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Exponential Stability of Nonlinear Delay Equation with 

Constant Decay Rate via Perturbed System Method 
 

Hui Wang, Chuandong Li*, and Hongbing Xu 

 

Abstract: This paper studies the exponential stability of nonlinear differential equations with constant 

decay rate under the assumption that the corresponding crisp equation (without delay, simply, non-

delay equation) is exponentially stable. Different from most publications dealing with delay systems by 

applying Lyapunov-type methods, the perturbed system method is used in this paper. It shall be shown 

that the considered equations will remain exponentially stable provided the time lag is small enough. 

Moreover, we formulate and estimate the threshold of delay ensuring exponential stability when a con-

stant decay rate appears explicitly in system model, which is better than the existing results. 
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1. INTRODUCTION 

 

Stability analysis of time-delay systems is of both 

practical and theoretical importance since time delays are 

frequently the main cause of instability and poor 

performance of a system. Recently, a great number of 

stability results have been proposed using various 

methods (see, e.g., [1-8], and the cited references therein). 

Noting that there exist two notions concerning stability 

of a delay system, namely, delay dependence and delay 

independence. Generally, delay-dependent conditions 

contain a prescribed upper bound for the uncertain delay 

while the delay-independent ones are also applicable 

when this bound is arbitrary large. 

Perturbed system method, which regards the 

considered delay system as the perturbed system of the 

corresponding crisp system (without delay), has been 

used to analyze stability of delay systems (see, e.g., [2,3] 

where the delay-independent conditions have been 

proposed; and [3-7] where the authors presented several 

delay-dependent results). In the direction of this method, 

Mao [8] with its modified version [9] investigated the 

exponential stability of general nonlinear delay systems 

of the form  

( ) ( , ( ), ( ))x t f t x t x t τ= −�  (1) 

under the assumption of exponential stability of the 

corresponding crisp system (without delay) 

( ) ( , ( ), ( )),y t f t y t y t=�  (2) 

and an estimated supper bound of delay ensuring 

exponential stability was formulated. 

The aim of this paper is to formulate the supper bound 

of delay ensuring exponential stability of the following 

nonlinear delay system 

( ) ( ) ( ( )) ( ( )).x t ax t Af x t Bg x t τ= − + + −�  (3) 

As the special case of system (1), this system appears 

frequently in science, engineering, physics, biology and 

economics etc. For instance, cellular neural network 

model with delay belongs to the class described by (3). 

In fact, if the right-hand side of (1) has the form 

( ( )) ( ( )),F x t G x t τ+ −  then (1) can be rewritten as the 

form of (3), i.e., ( ) ( ) [ ( ( )) ( )] ( (x t ax t F x t ax t G x t= − + + +�  

)).τ−  The explicit existence of nonzero decay rate often 

reduces the conservation of the analytical results; see 

examples in Section 3 of this paper. 

 

2. MAIN RESULTS 

 

We consider the following delay system 

0

0 0 0

( ) ( ) ( ( )) ( ( )), ,

( ) ( ), ,

x t ax t Af x t Bg x t t t

x t t t t t t

τ

ϕ τ

= − + + − ≥

= − − ≤ ≤

�

 (4) 

where 
1 2

[ , , , ]T
n

x x x x= �  denotes the state vector, a>0 

is a constant decay rate, ( )ij n nA a
×

=  and ( )ij n nB b
×

=  

are real matrices. f and g are continuous vector-value 

functions over n

R  with (0) (0) 0.f g= =  { ( ) :sϕ ϕ=  

0} ([ , 0]; ).n
s C Rτ τ− ≤ ≤ ∈ −  Throughout this paper, we 

always assume that the functions f and g satisfy the fol-

lowing assumption. 
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(H1) There exists positive constants α  and β  such 

that 

( ) ( ) ,f x f y x yα− ≤ −  ( ) ( )g x g y x yβ− ≤ −  (5) 

hold for any , ,

n

x y R∈  where z  denotes the Eucli-

dean norm of a vector z. 

The corresponding crisp system associated with (4) is 

of the form 

0

0

,( ) ( ) ( ( )) ( ( )) ,

( ) (0).

t ty t ay t Af y t Bg y t

y t ϕ

≤= − + +

=

�

 (6) 

One can see that under the standing hypothesis (H1) 

(4) (respectively, (6)) has a unique solution denoted by 

0
( ; , )x t t ϕ  on 

0
t t τ≥ −  (respectively, 

0
( ; , (0))y t t ϕ  on 

0
).t t≥  For the purpose of this paper, we propose anoth-

er standing hypothesis: 

(H2) Equation (6) is exponentially stable. That is, 

there exists a pair of constants K and γ  such that 

( ) ( )0
0

; , (0) (0) ,
t t

y t t K e
γ

ϕ ϕ
− −

≤  for any 
0
.t t≥  

Theorem 1: Suppose that both assumptions (H1) and 

(H2) hold. Then, (4) is globally exponentially stable pro-

vided min{0.5 , *},τ δ τ<  where * 0τ >  and 1
δ γ

−

=  

(ln ln ) 0K p− >  is the unique positive root to the equa-

tion 
1
( *) 1 0,C τ − =  in which (0, 1)p∈  is a free para-

meter, and 

( )

( ) 2

2

1 2 1

21

1

( ) [

2 (1 )] 1,
a a

C Ke B

a e e e

γ δ τ

δ τ µ δτ

τ µ δ τ β µ

µ

− −

− −− −

= + +

+ − =

 

where 
1 2

1
exp{( ) (1 )},a

B A B a e
δ

µ β α β
− −

= + −  and 

2 1
( ).a A Bµ τµ α β= + +  

Remark 1: Let us define a function 
1

( ) ( ) 1.F Cτ τ= −  

Because (0) 1 1 0F Ke p
γδ−

= − = − <  and ( ) ,F +∞ = +∞  

there exists at least one root to equation ( ) 0.F τ =  On 

the other hand, it is easy to show that ( )F τ  is strictly 

monotonously increasing over [0, )+∞  with respect to 

.τ  Therefore, there exists a unique positive root *τ  to 

equation 
1
( *) 1C τ =  and for any [0, *)τ τ∈ , one sees 

that 
1
( ) 1.C τ <  

Proof: The idea of the proof is inspired by the work of 

Mao’s [8]. From (1), it follows that 

( ) ( )0

0

0

0
( ( ))

( ( )) .

t
atat as

t

t
as

t

e x t e x t e Af x s ds

e Bg x s dsτ

= +

+ −

∫

∫
 

From (3), it follows that 

( ) ( ) ( )( )

( )( )

0

0

0

0

.

t
atat as

t

t
as

t

e y t e y t e Af y s ds

e Bg y s ds

= +

+

∫

∫
 

Therefore,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

0

0

.

t
a s t

t

t
a s t

t

t
a s t

t

t
a s t

t

x t y t A e x s y s ds

B e x s y s ds

A B e x s y s ds

B e x s x s ds

α

β τ

α β

β τ

−

−

−

−

− ≤ −

+ − −

≤ + −

+ − −

∫

∫

∫

∫

 

By means of Gronwall inequality, one sees that 

0

0

( )1

( )

( ) ( ) exp{( )(1 )}

( ) ( ) .

a t t

t
a s t

t

x t y t B a A B e

e x s x s ds

β α β

τ

− −−

−

− ≤ + −

× − −∫
 

Hence, if 
0 0

2 ,t t t δ≤ ≤ +  

{ }
( )

0

1 2

( ) ( )

exp ( )(1 )

( ) ( ) .

a

t
a t s

t

x t y t

B a A B e

e x s x s ds

δβ α β

τ

− −

− −

≤

+ + −

× − −∫

 (7) 

On the other hand, if 
0

,t t τ≥ +  one sees that 

( ) ( ) ( )

( )

( )

( )

0

0

0

0

[( ) ( )

( ) ]

( ) ( )

( ) .

t
a t s

t

t s
a t s

t s

t s
a t s

t s

t s
a t s

t s

e x s x s ds

e ds a A x r

B x r dr

a a A e ds x r dr

B e ds x r dr

τ

τ τ

τ τ

τ τ

τ

α

β τ

β τ

− −

+

− −

+ −

− −

+ −

− −

+ −

− −

≤ +

+ −

= +

+ −

∫

∫ ∫

∫ ∫

∫ ∫

 (8) 

By changing the order of integration one obtains 

Case 1: when 
0 0

2 ,t t tτ τ+ ≥ ≥ +   

( ) ( )

( ) ( ) ( )

( )

0

0

0 0

0

.

t s
a t s

t s

t t t

t t t

t

t

e ds x r dr

x r dr x r dr x r dr

x r dr

τ τ

τ τ

τ τ

τ

τ

− −

+ −

− +

− +

 ≤ + +
  

=

∫ ∫

∫ ∫ ∫

∫

 

Case 2: when 
0

2 ,t t τ≥ +   

( ) ( )

( ) ( )

0

0 0

.

t s
a t s

t s

t s t

t s t

e ds x r dr

ds x r dr x r dr

τ τ

τ τ

τ

− −

+ −

+ −

≤ ≤

∫ ∫

∫ ∫ ∫
 

Therefore, for any 
0

,t t τ≥ +  we have 

( ) ( ) ( )
0 0

,

t s t
a t s

t s t

e ds x r dr x r dr
τ τ

τ
− −

+ −

≤∫ ∫ ∫  (9) 

and 

( ) ( )
0

t s
a t s

t s

e ds x r dr
τ τ

τ
− −

+ −

−∫ ∫  (10) 
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( ) ( )( )
0 0

0

2
sup .

t

t s t
t

x r dr x r
τ

τ τ
− ≤ ≤

≤ +∫  

Consequently, substituting (9) and (10) into (8) one ob-

tains that, if 
0

,t t τ≥ +  

( ) ( ) ( )

( ) ( )

( )( )

0

0

0 0

2
sup .

t
a t s

t

t

t

t s t

e x s x s ds

a A B x r dr

B x r

τ

τ

τ

τ α β

βτ

− −

+

− ≤ ≤

− −

≤ + +

+

∫

∫  (11) 

We now restrict 
0 0

2 .t t tτ δ τ δ− + ≤ ≤ − +  Substituting 

(11) into (7) and using hypothesis (H2) one sees that 

( ) ( ) ( )

( ){ }

( ) ( )

( ){ }
0

1 2

22 2 1 2

0

exp (1 )

exp (1 )

a

t

t

a

x t Ke

B a A B e

a A B x r dr

B a A B e

γ δ τ

δ

δ

ϕ

β α β

τ α β

τ β α β

− −

− −

− −

≤

+ + −

× + +

+ + −

∫

( )( )

( ){ }
( )

0 0

0

0

1 2

sup

exp (1 )

( ) ( ) .

t r t

a

t
a t s

t

x r

B a A B e

e x s x s ds

τ

δ

τ

β α β

τ

− ≤ ≤

− −

+
− −

×

+ + −

× − −∫

 (12) 

Note also that 

( )

0

0 0 0

0
0 0

( ) ( ) ( )

sup ( ) ( ) ,

t t t

t t t

t

t
t r t

x r dr x r dr x r dr

x r x r dr

τ δ

τ δ

τ δ
τ δ

δ

− +

− +

− +
≤ ≤ − +

= +

≤ +

∫ ∫ ∫

∫
 

and 

( )

( )

( )

0

0

0 0

21

( ) ( )

2 (1 ) sup ( ) .

t
a t r

t

a a

t r t

e x r x r dr

a e e x r

τ

δ τ τ

τ τ

τ

+
− −

− −− −

− ≤ ≤ +

− −

≤ −

∫
 

Substituting these into (12), one obtains that, for 

0 0
2 ,t t tτ δ τ δ− + ≤ ≤ − +  

( ) ( )

( )

( )( )

( ) ( )( )

2

0 0

0 0

2

2 1

21

1

1

2 (1 )

sup

sup .

a a

t r t

t r t

x t Ke B

a e e e

x r

C x r

γ δ τ

δ τ µ δτ

τ τ δ

τ τ δ

µ δ τ β µ

µ

τ

− −

− −− −

− ≤ ≤ − +

− ≤ ≤ − +

≤ + +


+ −


≡

 

Note that C1< 1 since *.τ τ<  Write 
1

C e
εδ−

=  with 

1

1
ln .Cε

δ
= −  It then follows from (12) that 

( ) ( )( )
0 0 0 0

0

2

sup ; , sup ,

t t t t s t

x t t e x s
εδ

τ δ τ δ τ τ δ

ϕ
−

− + ≤ ≤ − + − ≤ ≤ − +

≤  

 (13) 

holds for any 
0

0t ≥  and ([ , 0], ).n

C Rϕ τ∈ −  

Fixed 
0

0t ≥  and ([ , 0], )nC Rϕ τ∈ −  arbitrarily, and 

let 1,2, .k = �  Denote 

{ }
0 0

0 0

ˆ( ( 1) ; , )

( ( 1) ; , ) : 0 ,

x t k t

x t k s t s

δ ϕ

δ ϕ τ

+ −

= + − + − ≤ ≤

 

which is regarded as a continuous function. 

Note that the solution of (1) has the following flow 

property: for any ( )0
1 .t t k δ≥ + −  

( ) ( ) ( )( )( )0 0 0 0
ˆ; , ; 1 , 1 ; , .x t t x t t k x t k tϕ δ δ ϕ= + − + −  

Hence, by (13), 

( )
( )

( )
( )

0 0

0 0

0

1

0

1

sup ; ,

sup ; , .

t k t t k

t k t t k

x t t

e x t t

τ δ τ δ

εδ

τ δ τ δ

ϕ

ϕ

− + ≤ ≤ − + +

−

− + − ≤ ≤ − +

 ≤
 
 

 

By mathematical induction, 

( )
( )

( )( )
0 0

0 0

0

1

0

sup ; ,

sup ; , .

t k t t k

k

t t t

x t t

e x t t

τ δ τ δ

ε δ

τ τ δ

ϕ

ϕ

− + ≤ ≤ − + +

−

− ≤ ≤ − +

≤

 (14) 

On the other hand, it is not difficult to show that there 

exists a C2 > 0 such that 

( ) ( )( )
0 0

0 2

0

sup ; , sup .

t t t s

x t t C s

τ τ δ τ

ϕ ϕ

− ≤ ≤ − + − ≤ ≤

≤  (15) 

Substituting (15) into (14) yields 

( )
( ) ( )( )

0 0

0 2

1 0

sup ; , sup .
k

t k t t k s

x t t C e s
ε δ

τ δ τ δ τ

ϕ ϕ
−

− + ≤ ≤ − + + − ≤ ≤

≤

 (16) 

Now, for any 
0

,t t τ δ> − +  one can find a k such that 

( )0 0
1t k t t kτ δ τ δ− + ≤ ≤ − + +  and hence 

( ) ( ) ( )( )0

0 2 0
; , sup .

t t

s
x t t C e s

εδ ε

τ
ϕ ϕ

− −

− ≤ ≤
≤  

It is not difficult to show that this holds for any 
0
t t≤  

0
t τ δ≤ − +  as well. This concludes the proof. 

Remark 2: For computational consideration, in order 

to find the supper bound of delay such that equation (4) 

is globally exponentially stable provided ˆ,τ τ<  we 

suggest the following optimization problem: 

(P) 
( )

( )

0 1

1

1

ˆmax sup min , *
2

. ., 1 0, * 1,

ln ln 0.

p

s t p C

K p

δ
τ τ

τ

δ γ

< <

−

   
=    

  
 > > =
 = − >

 

The above results established for constant-delay case still 

hold when the time delay is time-varying. More precisely, 

let : [0, ]Rτ τ
+
→  be a Borel measurable function, 
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where 0.τ >  In this case, equation (4) is rewritten as 

the form 

0

0 0 0

( ) ( ) ( ( )) ( ( ( ))), ,

( ) ( ), ,

x t ax t Af x t Bg x t t t t

x t t t t t t

τ

ϕ τ

= − + + − ≥

= − − ≤ ≤

�

 (17) 

where { }( ) : 0 ([ , 0]; ),n

s s C Rϕ ϕ τ τ= − ≤ ≤ ∈ −  the 

matrices A and B, functions f and g are the same as de-

fined in (4). For (17), we have the following result. 

Theorem 2: Suppose that both assumptions (H1) and 

(H2) hold. Then, equation (17) is globally exponentially 

stable provided { }
0

sup min 0.5 , * ,
t t

τ δ τ
≥

<  where δ  

and *τ  are the same as defined in Theorem 1. 

Proof: The proof is similar to that of Theorem 1, and 

therefore, omitted here. 

 

3. EXAMPLES 

 

In this section, we give two simple examples for 

illustration.  

Example 1: Consider a one-dimensional differential 

delay equation 

( ) 0

0 0 0

( ) ( ) 2sin ( ) , ,

( ) ( ), ,

x t x t x t t t

x t t t t t t

τ

ϕ τ

= − − − >

= − − ≤ ≤

�

 (18) 

where ϕ  is the same as defined in (4). The correspond-

ing differential equation has the form 

0

0

( ) ( ) 2sin( ( )), ,

( ) (0).

y t y t y t t t

y t ϕ

= − − >

=

�

 (19) 

It is easy to check that the solution of (19), denoted by 

0
( ; , (0)),y t t ϕ  satisfies 

( ) ( )0
0

; , (0) (0) ,
t t

y t t eϕ ϕ
− −

≤  
0
.t t≥  

Hence, one sees that the standing assumptions (H1) and 

(H2) are satisfied with 0,α = 2,β = 1K =  and 1.γ =  

By solving optimization problem (P) we obtain that 

when p=0.969 (therefore, 0.03149)δ �  and *τ �  

0.01559 the maximum ˆ 0.01559.τ �  It follows from 

Theorem 1 that the delay equation (18) remain exponen-

tially stable provided 0.01559.τ <  However, if we ap-

ply the result in [9], the modified version of [8], the thre-

shold value of the delay ensuring exponential stability 

will be 0.0093, which is much smaller that our value. 

Moreover, it is easy to verify that the results in [10-12] 

are not available for this example. 

Example 2: Consider a two-dimensional differential 

delay equation 

1 1 2

2 2 1 0

( ) 2 ( ) sin( ( )),

( ) 2 ( ) 2sin( ( )), .

x t x t x t

x t x t x t t t

τ

τ

= − + −

= − − − >

�

�
 (20) 

The initial value is assumed to be 
1 2

( ) [ ( ), ( )]Tx t x t x t=  

0
( )t tϕ= −  on 

0 0
,t t tτ− < ≤  where { ( ) :sϕ ϕ τ= − ≤  

0} ([ , 0]; ).n
s C Rτ≤ ∈ −   

The corresponding differential equation has the form 

1 1 2

2 2 1

( ) 2 ( ) sin( ( )),

( ) 2 ( ) 2sin( ( ))

y t y t y t

y t y t y t

= − +

= − −

�

�
 (21) 

on 
0

t t≥  with initial value 
0 1 0

( ) [ ( ),y t y t=
2 0
( )]Ty t =  

(0).ϕ  It is easy to check that the solution of (21), de-

noted by
0

( ; , (0)),y t t ϕ  satisfies 
0

( ; , (0))y t t ϕ ≤  

( )0(0) ,
t t

eϕ
− −

0
.t t≥  

Hence, one sees easily that 1K =  and 1.γ =  Note 

that a=2, 0,α = 1,β =  A=0 and 
0 1

.
2 0

B
 

=  − 
 Solv-

ing Problem (P) yields that p=0.969 (therefore, 

0.03149)δ �  and * 0.01574τ �  the maximum τ̂ �  

0.01574.  Hence, one sees that the delay equation (20) is 

globally exponentially stable provided 0.01574.τ <  

However, if we apply the modified result [9] of the refer-

ence [8] the threshold value of the delay ensuring expo-

nential stability will be 0.0045574, which is also much 

smaller that our value. 

Example 3: Consider a two-neuron cellular neural 

network system with delay 

1 1 1 2

1 2

2 2 1 2

1 2

( ) 2 ( ) 0.5 ( ( )) 0.1 ( ( ))

0.1 ( ( )) 0.2 ( ( )),

( ) 2 ( ) 0.2 ( ( )) 0.1 ( ( ))

0.2 ( ( )) 0.1 ( ( )),

x t x t f x t f x t

f x t f x t

x t x t f x t f x t

f x t f x t

τ τ

τ τ

= − − +
 − − + −


= − + −
 + − + −

�

�
 (22) 

where ( ) 0.5( 1 1), 1, 2.
i
f x x x i= + − − =   

In [12,13], the authors studied the asymptotic stability 

of the analog of (22) respectively. The upper bounds of 

delay estimated in [12] and [13] are *
0.17τ <  and 

*
0.0279,τ <  respectively. 

To estimate the upper bound of delay, let us consider 

the corresponding crisp system of the form 

1 1 1 2

2 2 1

( ) 2 ( ) 0.6 ( ( )) 0.3 ( ( )),

( ) 2 ( ) 0.4 ( ( )).

x t x t f x t f x t

x t x t f x t

= − − +


= − +

�

�
 (23) 

We construct the Lyapunov function of the form 
2

( ) ,V x x=  and estimate its derivative along the solu-

tion of (23) as follow 

( ( )) 2.8219 ( ( )),V x t V x t≤ −�  

which implies 
( )02.8219

0
( ( )) ( ( )) .

t t

V x t V x t e
− −

≤  There-

fore, 
( )01.41095

0
( ) ( ) .

t t

x t x t e
− −

≤  This implies that the 

exponential convergence rate of (23) is not less than -

1.41095. In Theorem 1 of the present paper, letting 

1.41095,γ =  we obtain the upper bound of delay is 

*
0.4886,τ =  which is larger than those in [12,13]. 

Therefore, our results are less conservative than those 

given in [12,13]. The numerical simulation of (22) with 

0.48τ =  is shown in Fig. 1. 
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4. CONCLUSIONS 
 
The perturbed-system method has been applied to 

investigate the preservation of exponential stability of 
nonlinear delayed equations with constant decay rate. 
The allowable upper bound of delay has been formulated 
by an optimization problem that can be solved 
numerically. Two numerical examples have shown that 
our results are less conservative than the existing results 
for case of constant decay rate. 
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