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A New TSMC Prototype Robust Nonlinear Task Space Control 
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Abstract: In this study, a new terminal sliding mode control (TSMC) prototype robust nonlinear task 

space control approach is developed for 6 degree of freedom (DOF) parallel robotic manipulators in 

light of TSMC principle integrated with Lyapunov redesign method. Corresponding stability analysis 

is presented to lay a foundation for analytical understanding in generic theoretical aspects and safe op-

eration for real systems. An illustrative example of a 6 DOF parallel robot is bench tested to validate 

the effectiveness of the proposed approach. 
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1. INTRODUCTION 

 

Due to some superior advantages, such as: higher 

accuracy, higher stiffness, and higher load-carrying 

capacity over its counterparts, namely, serial manipula-

tors, parallel robotic manipulators have been extensively 

studied in both academy and industry [1-4]. By virtue of 

their merits, parallel manipulators can be used as 

actuators for high precision operation of heavy payload, 

such as flight simulator, astronomical telescopes and 

digital control machine-tools [5-8]. It is obvious that the 

operation precision is one of main objectives pursued by 

these equipments. As literature [9] has pointed out, after 

all of the mechanical design problems are solved, the 

operation precision is mainly determined by control 

algorithms employed by parallel robots. 

In system and control community, parallel robot is a 

typical multi-input multi-output (MIMO) nonlinear 

system, which can serve as a test bed for high-

performance controller [10]. Owing to complexity of 

mechanical structure of 6 DOF parallel robots, modeling 

error can not be avoided. Hence, it is required to cope 

with system uncertainty caused by modeling error and 

disturbance for achieving high control precision. To 

address this problem, some robust control approaches are 

presented for parallel robots. A robust tracking control is 

presented in link-space, which can achieve practical 

stability [1]. Resort to Lyapunov redesign method and 

the concept of linear sliding mode, literature [10] 

proposed a robust nonlinear control algorithm for 6 DOF 

parallel robotic manipulators, it can guarantee tracking 

error converge to a residual set in finite-time. By using 

convex integrated design method, a robust control 

approach is proposed for a planar parallel robot, which 

can simultaneously satisfy several performance 

specifications and achieve high control precision [11]. 

Adaptive robust posture control is studied for a 

pneumatic muscles driven parallel robot, in which 

uncertainty bounds can be estimated online [12]. A novel 

robust learning control is presented for high precision 

planar parallel manipulator [13]. 

In real industry, practical stability is more applicable 

for robot control. However, high control gain is usually 

needed to achieve higher control precision and faster 

converging speed in most of robust control algorithms. It 

is unexpected to use high gains in real industrial robotic 

manipulator control. 

TSMC is a finite-time stability control approach. It has 

some excellent characteristics, such as, fast convergence, 

insensitiveness to system uncertainty and external 

disturbance. This control approach is particularly useful 

for high precision control without using high gains [14]. 

By using finite-time reaching law and nonlinear terminal 

sliding mode (TSM), literature [15] develops a TSMC 

for serial robots and proves the tracking error can 

converge to a residual set in the presence of system 

uncertainty and external disturbance. However, the 

settling time estimated method is not presented by [15], 

which is expended to make tracking error converge to the 

residual set. 

Configuration of 6 DOF parallel robots is the most 

general one in parallel robotic manipulators. Control 

algorithm designed for them can be extended to other 

type parallel robot easily. Illuminated by the results of 
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literatures [10,15], a new TSMC prototype robust 

nonlinear control approach is developed for 6 DOF 

parallel robotic manipulator in this paper. In comparison 

with literature [10], the proposed approach employs 

nonlinear TSM and a TSM type feedback control law, 

literature [10] using linear sliding mode and linear 

feedback law. Literature [16] claims that TSM has 

terminal converging ability. Hence, the proposed 

approach can stabilize tracking error to a smaller residual 

set with faster converging speed than literature [10]. In 

comparison with literature [15], Lyapunov redesign 

method is employed by the proposed approach to analyze 

system stability and estimate settling time. However 

literature [15] does not present settling time estimating 

method under system uncertainty. 

In summary, this study emphasizes twofold 

considerations. The first is for application, the proposed 

approach may offer an alternative, but more effective 

algorithm for parallel robot control. The second is, for 

theory, TSMC is an important and challenging topic in 

nonlinear theoretical studying. Recently, it has been 

extensively studied for serial robot control [14,15,17]. 

Hopefully, for further development, this study can 

provide a new insight and application incentive in aspect 

of the theoretical development. 

The rest of this paper is organized as follows. In 

Section 2, the dynamic model of 6 DOF parallel robotic 

manipulators is described. In Section 3, the new TSMC 

prototype robust nonlinear control scheme is developed. 

In Section 4, an illustrative example is presented to 

validate the performance of the proposed approach. 

Finally, in Section 5, some concluding remarks are given 

to summarize this study. 

 

2. DYNAMIC MODEL OF 6 DOF PARALLEL 

MANIPULATORS 

 

A 6 DOF parallel robotic manipulator is composed of 

two bodies connected by the six extensible legs. Its task 

space coordinates of mass center of moving platform can 

be written as: 

[ ] ,
T

q X Y Z α β γ=  (1) 

where X, Y, Z is translations, ,α ,β γ  is rotations. In 

terms of Euler-Lagrangian method, the dynamic model 

of 6 DOF parallel robotic manipulators can be described 

as [5,10]: 

( , ) ( , , ) ( , )

( , )( ),T
f d

M q q C q q q G q

J q f f f

σ σ σ

σ

+ +

= − +

�� � �

 (2) 

where 6 6( )M
×

⋅ ∈R  is positive definite symmetry inertia 

matrix, 6( )C q⋅ ∈� R is Coriolis and centrifugal force 

vector, 6( )G R⋅ ∈ is gravity force vector, 6 6( )J
×

⋅ ∈R is 

Jacobian matrix, 6f ∈R is control input, 6

ff ∈R is 

actuator friction, 6

d
f ∈R is unknown external force 

perturbation and satisfies ,
d
f d≤  0d >  is a positive 

number, σ  is constant or time varying and represents 

system uncertainties including inertia, modeling error 

and measuring noise, ,σ ∈Σ Σ  is compact set. 

Dynamic equation (2) has the following properties 

[5,10]: 

Property 1: There are positive real numbers , 0m m >  

for ,
qr

q D∈ { , [0, )}
qr

D q q r r= ≤ ∈ ∞  and ,σ ∈Σ Σ  

is compact, inertia matrix ( , )M q σ  satisfies inequality: 

( , ) .mI M q mIσ< <  

Property 2: Matrix ( ) 2 ( )M C⋅ − ⋅
�  is skew-symmetric, 

that is, for 6
,x∈R ( ( ) 2 ( )) 0.T
x M C x⋅ − ⋅ =�  

In this paper, ⋅  denotes L2 norm for vector and 

corresponding induced norm for matrix, respectively. 

Suppose there are measuring noises in real control 

system, then, measuring error can be expressed as: 

,

q q q

q q q

δ

δ

′= −


′= − � � �
 (3) 

where 6
,qδ ∈R  6

qδ ∈� R  are position and velocity 

measuring error caused by measuring noise, respectively, 
6 ,q′∈R  6

q′∈� R  are position and velocity measuring 

values, respectively. According to definition (3), 

dynamic equation (2) can be rewritten as: 

1

( , ) ( , , ) ( , )

( , )( ) ,f d

M q q C q q q G q

J q f f f h

σ σ σ

σ

′ ′+ +

= − + +

�� � �

 (4) 

where 
1
( ) ( ) ( ) .h M q C qδ δ⋅ = − ⋅ − ⋅�� �  

In terms of dynamics characteristic of parallel robot, 

the following assumptions can be made: 

Assumption 1: Task space coordinate q and its time 

derivative q�  are measurable. 

Assumption 2: Each matrix in dynamic equation (2) 

can be written as nominal part plus uncertain part: 

0
( , ) ( ,0) ( , ),M q M q M qσ δ σ′= +  

0
( , , ) ( , ,0) ( , , ),C q q C q q C q qσ δ σ′ ′= +� � �  

0
( , ) ( ,0) ( , ),G q G q G qσ δ σ′= +  

ˆ( , , ) ( , , ) ( , , ),f f ff q q f q q f q qσ σ δ σ′ ′= +� � �  

( , ) ( ,0) ( , ).T

e
J q J q J qσ δ σ′= +  

Assumption 3: Jacobian matrix J is nonsingular. 

Remark 1: Because the singularity of J can be 

avoided in mechanical design and trajectory planning, 

assumption 3 is reasonable. 

Suppose qd, 
d

q�  are desired position and velocity, 

then, position error and velocity error are defined as: 

,

d

d

e q q

e q q

 ′ ′= −

′ ′= − � �

 (5) 

where ,e′ e′�  are position and velocity errors, respect-

ively. 
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The following notions are introduced for simplicity of 

expression [18]: 

1
[ , , ] ,

T

n
y y y
γ γ γ
= �  

1
[ , ] ,

T

n
y y y

γγ γ
= �  

1 1
( ) [ ( ), , ( )] ,T

n n
sig y y sign y y sign y

γγγ
= �  

where ,

n

y∈� .γ ∈�  

Command vector is defined as: 

1

( )

( ) ,

d

d

r q sig e

r q diag e e

α

α

α
−

 ′ ′= −Λ

′ = − Λ

�

� �� �

 (6) 

where { }
i

diag λΛ =  is positive definite diagonal matrix, 

1

2

,

p

p
α =

1 2
0 p p< <  are positive odd numbers, 1,i =  

,6.�  

Due to 1 0,α − <  singularity may occur as 0
i
e =  

and 0,
i
e ≠�  that is, 

1

0

lim ,
i

i i
e

e e
α−

→

→∞� 1, ,6.i = �  To 

avoid singularity, the following definition 
1

[ , ,
r r
e e= �  

6
]
T

r
e  is defined as: 

1

1

0

0

0 0,

i i i i

ri i i i

i

e e if e and e

e e if e and e

e

α

α

α ξ

α ξ ξ

−

−

 ′ ′ ′ ′≥ ≠



′ ′ ′ ′= < ≠
 ′ =


� �

� �

�

 (7) 

where 0ξ >  is a small positive real number, 1, ,6.i = �  

Under the definition e
r
, command vector r and r�  can 

be rewritten as: 

( )

.

d

d

r

r q sig e

r q e

α ′ ′= −Λ

′ ′= −Λ

�

� ��

 (8) 

In light of r, r�  TSM like generalized error can be 

defined as: 

.

s q r

s q r

′ ′ ′= −

′ ′ ′= −

�

� �� �
 (9) 

Remark 2: Conventional TSMC has singularity 

problem. Note that the method of this paper to avoid 

singularity is different from literature [19]. As singularity 

occurs, control input of literature [19] is set to be zero. 

By using a small positive number ,ξ  the proposed 

approach does not require to set control input to be zero. 

Suppose the control input includes two parts, that is, 

eq
f  and ,

T

e
J v
−  in terms of command vector r, r�  and 

TSM like generalized error ,s′ s′�  dynamic equation (4) 

can be expressed as: 

0 0 0

( ) ( )

ˆ( ) ( ) ( ) ,T T
e e f

M s C s

M r C r G J f J f ϕ

′ ′⋅ + ⋅

′ ′= − ⋅ − ⋅ − ⋅ + − +

�

�
 (10) 

where 

1 2 3
,

T T

e d
h h h J J v Jfϕ δ

−

= + + + +  

2
( ) ( ) ( ),h M r C r Gδ δ δ′ ′= − ⋅ − ⋅ − ⋅�  

3
ˆ( ) .T T T

eq f fh J f J f J fδ δ δ= ⋅ − −  

The control objective of this paper can be summarized 

as: Considering dynamic equation (10), develop a TSMC 

prototype robust nonlinear controller, guarantee system 

practical stability, namely, system tracking error can 

converge to a residual set in finite-time. 

 

3. TSMC PROTOTYPE ROBUST NONLINEAR 

CONTROLLER DESIGN 

 

Without loss generality, several technical assumptions 

are made to pose the problem in a tractable manner 

before controller design [10]: 

Assumption 4: Measuring errors qδ �  and qδ  are 

bounded. 

Assumption 5: 1,
T T

e
J J kδ

−

≤ < k  is a positive 

number. 

Assumption 6: ( ), ,e e k vϕ ρ ′ ′≤ +� v  is control 

law to be designed. 

Remark 3: If measuring errors and system uncertainty 

are not bounded, robust controller can not be designed. 

Under an effective robust controller, system measuring 

errors and system uncertainty must be bounded otherwise 

the design of robust controller is failed. Hence, 

Assumption 4~6 are reasonable. 

For 6 DOF parallel robotic manipulators, a TSMC 

prototype robust nonlinear control law is developed as: 

,

T
eq ef f J v−

= +  

0 0 0

1 2

( ( ) ( , ) ( )

ˆ ( ) ),

T
eq e

T
e f

f J M q r C q q r G q

J f K s K sig s β

−

′ ′ ′ ′ ′ ′= + +

′ ′+ − −

� �

 (11) 

( )

( )2

,

1

,
,

1

e e s
if s

k s
v

e e s
if s

k

ρ
ε

ρ
ε

ε

′ ′ ′
′− ≥

′−
= 

′ ′ ′
′− <

−

�

�

 

where 
1 1

{ },
i

K dia k=
2 2

{ },
i

K diag k=  are positive 

definite diagonal matrices, 0 1,β< < ( , ) 0e eρ ′ ′ >�  is a 

positive definite scalar function, ε  is a small positive 

number, 1, ,6.i = �  

Remark 4: 
1 2

( )K s K sig s
β

− −  is TSM type feedback 

control law, which can achieve faster converging speed 

and higher control precision. 

Remark 5: Literature [10] presents the following 

robust nonlinear control law: 

,

T
eq ef f J v−

= +
� � �  

0 0 0
( ( ) ( , ) ( )

ˆ ),

T
eq e

T
e f

f J M q r C q q r G q

J f Ks

− ′ ′ ′ ′ ′ ′= + +

′+ −

� �� � �

� �

 (12) 
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( )

( ) ( )2

,

1

,
,

1

e e s
if s

k s
v

e e s
if s

k

ρ
ε

ρ
ε

ε

′ ′ ′
′− ≥

′−
= 

′ ′ ′
′− <

−

� �
�

�
�

� �
�

 

where 
2

,

d
r q e′ ′= − Λ� � ,s e e′ ′ ′= + Λ�� � { }

i
diag λΛ = ��  and 

{ }
i

K diag k=
��  are positive definite diagonal matrices, 

1, ,6,i = � Ks′− � �  is linear feedback control law proposed 

by literature [10]. 

Remark 6: Inspired by literature [15], a continuous 

TSMC (CTSMC) can be designed for task space control 

of 6 DOF parallel robots, which is given as follows: 

0 0 0

1 2

( ( ) ( , ) ( )

ˆ ( ) ),

T
CTSMC e

T
e f CTSMC CTSMC

f J M q r C q q r G q

J f K s K sig s β

−

′ ′ ′ ′ ′ ′= + +

′ ′+ − −

� �

 (13) 

where ,r′� ,r′ s′  and β  are same as expression (11), 

1 1
{ },

CTSMC CTSMCi
K diag k=  

2 2
{ }

CTSMC CTSMCi
K diag k=  

are positive definite diagonal matrices, 1, ,6.i = �  The 

corresponding stability analysis of control law (13) is 

similar to [15]. 

Remark 7: The main differences between the 

proposed approach and literature [10] are the generalized 

error and feedback control law. The proposed 

generalized error s′  and feed back control law 
1

K s−  

2
( )K sig s

β
−  are illuminated by TSM, which have 

terminal converging ability. The generalized error s′�  

and feedback control law Ks′− � �  are derived from linear 

sliding mode. It will be seen both in proofs and 

simulations that the proposed approach has faster 

converging speed and smaller residual set than those of 

literature [10]. The main reason is attributed to the 

proposed control algorithm. Due to the power rule is 

employed in TSM like generalized error and feedback 

control law, the proposed approach can achieve higher 

control precision with faster converging speed [16,20,21]. 

Though the form of these two control are similar, 

stability analysis and settling time estimation are more 

difficult of the propose approach due to nonlinearity of 

s′  and 
1 2

( ) .K s K sig s
β

− −  

Remark 8: The main difference between the proposed 

approach and literature [15] is the method to cope with 

system uncertainty and the stability analysis. The control 

laws, that is, 
1 2

( )K s K sig s
β

′ ′− −  and ,v  are developed 

to overcome system uncertainty by the proposed 

approach, which is derived from Lyapunov redesign 

method. However, control law (13) uses feedback control 

law 
1 2

( )
CTSMC CTSMC

K s K sig s
β

′ ′− −  to overcome system 

uncertainty, the details can be found in [15]. Hence, the 

proposed approach is more flexible than that of literature 

[15] to cope with system uncertainty. Note that the 

settling time estimating method is proposed in light of 

Lyapunov redesign method while it is not given in 

literature [15]. 

Remark 9: If 1,α = 1,β = ,Λ = Λ�
1 2

,K K K= +�  the 

proposed control law (11) will be equal to control law 

(12). Hence, control law (12) is one of special case of 

control law (11). Therefore the proposed approach 

extends literature [10]’s results. 

For stability analysis, the following lemma is given 

[15]: 

Lemma 1: If 
1 2
, , , 0

n
b b b >�  and 0 2,l< <  the 

following inequality is held: 

2 2 2 2

1 2 1 2
( ) ( ) .l l l l

n n
b b b b b b+ + + ≤ + + +� �  

Theorem 1: Under Assumption 1~6, using Property 

1~2, consider dynamic equation (10), subjected to TSMC 

prototype robust nonlinear control law (11), system 

tracking error will be practical stability in the 

neighborhood 6{ , [0, ]},
r

D s R s r r′ ′= ∈ ≤ ∈ ∞  namely, 

position tracking error e′  and e′�  will converge to a 

small residual Ω  set in finite-time 
1
:t t≥  

2

1 0 0

min

min

1

2
( ) ,

2 (1 )

, ,
2 (1 )

, , 2 , 1, ,6 .

s

i i

i

t t m s t m
k N

m
s s

mk N

e e e e i
α

ε

ε

ε

λ

′

 
′= + − 

+ 

  
′ ′Ω = ≤ ∆ ∆ = 

+  

 
 ∆ ′ ′′ ′Ω = ≤ ≤ ∆ =  
  

 

� � �

 

Proof: Consider Lyapunov function: 

1
.

2

T
V s Ms′ ′=  (14) 

Using Property 1, the following inequality is held: 

( ) ( )1 2
,a s V a s′ ′≤ ≤  (15) 

where ( ) 2

1

1
,

2
a s m s′= ( ) 2

2

1
.

2
a s m s′=  It is 

obvious that ( )1
a s  and ( )2

a s  are class K  func-

tions. Differentiate V with respect to time along closed 

loop function (10), it yields: 

0 0 0
ˆ( )

1
.

2

T T T
e eq e

T T

V s M r C r G J f v J f

s Cs s Ms

ϕ′ ′ ′= − − − + + − +

′ ′ ′ ′− +

� �

�
 (16) 

By using Property 2, one can get: 

0 0 0
(

ˆ ).

T T
e eq

T
e

V s M r C r G J f v

J f ϕ

′ ′ ′= − − − + +

− +

� �

 (17) 

Substitute control law (11) into (17), it can give: 

( )
6 6

12

1 2

1 1

.

T

i i i i

i i

V k s k s s v
β

ϕ
+

= =

′ ′ ′= − − + +∑ ∑�  (18) 

When ,s ε′ >  substitute v of control law (11) into 
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(18), it yields: 

6 6
12

1 2

1 1

.

i i i i

i i

V k s k s
β +

= =

′ ′≤ − −∑ ∑�  (19) 

Suppose min_1k  and min_ 2k  are the minimal eigen-

values of matrices K1 and K2, respectively. Define 

min min_1 min_ 2min{ , },k k k=  then the following inequality 

must be held: 

6 6
12

min

1 1

.

i i

i i

V k s s
β +

= =

 
′ ′≤ − + 

 
∑ ∑�  (20) 

In light of Lemma 1, one can get the following 

inequality: 

( )2 1

min
0.V k s s

β +
′ ′≤ − + ≤�  (21) 

Choose ( ) ( )2 1

3 min
,a s k s s

β +
′ ′ ′= +  it is obvious 

that ( )3
a s′  is class K  function. Define 

1
,N s

β −
′=  

then ( ) ( )
2

3 min
1 .a s k N s′ ′= +  The following inequal-

ity is held: 

( )3
0.V a s′≤ − ≤�  (22) 

When ,s ε′ <  substitute v of control law (11) into 

(18), it yields: 

( )
2 2

3
.

s
V a s s

ρ
ρ

ε

′
′ ′≤ − − +�  (23) 

The last terms of inequality (23) satisfy inequality: 
2 2

4

s

s

ρ ε
ρ

ε

′
′− + ≤  [22], then inequality can be 

rewritten as: 

( )3
.

4
V a s

ε
′≤ − +�  (24) 

Let ( )1

3 2 1
2 ( ( )) ,a a a rε

−

< ( )1 1

3 2 1
( ) ,

2
a a a r

ε
µ

− −
 

= < 
 

 

according to Lypunov redesign method [22], there must 

be: 

( )3

1
,

2
V a s′≤ −�  .s rµ ′∀ ≤ <  (25) 

Choose ( )1

0 2 1
( ) ( ) ( ) ,s t a a rµ ε

−

′< <
0

( )s t′  is initial 

value of ( )s t′  at time t0, settling time and bounds of 

( )s t′  can be estimated as: 

2

1 0 0

min

2
( ) ,

2 (1 )
t t m s t m

k N

ε

ε

 
′= + − 

+ 
 (26) 

min

.
2 (1 )

m
s

mk N

ε
′ ≤ = ∆

+
 (27) 

Because s′ ≤ ∆  means ,
i
s ′ ≤ ∆ 1, ,6,i = �  i.e., 

1
( ) ,

i i i i i
e e sign e

α

λ φ′ ′′ + =� .

i
φ ≤ ∆  (28) 

Equation (28) can be rewritten as: 

1
( ) 0.

( )

i

i i i i

i i

e e sign e

e sign e

α

α

φ
λ

 ′ ′ ′+ − = 
′ ′ 

 

�  (29) 

Then, when 
1

( ) 0,
i i i i

e sign e
α

λ φ ′ ′− >  equation (29) 

is still kept in the form of TSM, this also means that 

position tracking error will converge to the following 

region: 

1

1

,
i

i

e

α

λ

 ∆′ ≤  
 

 1, ,6.i = �  (30) 

Furthermore, with TSM dynamics (28), velocity error 

will converge to the following region: 

2 ,
i
e ′ ≤ ∆�  1, ,6.i = �  (31) 

As 
1
,t t≥  TSM like generalized error ,s′  position 

tracking error e′  and velocity error e′�  will converge 

to residual sets 
s′

Ω  and ,Ω  respectively.          � 

Remark 10: If one chooses 1,α =  1,β =  literature 

[10]’s control law (see (12)) can stabilize linear sliding 

mode like generalized error ,s′�  position track-ing error 

e′  and velocity error e′�  to the following residual sets 

s′
Ω

�
�  and Ω�  in finite-time 

1
:t�  

( )
2

1 0 0

min

2
,

4
t t m s t m

k

ε

ε

 
′= + − 

 
� �  (32) 

min

, ,
4

s

m
s s

mk

ε

′

  
′ ′Ω = ≤ ∆ ∆ = 

  
�

� � �� �  (33) 

, , 2 , 1, ,6 ,
i i

i

e e e e i

λ

  ∆ ′ ′′ ′Ω = ≤ ≤ ∆ =  
   

�
� �� � �

�
 (34) 

where 
min
k�  is the minimal eigenvalue of matrix .K�  

Remark 11: Subjected to CTSMC control law (13), 

TSM like generalized error ,s′  position tracking error 

e′  and velocity error e′�  will converge to the following 

residual sets 
CTSMCs′

Ω  and 
CTSMC

Ω  in finite-time: 

{ }1 2
ˆ ˆ ˆmin( , ) ,

CTSMCs
s s′
′Ω = ≤ ∆ = ∆ ∆  (35) 

( ) ( )( )0

1

1

,
ˆ ,

M q e e k v

k

ρ
−

′ ′ ′ +

∆ =

�

 (36) 

( ) ( )( )0

2

2

,
ˆ ,

M q e e k v

k

ρ
−

′ ′ ′ +

∆ =

�

 (37) 
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where 
1 1

min{ },
CTSMCi

k k=
2
k =min{k2CTSMCi}, i=1, ,� 6. 

1

ˆ
ˆ, , 2 , 1, ,6 .

CTSMC i i

i

e e e e i

α

λ

 
  ∆′ ′′ ′Ω = ≤ ≤ ∆ =   
  

 

� � �  (38) 

Note that the estimation method for 
CTSMCs′

Ω  and 

CTSMC
Ω  can be found in literature [15], however the 

settling time estimation method is not presented by [15]. 

Compare the residual sets 
s′

Ω  and Ω  with 
CTSMCs′

Ω  

and ,
CTSMC

Ω  one can see that 
s′

Ω  and Ω  are mainly 

determined by ε  and feedback control gains, however, 

CTSMCs′
Ω  and 

CTSMC
Ω  are mainly determined by the 

bound of system uncertainty and feedback control gains. 

The control law presented by [15] can only use feedback 

control gains to obtain small residual set. Due to 

employing the small positive number ,ε  the proposed 

approach can obtain small residual set by using smaller 

ε  besides using feedback control gains. Hence, the 

proposed approach is more flexible than that of literature 

[15] in controller design. 

Remark 12: Due to 1 0,β − < N →∞  as 0.s′ →  

If controller parameters are selected appropriately, 

(1 ) 2.N+ �  Then, ,
s s′ ′Ω Ω

�
�� .Ω Ω��  If Ω = Ω�  is 

expected, controller parameters of literature [10] should 

satisfy 
min min

.k k� �  However, high control gain is 

undesirable in real industrial practice. 

Remark 13: If one chooses 
min min

,k k=
�

0 0
( ) ( )s t s t′ = �  

and make the proposed approach to stabilize TSM like 

generalized error s′  to the same residual set as 

literature [10], that is 
min

,
4

m
s s

mk

ε  
′ ′ ≤ 

  
 the settling 

time of the proposed approach is ( )( 2

1 0 0

2
t t m s t

N

′= +  

min

.
4

m
k

ε 
− 


 It is obvious that 

2 2
,

N ε

�  then 
1 1

.t t≤ �  

Namely, the proposed approach has faster converging 

speed than that of literature [10]. 

The proposed approach employs nonlinear TSM like 

generalized error and TSM type feedback control, 

however, literature [10] uses linear sliding mode like 

generalized error and linear feedback control. Hence, the 

proposed approach has higher control precision and 

shorter settling time. The aforementioned analysis has 

proved these viewpoints. In the next section, these claims 

will be further validated by an illustrative example. 

 

4. ILLUSTRATIVE EXAMPLE 

 

To validate the proposed approach, SimMechanics 6 

DOF parallel robot mode developed by MathWorks was 

used as a controlled plant. The parameters of 6DOF 

Stewart Platform were given as: the mass and mass 

moment of inertia values of upper platform were 

1216.9kg,m =
2, ( ) 304.48(608.46)kg m ,

X Y Z
I I I = ⋅  the 

mass moment of inertia values of upper and lower part of 

ith leg were 2, ( ) 24.17(0.023)kg m
uX uY uZ
I I I = ⋅  and 

2, ( ) 43.02(0.156)kg m ,
dX dY dZ
I I I = ⋅  the mass of upper/ 

lower part of ith leg were ( ) /( ) 51.81/ 92.11kg.
u i d i

m m =  

Suppose only parameters of upper platform were 

known, dynamics caused by six legs was considered as 

system uncertainty in controller design. Six DOF 

position signals could be measured accurately while 

velocity measuring signals were polluted by limited band 

white noise shown by Fig. 1. There were frictions at each 

actuator joint: ( ),fi fi eif a sign v= fa  is friction parameter, 

 

 

Fig. 1. Limited band white noise of velocity measuring signal. 
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ei
v  is velocity. Due to modeling error, suppose only 

nominal part could be acquired, that is, ˆ ˆfi fif a sign=  

( ),
ei
v

ˆ
fif  and ˆ fia  were nominal part of fif  and ,fa  

respectively. In this simulation, fia =1000 and ˆ fia =900. 

To validate effectiveness of the proposed approach, 

comparisons between the proposed approaches with the 

approaches presented by literature [10,15] were 

presented in this section. Controller parameters of the 

proposed approach (TSMC Prototype): {1},diagΛ =  

0.01,ε = 0.6,α = 0.6,β =
1

{5000},K diag=
2

K =  

diag{5000}. Controller parameters of literature [10] 

(Robust Nonlinear): {1},diagΛ =� {10000},K diag=� ε = 

0.01. Controller parameters of literature [15]: Λ =  

{1},diag 0.6,α = 0.6,β =
1

{5000},
CTSMC

K diag=  

KCTSMC2=diag{5000}. 

Remark 14: Compare controller parameters of the 

proposed approach with literature [10]’s, one can see that 

except ,α ,β  controller parameters ,Λ = Λ�
1 2

K K+  

.K=
�  Compare controller parameters of the proposed 

approach with literature [15]’s, one can see that except 

,ε  the controller parameters of literature [15] are same 

 

Fig. 2. Position tracking errors of six directions. 

 

 

Fig. 3. Control inputs of six actuators. 
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as the proposed controller’s. It means that these 

comparisons are fair. 

Fig. 2 shows position tracking errors of six directions. 

Solid line is the proposed approach (TSMC Prototype), 

dashed line is literature [10]’s approach (Robust 

nonlinear), dashdotted line is literature [15]’s approach 

(CTSMC). From this figure, one can see TSMC 

Prototype can stabilize position tracking error in a 

smallest residual set with shortest time, which validates 

effectiveness of the proposed approach. Fig. 3 shows the 

controller inputs of six actuators, this figure illustrates 

controller inputs of TSMC Prototype, Robust nonlinear 

and CTSMC are similar and bounded. Note that high 

control gains of Robust nonlinear are needed to achieve 

same control precision as TSMC Prototype does. 

However, high gain control is unexpected in industrial 

practice. In theory, if the control inputs are bounded, one 

can select the actuators such as electromotor according to 

the bounds of control inputs. In practice, actuators may 

be selected before the controller designing. In this 

situation, saturating control approach is required to solve 

this problem [23,24]. The saturating control approach 

which considers the actuator dynamics is under the 

author’s research. Any result in this direction will be 

reported as soon as it is completely developed. To further 

illustrate the effectiveness of the propose approach, ITSE 

(0~5) are listed in Table 1. This table also validates the 

effectiveness of the proposed approach. To valdiate the 

proposed approach, external force perturbations, that is, 

( ) 15000 ,
di
f t N= 2s 2.1s,t≤ ≤ 1, ,6i = �  were added to 

the system. From Fig. 2, it can be seen that the tracking 

performance of Robust nonlinear is affected strongly by 

the external force perturbation. This comparison also 

shows that the proposed approach has stronger 

robustness. From these simulations, one can see that the 

performances of the proposed approach are better than 

those of Robust nonlinear and CTSMC. This is attributed 

to the TSM like generalized error and feedback control 

law. The detailed explanations are given in Remarks 7 

and 8. 

 

5. CONCLUSIONS 

 

This article has studied the issues associated with that 

of practical stability for task space control of 6 DOF 

parallel robotic manipulators. In light of TSMC principle 

and Lyapunov redesign method, a new TSMC prototype 

control algorithm is developed. Compared with the 

approaches of literatures [10] and [15], the proposed 

approach can achieve higher control precision with faster 

converging speed. Settling time estimation method is 

presented explicitly. Stability analysis and a numerical 

example are presented to validate proposed approach. 

Then, a novel design procedure is developed for parallel 

robot control, which offers a more effective control 

approach. It should be mentioned that a series of 

comprehensive bench tests need to be conducted by 

simulations and lab demonstrations before applying the 

approach to control of real parallel robotic manipulators. 
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