks (3) is said to 

achieve global exponential synchronization, if for any 

initial conditions ( )
i
sφ ,

0 0
( ) ([ ] )nj ms t tφ τ∈ − , , ,RC i, j= 

1 ,N, ,�  there exist 
0

T t>  and 0ε >  such that 

( ) ( ) ,ti jx t x t Me
ε−

− ≤� �  in which t >T and ⋅� �  denotes 

the Euclidean norm. 

Lemma 1 [22]: For any constant matrix ,

n n

X
×

∈R  

0,
T

X X= ≥  a scalar functional ( ) 0,h h t:= ≥  and a 

vector function [ 0]
n

x h: − , → R�  such that the following 

integration is well defined, then ( ) ( )
h

T

t h
h x s Xx s ds

−

− ≤∫ � �  

[ ( ) ( )] [ ( ) ( )]T
x t x t h X x t x t h− − − − .  

Lemma 2 [16]: Let U= [ ] ,ij N Nu
×

,P
×

∈
n n

R
1

[ ,
T

x x=  

] ,
T T

N
x,�  and 

1
[ ]

T T T

N
y y y= , ,�  with ,

n

i i
x y, ∈R i=1, 

.N,�  If T
U U=  and each row sum of U is 0, then 

1

( ) ( ) ( )T T
ij i j i j

i j N

x U P y u x x P y y
≤ < ≤

⊗ = − − − .∑  

 

3. DELAY-DEPENDENT SYNCHRONIZATION 

CRITERIA 

 

In the section, by utilizing the most improved 

techniques utilized in [23], we state and investigate the 

exponential synchronization for the system (5). 

Theorem 1: Supposing that Assumptions 1-4 hold, 

then the dynamical system (5) is globally exponentially 

synchronized, if there exist n n×  matrices 0P > ,  

0S > , 0Z > , ( 1 2),
i
L i = , n n×  matrices 0

l
P > ,  Ql > 0,  

Rl (l=1,2,3) making 0,
l l

T
l l

P R

R Q

 
 
 
  

≥  and n× n diagonal 

matrices 0U > , 0V > , 0W > , 0H > , 0R > , 0Q > ,G > 

0, 0 ( 1 2)
i
T i> = ,  such that the LMIs in (6) hold 

1 1 2 2
0 0

1

T T
ij ijI ZI I ZI

i j N

Ω − < , Ω − < ,

∀ ≤ < ≤ ,

 (6) 

where 
1 2 4 3

[0 0 0 ],
n n n n n n n n

I I I
⋅ ⋅ ⋅

= −
2 5

[0 0
n n n n

I I
⋅

=  

3
0 ],

n n n
I

⋅
−  and ijΩ  is at the top of next page with 

11 2 1 1 1 1

1 1 1 2 1

( ) ( )T T T T
ij

T T

S P l L K K L l N L F F L

G G U T T

Ξ = − + + + − +

−Γ − Γ − Σ − Π − Λ ,
 

14 2 1 2

T
R L A UΞ = + + Σ ,  

17 1 2 2
2( ) ,T T T T T

ijP L R Q lK L l NF LΞ = − + Π −Γ + −  

18 1 1
( ),T T

ijlL K l NL K JΞ = − − +  

110 1 1 2
,

T T T T T T
ijlK Q L C l NF Q G T

,

Ξ = − − + + Π  

111 2 2
,T T

T Q R
,

Ξ = Λ + −  

22 2 1 3 1
,P P P S Z WΞ = − + + − − − Σ  

25 2 1 3 2
,R R R WΞ = − + + + Σ  

33 3 1
P Z HΞ = − − − Σ ,  

55 2 1 3
,Q Q Q WΞ = − + + −  

2 2

77 2 2 0
,

T

m
L L S Zτ τΞ = − − + +  

78 2 2
( ),T T

ijlL K l NL K JΞ = − − +  

88 1 1
(1 ) 2 ,P Z VµΞ = − − − − Σ  

89 2 1
(1 ) ,V RµΞ = Σ − −  

8 10
( ) ,T T T T

ijlK Q l N K J Q
,

Ξ = − − +  

99 1
(1 )Q VµΞ = − − − .  

Proof: Based on Assumption 3 and matrix U =  

1 1

[ ] ,

1 1

ij N N

N

u

N

⋅

− − 
 =  
 − − 

�

� � �

�

 we construct the follow-

ing Lyapunov-Krasovskii functional: 
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3

1

( ( )) ( ( ))
i

i

V t V t

=

= ,∑x x  (7) 

where 

1
( ( )) ( )( ) ( ) 2[ ( ) ( ( ))]

( ) ( ) 2[ ( ( )) ( )]

( ) ( ),

T T

T

V t t U P t t t

U R t t t

U Q t

= ⊗ + Θ −

× ⊗ + − ϒ

× ⊗

x x x x b x

x b x x

x

 

0

0

0

1 1
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2 2

2

3 3

3
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( ( ))

( ( ))

( ) ( )

( ( )) ( ( ))

( )

( ( ))
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( ( ))m
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ds

s s
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U ds
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P R
U

Q

τ
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τ

τ

τ

 −
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−

 
 
 
  

−

−

 
 
 
 

  
= ⊗   ∗   

   
× +   
   

   
× ⊗   ∗   

 
+  

 

× ⊗
∗

∫

∫

∫

x
x

f x

x x

f x f x

x

f x

x

f x

( )

( ( ))

s
ds

s

   
,   

  

x

f x

0

0

0

3 0
( ( )) ( )( ) ( )
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m

t
T

t

t
T

m
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V t s U S s dsd

s U Z s dsd

τ θ

τ

τ θ
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θτ

− +

−

− +

= ⊗

+ ⊗

∫ ∫

∫ ∫

x x x

x x

� �
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with diag{ },

N

Θ = Π,Π, ,Π�
�����

diag{ },

N

ϒ = Γ,Γ, ,Γ�
�����

R= 

diag
1

{ },
n

r r, ,�  and Q=diag
1

{ }.
n

q q, ,�  Now by directly 

computing ( ( ))( 1 2 3)
i

V t i = , ,x
�  along the trajectory of 

system (5), it can be deduced that 

1
( ( )) 2 ( )( ) ( ) 2[ ( ) ( ( ))]

( ) ( ) 2 ( ( ))( )

[ ( ) ( ( )) ( ) ( ( ))

( ) ( ( ( ))) ( )

( ) ( ) ( ( )) ( ( ))
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T T

T
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N

N
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τ

τ

τ
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× ⊗ + ⊗

× − ⊗ + ⊗

+ ⊗ − +

+ ⊗ + ⊗ + −

− ⊗ − −

x x x x b x

x b x

b x f x

f x I

x x

x x

� �
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2 ( )( ) ( )

2 ( )( ( )) ( )

2 ( ( ))( ( )) ( )

T

T T T
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t U Q t

t U R Q t

t U Q R t

− ⊗Γ

+ ⊗ Π −Γ

+ ⊗ − ,

x x

x x

b x x

�

�

�

 (8) 

2 0 1 2 3 0

0 1 2 3

0 0

1 2 3 0

1

1

1

( ( )) [ ( )( ( )) ( )

2 ( )( ( ))

( ( )) ( ( ))

( ( )) ( ( ))]

(1 )[ ( ( ))( ) ( ( ))

2 ( ( ))( ) ( ( ( )))
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T

T

T

V t t U P P P t
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τ
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τ
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τ

≤ − ⊗ − + −

+ − ⊗ − +

× − + −
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− − − ⊗ −

+ − ⊗ −

+ − ⊗

x x x

x

f x f x

f x

x x

x f x

f x f x

�

2

2

2

3

3

3

( )))]

[ ( )( ) ( )
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T

T

T

T

m m

T
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T
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t
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t U R t

t U Q t

t U P t

t U R t

t U Q t

τ

τ τ

τ τ

τ τ

−

+ ⊗

+ ⊗
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− − ⊗ −

+ − ⊗ −

+ − ⊗ − ,

x x

x f x

f x f x

x x

x f x

f x f x

 (9) 

0

0

2 2

3 0

0

( ( )) ( )[ ( ) ( )] ( )

( )( ) ( )

(( )( ) ( )
m

T

m

t
T

t

t
T

m
t

V t t U S U Z t

s U S s ds

s U Z s ds

τ

τ

τ

τ τ

τ

τ

−

−

−

= ⊗ + ⊗

− ⊗

− ⊗ .

∫

∫

x x x
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x x

� � �

��

� �

 (10) 

Based on the methods in [22], it follows from 
m

τ =  

0
[ ( )] [ ( ) ]

m
t tτ τ τ τ− + −  and Lemma 1 that 

( )

0[ ( ) ] ( )( ) ( )

[ ( ( )) ( )] ( )

[ ( ( )) ( )]

m

t t
T

t

T

m

m

t s U Z s ds

t t t U Z

t t t

τ

τ

τ τ

ν τ τ

τ τ

−

−

− − ⊗

≤ − − − ⊗

× − − − ,

∫ x x

x x

x x

� �

 (11) 

0

( )

0

0

[ ( )] ( )( ) ( )

[ ( ) ( ( ))] ( )

[ ( ) ( ( ))]

t
T

m
t t

T

t s U Z s ds

t t t U Z

t t t

τ

τ

τ τ

ω τ τ

τ τ

−

−

− − ⊗

≤ − − − ⊗

× − − − ,

∫ x x

x x

x x

� �

 (12) 

11 14 17 18 1 110 111

22 25

33 2 3

2 2

55

3

77 78 2 2

88 89 8 10

99

1

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0

0

0

0

T

T T T

ij

T TT

T T

T T

S L B

Z

H R Z

U Q A L A Q

Q H

L B L C R

B Q

QC C Q T

, ,

,

Ξ Ξ Ξ Ξ Ξ Ξ

∗ Ξ Ξ

∗ ∗ Ξ Σ −

∗ ∗ ∗ − +

∗ ∗ ∗ ∗ Ξ

∗ ∗ ∗ ∗ ∗ − −Ω =

∗ ∗ ∗ ∗ ∗ ∗ Ξ Ξ − −

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ Ξ Ξ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − − −

∗ ∗ ∗
2

.

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ −  
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in which 0
( )

m

tτ τ

ν

τ

−

=  and 
( )

.m

m

tτ τ

ω

τ

−

=  Together 

with the terms in (10)-(12), we can estimate 
3
( ( ))V tx

�  as 

2 2

3 0
( ( )) ( )[ ( ) ( )] ( ) [ ( )T

mV t t U S U Z t tτ τ≤ ⊗ + ⊗ −x x x x
� � �  

0 0

0

0

( )] ( )[ ( ) ( )]

(1 )[ ( ( )) ( )]

( )[ ( ( )) ( )]

(1 )[ ( ) ( ( ))]

( )[ ( ) ( ( ))]

T

T

m

m

T

t U S t t

t t t

U Z t t t

t t t

U Z t t t

τ τ

ν τ τ

τ τ

ω τ τ

τ τ

− − ⊗ − −

− + − − −

× ⊗ − − −

− + − − −

× ⊗ − − − .

x x x

x x

x x

x x

x x

 (13) 

For any n× n matrices ( 1 2),
i
L i = ,  noting that UL = NL 

and ( )( )T

i
U L L F⊗ ⊗ = ( ) ( ),T

i
NL L F⊗ ( )( )T

iU L L K⊗ ⊗  

( ) ( )T

i
NL L K= ⊗  for 1 2,i = ,  it follows from (5) that 

1 2

1 2

1

2

0 2[ ( )( ) ( )( )]

{ ( ) ( ) ( ( )) ( ) ( ( ))

( ) ( ( ( ))) ( )

( )[ ( ( )) ( )]}

2[ ( )( ) ( )( )] ( )

2[ ( )( ( ))

( )( ( ))] (

T T T T

N N

N

N

T T T T

T T

T T

t U L t U L

t I C t I A t

I B t t t

l I K t t t

t NL L F t NL L F t

t NL L K J

t NL L K J t

τ

τ

= ⊗ + ⊗

× − − ⊗ + ⊗

+ ⊗ − +

− ⊗ − −

+ ⊗ + ⊗

+ ⊗ +

+ ⊗ + −

x x

x b x f x

f x I

x x

x x x

x

x x

�

�

�

� ( ))tτ .

 (14) 

Here we can employ the following terms to simplify the 

subsequent proof 

( ) ( ) ( )ij i j ij i j ij i jx x x x x x f x f x f x= − , = − , = − ,� � �  

( ) ( ) ( ) ( ) ( ) ( )ij i j ij i jx x x x x xβ β β β β β= − , = − .
� � �  

Based on ( ) ( ) 0U Q t⊗ = ,I ( ) ( ) 0T
iU L t⊗ =I  for 1 2,i = ,  

and Lemma 2, combining (8), (9), (13), and (14) yields 

{
1

( ( )) [2 ( ) ( ) 2[ ( )

( ( ))] ( ) 2 ( ( ))

[ ( ( )) ( ( ))

( ( ( ))) [ ( ( ))

( )]] 2 ( ) ( )

2 ( )( ) ( )

2 ( ( ))(

T
ij ij ij ij

i j N

T T
ij ij ij

ij ij

ij ij

T
ij ij ij

T
ij ij

T

ij

V t x t Px t x t

x t Rx t x t

Q C x t Af x t

Bf x t t lK x t t

x t x t Qx t

x t R Q x t

x t

β β

β

τ τ

β

≤ < ≤

≤ − + Π

− +

× − +

+ − − −

− − Γ

+ Π −Γ

+

∑x u
� �

�

�

�

�

0 1 2 3 0

0 1 2 3 0

0 1 2 3

0

1

1

) ( )

[ ( )( ) ( )

2 ( )( ) ( ( ))

( ( ))( )

( ( ))] (1 )

[ ( ( )) ( ( ))

2 ( ( )) ( ( ( )))

ij

T
ij ij

T
ij ij

T
ij

ij

T
ij ij

T
ij ij

Q R x t

x t P P P x t

x t R R R f x t

f x t Q Q Q

f x t

x t t P x t t

x t t R f x t t

τ τ

τ τ

τ

τ µ

τ τ

τ τ

−

+ − − + −

+ − − + −

+ − − +

× − − −

× − −

+ − −

 

1

2 2

2

3

3

3

2 2

0

( ( ( ))) ( ( ( )))]

[ ( ) ( ) 2 ( ) ( ( ))

( ( )) ( ( ))]

[ ( ) ( )

2 ( ) ( ( ))

( ( )) ( ( ))]

( )[ ] ( ) [

T
ij ij

T T
ij ij ij ij

T
ij ij

T
ij m ij m

T
ij m ij m

T
ij m ij m

T
mij ij

f x t t Q f x t t

x t P x t x t R f x t

f x t Q f x t

x t P x t

x t R f x t

f x t Q f x t

x t S Z x t

τ τ

τ τ

τ τ

τ τ

τ τ

+ − −

+ +

+

− − −

+ − −

+ − −

+ + −� �

0 0

0

0

1 2

( )

( )] [ ( ) ( )]

(1 )[ ( ( )) ( )]

[ ( ( )) ( )]

(1 )[ ( ) ( ( ))]

[ ( ) ( ( ))]

2[ ( ) ( ) ]{ ( )

( ( )) (

ij

T
ij ij ij

T
ij ij m

ij ij m

T
ij ij

ij ij

T T T T
ij ij ij

ij ij

x t

x t S x t x t

x t t x t

Z x t t x t

x t x t t

Z x t x t t

x t L x t L x t

C x t Af x

τ τ

ν τ τ

τ τ

ω τ τ

τ τ

β

− − − −

− + − − −

× − − −

− + − − −

× − − −

+ + −

− +

� �

( ))t

 (15) 

}

1

2 1

2

( ( ( ))) [ ( ( )) ( )]}]

2 [[ ( ( )) ( )

( ) ] ( ) [ ( ( )) ( )

( ) ]( ) ( ( ))]

ij ij ij

T T T
ij ij ij

T T T T T
ij ij ij ij

T T
ij ij

Bf x t t lK x t t x t

Nl x t Q x t L

x t L Fx t x t Q x t L

x t L K J x t t

τ τ

β

β

τ

+ − − − −

+ +

+ + +

.+ + −

�

�

 

By utilizing Asumption 3 for any n n×  diagonal matrix 

G > 0, the following inequality holds 

{ }
1

0 2[ ( ( )) ( ) ] ( )T T T
ij ij ij

i j N

x t x t Gx tβ
≤ < ≤

≤ .− Γ∑  (16) 

For any n n×  diagonal matrices 0U > , 0V > , 0W > ,  

H > 0, Ti >0(i=1,2) and ( 1 2)
i i i

iΣ , Π , Λ = , in Asumptions 

3 and 4, it follows that 

{ 1

1

2

1

2

0 1 0

0

0 [ ( ) ( )

2 ( ) ( ( )) ( ( )) ( ( ))]

[ ( ( )) ( ( ))

2 ( ( )) ( ( ( )))

( ( ( ))) ( ( ( )))]

[ ( ) ( )

2 ( )

T
ij ij

i j N

T T
ij ij ij ij

T
ij ij

T
ij ij

T
ij ij

T
ij ij

T
ij

x t U x t

x t U f x t f x t Uf x t

x t t V x t t

x t t V f x t t

f x t t Vf x t t

x t W x t

x t W

τ τ

τ τ

τ τ

τ τ

τ

≤ < ≤

≤ − Σ

− Σ +

− − Σ −

− − Σ −

+ − −

− − Σ −

− − Σ

∑

2 0

0 0

1

2

1 1 1 2

( ( ))

( ( )) ( ( ))]

[ ( ) ( )

2 ( ) ( ( ))

( ( )) ( ( ))]

[ ( ) ( ) 2 ( ) ( ( ))

ij

T
ij ij

T
ij m ij m

T
ij m ij m

T
ij m ij m

T T
ij ij ij ij

f x t

f x t Wf x t

x t H x t

x t H f x t

f x t Hf x t

x t T x t x t T x t

τ

τ τ

τ τ

τ τ

τ τ

β

−

+ − −

− − Σ −

− − Σ −

+ − −

− Π − Π

 (17) 
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}

1

2 1 2 2

2

( ( )) ( ( ))]

[ ( ) ( ) 2 ( ) ( ( ))

( ( )) ( ( ))]

T
ij ij

T T
ij ij ij ij

T

ij ij

x t T x t

x t T x t x t T x t

x t T x t

β β

β

ββ

+

− Λ − Λ

.+

�

��

 

Now together with the terms (15)-(17) and uij =−1, we 

can obtain 

1 1 2 2

1

1

( ( )) ( )[ ] ( )

( ) ( ) ( )

T T T
ij ij ij

i j N

T
ij ij ij

i j N

V t t I ZI I ZI t

t t t

ζ ν ω ζ

ζ ζ

≤ < ≤

≤ < ≤

≤ Ω − −

:= ∆ ,

∑

∑

x
�

 

where ijΩ  is presented in (6), and 

0

0

( ) [ ( ) ( ) ( ) ( ( ))

( ( )) ( ( )) ( )

( ( )) ( ( ( ))) ( ( ))

( ( ))].

T T T T T
ij ij ij ij m ij

T T T
ijij ij m

T T T
ij ij ij

T

ij

t x t x t x t f x t

f x t f x t tx

x t t f x t t x t

x t

ζ τ τ

τ τ

τ τ β

β

= − −

− −

− −

�

�

 

Through using Schur-complement and convex combina-

tion, the LMIs in (6) can guarantee ( ) 0ij t∆ <  to be true 

and thus, there must exist a positive scalar 0χ >  such 

that ( ) 0.ij t Iχ∆ ≤ − <  Therefore, one can deduce 

1

2 2

1

( ( )) ( ) ( ) ( )

[ ( ) ( ( )) ]

T
ij ij ij

i j N

ij ij

i j N

V t t t t

x t x t t

ζ ζ

χ τ

≤ < ≤

≤ < ≤

≤ ∆

≤ − + − ,

∑

∑

x
�

� � � �
 

which indicates that the system (5) can reach the 

asymptotical synchronization. 

Furthermore, based on the proof in [14], there must 

exist two positive scalars 0ϖ > , 0k >  such that 

2 01

( ) sup ( ) ( )
m

kt
ij i j

si j N

x t s s e

τ

ϖ φ φ
−

− ≤ ≤≤ < ≤

≤ − ⋅∑� � � �  

for 
0
.t t≥  By Definition 1, the dynamical system (5) 

can achieve the exponential synchronization, and it 

completes the proof. 

Remark 2: Theorem 1 presents one novel delay-

dependent criterion guaranteeing the system (5) to be 

exponentially synchronized. In [19], the authors 

considered global synchronization for arrays of coupled 

DNNs of simple forms and in the paper, we derive a 

more general DNNs and extended constant delay to time 

variable one, which extends the present methods. 

Moreover, by using LMI in Matlab Toolbox, it is 

straightforward and convenient to check the feasibility of 

the proposed results without tuning any parameters. 

Remark 3: During estimating  

( )
( )( ) ( ) ,

m

t t
T

m
t

x s U Z x s ds
τ

τ

τ

−

−

− ⊗∫ � �  

0

( )
( )( ) ( ) ,

t
T

m
t t

x s U Z x s ds
τ

τ

τ

−

−

− ⊗∫ � �  

the previous ignored terms  

( )

0[ ( ) ] ( )( ) ( ) ,
m

t t
T

t
t x s U Z x s ds

τ

τ

τ τ

−

−

− − ⊗∫ � �  and  

0

( )
[ ( )] ( )( ) ( )

t
T

m
t t

t x s U Z x s ds
τ

τ

τ τ

−

−

− − ⊗∫ � �  

have been considered based on convex combination in 

Theorem 1, which can help reduce considerable 

conservatism. Moreover, Theorem 1 has not utilized the 

free-weighting matrix variables widely employed in 

present literature, which can result in computational 

simplicity in a mathematical point of view. 

By utilizing the proof of Theorem 1, we try to address 

the following systems of more general form 

1

1

1

( ) ( ( )) ( ( )) ( ( ( )))

( ) [ ( ) ( )]

[ ( ( )) ( )]

[ ( ( )) ( ( ))]

i i i i

N

ij j i

j j i

N

ij j i

j j i

N

ij j i

j j i

x t C x t Af x t Bg x t t

I t l F x t x t

l K x t t x t

l J x t t x t t

β τ

τ

τ τ

= , ≠

= , ≠

= , ≠

= − + + −

+ + −

+ − −

+ − − −

∑

∑

∑

�

 (18) 

with the matrices C, A, B, F, K, J similar to relevant ones 

in system (1), and 
1 1

( ( )) [ ( ( )) ( ( ))]T
i i n in

g x g x g x⋅ = ⋅ , , ⋅�  

satisfying 

[ ( ) ( ) ( ) ][ ( ) ( )

( )] 0 1

i i i i i

i

g g g g

i n

α β ρ α β α β

ρ α β

+

−

− − − −

− − ≤ , ∀ = , , ,�

 (19) 

in which 
i

ρ
−
,

i
ρ
+  are given constants. Here we set 

3 1 1

1 1
4

diag{ }

diag
2 2

n n

n n

ρ ρ ρ ρ

ρ ρρ ρ

+ − + −

+ −+ −

Σ = , , ,

 ++Σ = . , ,
 

�

�

 (20) 

Theorem 2: Supposing that Assumptions 1-4 and (19) 

hold, then the dynamical system (18) is globally 

exponentially synchronized, if there exist n n×  

matrices 0P > , 0S > , 0Z > , ( 1 2),
i
L i = , n n×  matrices 

0
l
P > , 0

l
Q > , ( 1 2 3)

l
R l = , ,  making 

l l

T
l l

P R

R Q

 
 
 
  

≥ 0, and 

n n×  diagonal matrices 0( 1 2)
i

U i> = , , 0V > , 0W > ,  

0H > , 0R > , 0Q > , 0G > , 0( 1 2)
i
T i> = ,  such that, 

for 1 ,i j N≤ < ≤  

1 1 2 2
0 0

T T
ij ijI ZI I ZIΩ − < , Ω − < ,  (21) 

where 
1 2 5 3

[0 0 0 ],
n n n n n n n n

I I I
⋅ ⋅ ⋅

= −
2 6

[0 0
n n n n

I I
⋅

=  

3
0 ],

n n n
I

⋅
−  and ijΩ  is expressed in next page with 

11 2 1 1 1 1

1 1 2 3 1 1 2 1

( ) ( )

2

T T T T
ij

T

P S l L K K L l N L F F L

G U U T T

Ξ = − + + − +

− Γ − Σ − Σ − Π − Λ ,
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14 1 1 2

T
L A UΞ = + Σ ,  

15 2 2 4
R UΞ = + Σ ,  

18 1 2 2
2( )T T T T T

ijP L R Q lK L l NF LΞ = − + Π −Γ + − ,  

19 1 1
( )T T

ijlL K l NL K JΞ = − − + ,  

11 2 1 1 1 1

1 1 2 3 1 1 2 1

( ) ( )

2

T T T T
ij

T

P S l L K K L l N L F F L

G U U T T

Ξ = − + + − +

− Γ − Σ − Σ − Π − Λ ,
 

14 1 1 2

T
L A UΞ = + Σ ,

15 2 2 4
R UΞ = + Σ ,  

18 1 2 2
2( )T T T T T

ijP L R Q lK L l NF LΞ = − + Π −Γ + − ,  

19 1 1
( )T T

ijlL K l NL K JΞ = − − + ,  

111 1 1 2

T T T T T T
ijlK Q L C l NF Q G T

,

Ξ = − − + + Π ,  

112 2 2
( )TT Q R

,

Ξ = Λ + − ,   

22 2 1 3 3
P P P S Z WΞ = − + + − − − Σ ,  

26 2 1 3 4
R R R WΞ = − + + + Σ ,  

33 3 3
P Z HΞ = − − − Σ ,  

66
Ξ = −Q2+Q1+Q3−W, 2 2

88 2 2 0

T

m
L L S Zτ τΞ = − − + + ,  

89 2 2
( )T T

ijlL K l NL K JΞ = − − + ,  
8 11 2

T T
L C R

,

Ξ = − − ,  

99 1 3
(1 ) 2P Z VµΞ = − − − − Σ ,   

9 10 1 4
(1 )R Vµ

,

Ξ = − − + Σ ,  

9 11
( )T T T T

ijlK Q l N K J Q
,

Ξ = − − + ,   

10 10 1
(1 ) ,Q Vµ

,

Ξ = − − −  

 

Ωij =

11 14 15

22 26

33 4 3

1

2 2

66

3

0 0 0

0 0 0 0

0 0 0

0 0 0

0 0

0

S

H R

U

U Q

Q H

Ξ Ξ Ξ
 ∗ Ξ Ξ
 ∗ ∗ Ξ Σ −

∗ ∗ ∗ −

 ∗ ∗ ∗ ∗ − +

∗ ∗ ∗ ∗ ∗ Ξ

 ∗ ∗ ∗ ∗ ∗ ∗ − −

∗ ∗ ∗ ∗ ∗ ∗ ∗


∗ ∗ ∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗ ∗ ∗

 

18 19 1 111 112

2

88 89 2 8 11

99 9 10 9 11

10 10

1

2

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0
.

0 0 0 0 0

0

0

0

2 0

T

T T T

T

T T

L B

Z

Z

A L A Q

L B

B Q

QC T

T

, ,

,

, ,

,

Ξ Ξ Ξ Ξ










Ξ Ξ Ξ


∗ Ξ Ξ Ξ 
∗ ∗ Ξ

∗ ∗ ∗ − −


∗ ∗ ∗ ∗ − 

 

Proof: Based on Theorem 1, one can easily derive the 

theorem and the detailed proof is omitted here. 

Remark 4: If there does not exist one single delayed 

coupling in systems (1) and (18), i.e., K=0, we can easily 

derive the relevant results without the restriction on 

11 22 NN
l l l= = =�  in [ ] .ij N NL l

×
=  

Remark 5: Theorems 1-2 require the upper bound µ  

of time-delay ( )tτ  to be known. If µ  is unknown, by 

setting 
1 1 1
P R Q= =  in (7), we can derive the delay-

dependent and delay-derivative-independent criteria for 

the global synchronization based on Theorems 1-2. 

 

4. NUMERICAL EXAMPLES 

 

In the section, three examples are provided to illustrate 

the effectiveness of the proposed results.  

Example 1: We consider the following DNNs  

( ) ( ( )) ( ( )) ( ( ( ))) ( )x t C x t Af x t Bf x t t I tβ τ= − + + − +�  

with diag{1 5 1 5 1 5},C = . , . , .  and  

10 0 0 3 2 2

0 1 0 2 3 2

0 12 0 2 2 3

A B

− −   
   = − , = − ,   
   − −   

 

1 1

2 2

3 3

0 1 0 8 0 1sin(2 )

( ) 0 2 ( ) 0 8 0 1cos(2 )

0 3 0 8 0 1sin(2 )

x x

I t x x x

x x

β

. . + .  
  = − . , = . + . ,  
  . . + .   

 

2( ) 0 5 0 2sin(40 ) 0 05cos (80 )t t tτ = . + . + . ,  

( ) 0 3( 1 1 ) 0 1tanh( ).
i i i i i
f x x x x= . | + | − | − | + .  

One can get
0

0 3τ = . , 0 75
m

τ = . , 16,µ =  and the 

activation functions fi (xi) satisfy Assumption 4. Now 

setting the inner linking matrix 

2 1 1

1 2 1 ,

1 1 2

L

− 
 = − 
 − 

 

and the inner coupling matrices diag{7 7 7},F = , ,  K =  

diag{0 05 0 05 0 05},. , . , . diag{0 1 0 1 0 1},J = . , . , . we consider 

a dynamic networks consisting of three linearly coupled 

identical DNNs with couplings as  

3 3

1 1

( ) ( ( )) ( ( )) ( ( ( )))

( ) ( ) ( )

( ( )) 2 [ ( ( )) ( )]

i i i i

ij j ij

j j

j i i

x t C x t Af x t Bf x t t

I t l Fx t l K J

x t t K x t t x t

β τ

τ τ

= =

= − + + −

+ + + +

× − + − −

∑ ∑

�

 (22) 

for i=1,2,3. Fig. 1 shows that system (22) has a chaotic 

attractor. Together with Theorem 1 and LMI in Matlab 

Toolbox, there exist the feasible solutions to the LMIs in 

(6), which can guarantee the array of system (22) to 

achieve the exponential synchronization. The total error 

is defined by 

3

2 2

1 2 2 3

1

error( ) [ ( ) ( )] [ ( ) ( )]
i i i i

i

t x t x t x t x t

=

= − + − ,∑  
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and the synchronization error can be checked in Fig. 1. 

During the process of simulation, the initial conditions of 

nodes are selected as 
1

[ 0 5 0 3 0 1]
T

x = − . − . . ,
2

[0 7x = .  

0 5 0 2]
T

− . − . ,  and 
3

[1 0 5 0 3] .
T

x = . .   

Example 2: Consider one 2-dimensional delayed 

network system (18) as follows:  

( ) ( ( )) ( ( )) ( ( ( ))) ( )x t C x t Af x t Bg x t t I tβ τ= − + + − + ,�  

where  

1 5 0
,

0 1 5
C

. 
=  . 

 
2 0 2

,
0 3 3

A
− . 

=  − . 
 

1 5 0 1
,

0 2 2 5
B

− . − . 
=  − . − . 

 

1

1
1

2

2
2

0 8 0 2
1

( ) ,

0 8 0 2
1

x

x

x

x

e
x

e
x

e
x

e

β

 
. + . 

+ =
 
. + . 

+ 

 

0 10
( ) ,

0 05
I t

. 
=  − . 

 

2( ) 0 6 0 25sin(6 ) 0 1cos (20 ),t t tτ = . + . + .  

( ) tanh( )
i i i
f x x= , ( ) 0 5( 1 1 ),

i i i i
g x x x= . | + | − | − |  

1 2.i = ,  

Choosing the following inner linking matrix L =  

3 1 2

1 2 1

2 1 3

− 
 − 
 − 

 and the inner coupling matrices F =  

diag{5,5}, K=0, diag{0 15 0 15},J = . , .  we still consider 

a dynamic networks consisting of three coupled identical 

networks with delayed coupling as  

3

1

( ) ( ( )) ( ( )) ( ( ( )))

( ) [ ( ) ( ( ))]

i i i i

ij j j

j

x t C x t Af x t Bf x t t

I t l Fx t Jx t t

β τ

τ
=

= − + + −

+ + + −∑

�

 (23) 

for i=1,2,3. Fig. 2 shows that the system has a chaotic 

attractor. Based on Theorem 2, there dose exist the 

feasible solution to the LMIs in (21), which can 

guarantee to achieve the global exponential synchroni-

zation for the system (23). The total error of (23) is 

defined by 

2

2 2

1 2 2 3

1

error( ) [ ( ) ( )] [ ( ) ( )]
i i i i

i

t x t x t x t x t

=

= − + − ,∑  

and the total synchronous error can be depicted in Fig. 2 

with the initial conditions 
1

[ 0 5 0 3]
T

x = − . − . ,
2
x =  

[0 3 0 7]
T

. . ,  and 
3

[ 0 5 0 6] .
T

x = − . − .   

Example 3: Consider one typical 2-dimensional 

delayed network system (1) described by  

( ) ( ) ( ( )) ( ( ( )))x t Cx t Af x t Bf x t tτ= − + + − ,�  

where  

1 2 0
,

0 1 2
C

. 
=  . 

 
1 5 1 5

,
1 4 1 2

A
. − . 

=  − . . 
 

1 5 1 2
,

2 5 2 5
B

. . 
=  − . . 

 
1 1

2 2

1 1
( ) 0 5 .

1 1

x x
f x

x x

| + | − | − | 
= .  | + | − | − | 

 

By setting J = 0, we consider a dynamic networks 

consist-ing of three linearly coupled identical DNNs as  

3 3

1 1

( ) ( ) ( ( )) ( ( ( )))

( ) ( ( ))

[ ( ( )) ( )]

i i i i

ij j ij j

j j

ij i i

x t Cx t Af x t Bf x t t

l Fx t l Kx t t

l K x t t x t

τ

τ

τ

= =

= − + + −

+ + −

− − −

∑ ∑

�

 (24) 

for 1 2 3,i = , ,  and choose 

2 1 1

1 2 1 ,

1 1 2

L

− 
 = − 
 − 

F =  

 

 

Fig. 1. Synchronized trajectory and total synchronous

error of system (22). 

 

 

 

Fig. 2. Synchronized trajectory and total synchronous 

error of system (23). 
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diag{5 5},,  and diag{0 3 0 3}.K = . , .  Together with 

Theorem 1 and Remark 5, we can verify that the system 

(24) is globally exponentially synchronized, and the 

corresponding τ0, τm derived by the methods in the paper 

and the relevant ones in [19] are listed in Table 1, which 

shows that our methods can be more applicable and less 

conservative than the ones in [19].  

 

5. CONCLUSIONS 

 

This paper has studied the global exponential 

synchronization for arrays of coupled delayed neural 

networks. Two novel conditions have been established 

by employing Lyapunov-Krasovskii functional and 

convex combination techniques. It is worth pointing out 

that, the addressed systems can be of more general forms 

than the present ones and some good mathematical 

techniques have been employed. The derived 

synchronization criteria are presented in terms of LMIs, 

which can be checked easily by resorting to Matlab LMI 

Toolbox. Finally, three numerical examples are utilized 

to illustrate the efficiency of the derived methods by 

simulation results. 
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