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On the H∞ Deconvolution Fixed-lag Smoothing 
 

Xiao Lu, Huanshui Zhang, and Jie Yan 

 

Abstract: The paper deals with the H∞ deconvolution fixed-lag smoothing problem for a linear time-

invariant discrete-time system with both known and unknown input series. The H∞ fixed-lag smoother 

is derived by proposing a new approach termed as re-organized innovation analysis in Krein space. 

Under the new approach, it is clearly shown that the central deconvolution smoother in an H∞ setting is 

the same as the one in an H2 setting associated with one self-constructed stochastic state-space model. 

This insight allows us to calculate the complicated H∞ deconvolution smoother in an intuitive and sim-

ple way. The deconvolution smoother is calculated by performing Riccati equation with the same order 

as the original system. 
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1. INTRODUCTION 

 

Deconvolution has wide application in areas such as 

oil exploration, image restoration, fault detection, signal 

processing, communication and so on. In the past 

decades, much attention has been paid to the 

deconvolution problem, see [1,2,5,10] and references 

therein.  

There are mainly two performances under which 

deconvolution problem has been considered, one is the 

2
H  index, the other is H

∞
 performance. With the 

2
H  index, [5] consider the deconvolution estimator by 

using traditional Kalman filtering formulation, the 

estimator is usually related with the solution to the 

Riccati equation. [7] present the optimal deconvolution 

by using the polynomial approach where the solution is 

given by solving one spectral factorization and two 

polynomial equations.  

In contrast to the 
2

H  index, since the design for an 

H
∞
 estimator does not require the knowledge of the 

statistics of the system and observation noises and posses 

the robustness to the systems and noise uncertainties, the 

H
∞
 deconvolution has been received much attention in 

recent years [4,6,9]. In particular, for the case where the 

input signal is ARMA process and the observation 

system is represented by ARMAX sequence, [4,6] 

investigate the H
∞
 deconvolution problem by using 

polynomial method. The infinite horizon H
∞
 

deconvolution estimators including filter, predictor and 

smoother are given by the solutions from J-spectral 

factorization and polynomial equations. It should be 

noted that the J-spectral factorization for the H
∞
 fixed-

lag smoothing and prediction are more complicated than 

for the filtering as they are usually related with system 

augmentation [6]. Under the state space model, [3,10] 

studied the H
∞
 finite-horizon deconvolution filtering. 

The deconvolution filter is calculated in terms of the 

solution to one standard H
∞
 Riccati equation in [3], 

and Krein-space is used in [10]. With the help of LMI 

(Linear Matrix Inequality), [8] proposed an H
∞
 

deconvolution filter and [9] obtained a mixed 
2

H H
∞

/  

filter. All the calculation of the deconvolution filter is 

based on the available solution to the LMI. The 

deconvolution fixed-lag smoothing has been discussed in 

[4] and some works, however, it seems for the approach 

to be difficult. Different from the above approaches, a 

simple and efficient approach termed as re-organized 

innovation analysis will be proposed in this paper.  

Re-organized innovation analysis approach is 

presented in our previous works [11-13] which 

considered the estimation problem of system state. 

Particularly, [12] considered the H∞ fixed-lag smoothing 

for continuous-time systems for state estimation. [11] 

considered Kalman filtering for discrete-time systems for 

state estimation. In all, the above references mainly focus 

on the state estimation, which can be computed 

recursively. Different from our previous works, in this 

paper, we consider the H
∞
 deconvolution estimation 

mainly fixe-lag smoothing problem for linear time-
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invariant discrete-time system [13]. Re-organized 

innovation analysis approach is proposed to deal with 

such a problem, and a new H∞ deconvolution fixed-lag 

smoother is derived. The new approach shows that the 

H∞ deconvolution fixed-lag smoothing is equivalent to 

an H2 deconvolution fixed-lag smoothing associated with 

measurement-delayed system.  

The rest of the paper is organized as follows. The 

system under consideration and the problem statement 

are given in Section 2. Some preliminaries about the H∞ 

deconvolution fixed-lag smoother are given in Section 3. 

An H∞ deconvolution fixed-lag smoother design will be 

given by re-organized innovation analysis in Krein space 

in Section 4. A numerical example is proposed to show 

the efficiency of the approach in Section 5. Some 

concluding remarks are made in Section 6.  

 

2. PROBLEM STATEMENT 

 

We consider the linear discrete-time system described 

as 

1
( 1) ( ) ( ) ( ) (0)

u
x k Ax k Bu k D u k x+ = + + , ,  (1) 

2
( ) ( ) ( ) ( )

u
y k Cx k D u k v k= + + ,  (2) 

( ) ( )
u

s k Lu k= ,  (3) 

where k  is an integer, ( ) n

x k ∈R  is the state, ( )y k  

p
∈R  is measurement, ( ) r

s k ∈R  is the signal to be 

estimated. ( ) m

u k ∈R  is known input series, 

( ) q

u
u k ∈R  is unknown input, ( ) p

v k ∈R  is measure-

ment noise. ,A ,C ,B
1
,D

2
D  and L  are known 

constant matrices with appropriate dimensions. ( )
u
u k  

and ( )v k  are assumed to have bounded energy over the 

interval [ ]0 .N,  

The H∞ deconvolution estimation problem that is to be 

investigated for the systems model (1)-(3) can be 

respectively stated as 

Problem S: Given a scalar 0,γ >  known input 

series { (0) ( )},u u k, ,�  an integer 0l >  and the 

observation { (0) ( )},y y k, ,�  we find the fixed-lag 

smoothing estimate of ( ),
l

s k  denoted by ( | ),
l

š k k  

such that 

2

( (0) ) 0

sup

u
x u v

γ

, , ≠

Φ
< ,

Γ
 (4) 

where Φ = [ ] [ ]( | ) ( ) ,( | ) ( )
N T

l ll lk l
š k k s kš k k s k

=

−−∑  

1

0 0 0
(0) (0) ( ) ( ) ( ) ( )

N NT T T

u uk k
x x u k u k v k v k

−

= =

Γ = Π + +∑ ∑  

(0)x  is unknown and 
0

Π  is a given positive definite 

matrix which reflects the relative uncertainty of the 

initial state x(0) to the estimate (0) 0,x =

�

 and 

l
k k l−�  which will be used in the full paper. 

Remark 1: When the integer 0,l <  it is obvious 

from (1)-(3) that ( )
l

s k  is uncorrelated with { (0)y , ,�  

( )},y k  which implies that ( | ) 0
l

š k k =  for 0.l <  

When 0,l =  ( | )š k k  is termed as filter, which can be 

dealt with easily. While ( | )
l

š k k  for 0l >  is termed 

as fixed-lag smoother. Since the fixed-lag smoothing 

problem is more difficult, we shall study the case in the 

paper. 

 

3. PRELIMINARIES 

 

In this section we will give some preliminaries about 

the deconvolution fixed-lag smoothing. 

Note that the denominator of the left side of (4) is 

positive, it is obvious that (4) is satisfied if and only if 

the following inequality holds 

1

0

0

2

0

( (0) (0) ( ) (0) ( ) (0)

( )) (0) (0) ( ) ( )

( ) ( ) ( ) ( ) 0

l N u u

N
T T

u u

k

N N
T T

s s

k k l

x u u N u u N y

y N x x u k u k

v k v k v k v kγ

,

−

=

−

= =

, , , ; , , ; , ,

Π +

+ − > ,

∑

∑ ∑

� � �

�

J

 (5) 

where 

( )
s
v k � ( | ) ( ).

l l
š k k s k−  (6) 

Thus Problem S is equivalent to: 

• ( )
l N,

⋅J of (5) has minimum with respective to 

(0) (0) ( );
u u

x u u N, , ,�  

• ( | )
l

š k k can be chosen such that the value of ( )
l N,

⋅J  

at its minimum is positive. 

Note (5) can be written as the centralized form as 

1

0
(0) 0 0 (0)

( ) 0 0 ,

0 0

u

z

T

l N u u u

z zv

x x

u Q u

v vQ

 
 
 
 
 
 
 
 
  

−
   
   
   
   ,
   
      

Π

⋅ =J  (7) 

where { (0) ( )},
u u u
u col u u N= , ,� { (0)

z z z
v col v v= , ,�  

( )},N { (0) ( )}
u u u
u u u

Q diag Q Q N= , ,�  and 
z
v

Q diag=  

{ (0) ( )},
z z
v v

Q Q N, ,�  where 

( ) 0

( ) ( )
,

( )

z

s

v k k l

v k v k
k l

v k

, ≤ < ,

 

, ≥ 
 

�  (8) 

2

0
( )

{ } .z

p

v

p r

I k l
Q k

diag I I k lγ

, ≤ < ,


,− , ≥
�  (9) 

From (2)-(3), (6) and (8) we have 

2

2

( ) ( ) ( ) 0

( )0
( ) ( ) ( )

0 ( )0

,

u z

u

z z

r n u l

Cx k D u k v k k l

C u kD
y k x k v k

u kL

k l

 
 
 
 × 

+ + , ≤ < ,


  
= + + ,   

   
 ≥

 (10) 
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where 

( ) 0

( ) ( )
.

( | )

z

l

y k k l

y k y k
k l

š k k

, ≤ < ,


=  
, ≥ 

 

 (11) 

Same as [13], we introduce the following Krein-space 

stochastic system model associated with (1), (10) and 

( )
l N,

⋅J  as 

1
( 1) ( ) ( ) ( ) (0)x x u u x

u
k A k B k D k+ = + + , ,  (12) 

2

2

( ) ( ) ( ) 0

( )0
( ) ( ) ( )

0 ( )0

x u v

u
y x v

u

u z

u

z z

r n u l

C k D k k k l

C kD
k k k

kL

k l

 
 
 
 × 

+ + , ≤ < ,


  
= + + ,   

   
 ≥

 (13) 

then, we have the following results. 

Lemma 1: Consider the system model (1)-(3), given a 

scalar 0γ >  and an integer 0,l >  then ( )
l N,

⋅J  has 

the minimum over { (0) }
u z

x u v, ,  if and only if ( )
z

w
Q k  

and ( )
z
v

Q k  have the same inertia, where ( )
z
v

Q k  is as 

(9) and ( ) ( ) ( )w w
z

w z z
Q k < k k >, ,�  is the covariance 

matrix of innovation ( )w
z
k  which is given by 

ˆ( ) ( ) ( )w y y
z z z
k k k= − ,  (14) 

where ˆ ( )y
z
k  is the projection of ( )y

z
k  onto 

1

0
{{ ( )} }.y

k
z jj

−

=
L  In this case the minimum value of 

( )
l N,

⋅J  is 

1

1

0

1

ˆˆ( ) ( )[ ( ) ( )][ ( ) ( )]

ˆ( ) ( )
( )

( | ) ( | 1)ˆ

ˆ( ) ( )

( | ) ( | 1)ˆ

z

z

l
Tm

l N w

k

T
N

w

ul lk l

ul l

Q k y k Cx ky k Cx k

y k Cx k
Q k

š k k L k ku

y k Cx k

š k k L k ku

−

−

,

=

−

=

⋅ = −−

− 
+  − − 

− 
× , − − 

∑

∑

J

 (15) 

where ˆ( )x k  and ( | 1)ˆu l
k ku −  are obtained from the 

Krein space projection of ( )x k  and ( )u
u l
k  onto 

1

0
{{ ( )} },y

k
z jj

−

=
L  respectively. 

Proof: In accordance with [12], ( )
l N,

⋅J  of (5) has 

the minimum over { (0) }
u z

x u v, ,  if and only if ( )
z

w
Q k  

and ( )
z
v

Q k  have the same inertia, and the minimum, if 

exists, is given as 

1

0

1

0

( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( )

z

z

N
m T

l N z w z

k

N
T

z w zz z

k

w k Q k w k

y k k Q k y k ky y

−

,

=

−

=

⋅ =

= − − ,      

∑

∑

J

 

 (16) 

In view of (11), then (15) follows directly. This 

completes the proof of Lemma.         � 

Now it is clear that an H
∞
 deconvolution smoother 

( | )
l

š k k  that achieves (4) can be obtained from (15) 

such that ( ) 0.m

l N,
⋅ >J  To this end, we need to calculate 

the covariance ( )
z

w
Q k  and the projections ( | 1)ûu l

k k −  

and ˆ ( )x k  associated with the Krein-space state space 

model (12)-(13). Note (13) is with time delay l  to 

which the standard Kalman filtering formulation is not 

applicable. We shall apply the approach termed as re-

organized innovation analysis [11,12] to convert the time 

delay into a delay-free system. 

 

3.1. Kalman filtering in Krein space 

In this subsection, we first re-organize the 

observations from (13) as delay free observations and 

then define the associated innovation sequence. Secondly, 

we derive the Kalman filtering formulation for the 

system (12)-(13) based on the re-organized innovation. 

Finally, the projections ˆ ( )x k  and ( | 1)ûu l
k k −  and the 

covariance ( )
z

w
Q k  can be calculated. 

 

3.1.1 Re-organized innovation sequence 

Note (13), the observation ( )y
z
k  can be decomposed 

as 

( ) 0

( ) ( )
,

( | )

y

y y

š

z

l

k k l

k k
k l

k k

, ≤ < ,


=  
, ≥ 

 

 (17) 

denote 

2

( )
( )

( | )

y

š

i
i

i i l

 
, + 

�Y  (18) 

1
( ) ( )yi i .�Y  (19) 

We will give the following lemmas, some proofs 

which are omitted in this paper and some definitions can 

be referred to [13]. 

Lemma 2: 
2 2 1 1

{ (0) ( 1) ( ) ( 1)}w w w w
l l
k k k, , − ; , , −� �  

is the innovation sequence which spans the same linear 

space as 
2 2 1 1

{ (0) ( 1) ( ) ( 1)}
l l
k k k, , − ; , , −� �L Y Y Y Y  or 

equivalently { (0) ( 1)}.y y
z z

k, −�L  

 

3.1.2 Riccati equations 

Definition 1: 

2 2 2

1 1 1

( ) ( ) ( ) 0

( ) ( ) ( ) 0 ,

l

l l l

i < i i > i k

k i < k i k i > i l

, , ≤ ≤ ,

+ + , + , ≤ ≤

e e

e e

�

�

P

P

 (20) 

where 
2
( )e i  and 

1
( )e

l
k i+  are the state estimation 

errors. 

In view of Definition 1, it is easy to observe that 

2
( )iP  is the solution to the standard Riccati equation for 

the system (12) and (18), i.e., 
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2 2 2 2 2 1 1

2 0

( 1) ( ) ( ) ( ) ( )

(0)

T T T
i A i A i Q i i D D+ = − + ,

= Π ,

P P K K

P

 (21) 

where 

1

2 2 1 2 1 2

2 2 2

2 2 2 2

2
2

( ) ( ) ( )

( ) ( ) ( )

( )

0 1

w w

T T T

T T T
p

T T
r

l

i A i C D D D L Q i

Q i < i i >

C i C D D I D L

LD I LL

i k

γ

− 
  

 
 
 
 
  

= + ,

,

+ +
= ,

− +

≤ ≤ − .

�

K P

P
 (22) 

The matrices of 
1
( ) ( 1 2 )

l
k i i l+ = , , ,�P  are calculated 

by the following lemma. 

Lemma 3: 

1 1

1 1 1 1 1

1 2

( 1) ( )

( ) ( ) ( )

( ) ( ) 0 1

T

l l

T T

l l l

l l

k i A k i A

k i Q k i k i D D

k k i l

+ + = +

− + + + + ,

= , = , , − ,�

P P

K K

P P

 (23) 

where 

1

1 1 1 2 1
( ) ( ) ( )T T

l l l
k i A k i C D D Q k i− 

  
+ = + + × + ,K P  (24) 

and 

1 1 1

1 2 2

( ) ( ) ( )

( )

w wl l l

T T
l p

Q k i < k i k i >

C k i C D D I

+ + , +

= + + + .

�

P

 (25) 

 

3.1.3 Calculation of estimate ˆ ( )x k  

Note that ˆ ( )x k  is the projection of ( )x k  onto 

{ (0) ( 1)},y y
z z

k, , −�L  or equivalently onto 
2

{ (0),L Y  

2 1 1
( 1) ( ) ( 1)}

l l
k k k, − ; , , − .� �Y Y Y  Thus, ˆ ( )x k  can be 

written as ˆ ( 1)x k,  which is calculated in the following 

lemma. 

Lemma 4: Consider the systems (12) and (13) in 

Krein space, ˆ ˆ( ) ( 1)x xk k= ,  is computed as 

Step 1: Calculate ˆ ( 2)x
l
k ,  recursively for 1k l= + ,  

2l + �  as 

2

2

ˆ ˆ( 2) ( 1 2) ( 1) ( 1)

ˆ( 1) ( 1 2)
0

ˆ(0 2) 0

x x u

x

x

l l l l

l l

r n

k A k B k k

C
k k

 
 
 
 × 

, = − , + − + −

 
× − − − , , 
 
, = ,

K

Y  (26) 

where 

1

2 2 1 2 1 2
( 1) ( 1) ( 1)T T T

l l l
k A k C D D D L Q k− 

  
− = − + − ,K P

2 2 2 2

2
2

2

( 1)
( 1)

T T T
l p

l
T T

r

C k C D D I D L
Q k

LD I LLγ

 
 
 
 
  

− + +
− = ,

− +

P

 (27) 

and 
2
( 1)

l
k −P  is computed by (21), with 

2 0
(0) .P=P  

Step 2: Calculate ˆ ( 1) ( 1 )x
l
k i i l+ , = , ,�  with the 

initial value of ˆ ˆ( 1) ( 2)x x
l l
k k, = ,  as 

[ ]1 1

ˆ ˆ( 1 1) ( 1) ( )

ˆ( ) ( ) ( 1)

0 1 1

x x u

x

l l l

l l l

k i A k i B k i

k i k i C k i

i l

+ + , = + , + +

+ + + − + , ,

= , , , − ,�

K Y  (28) 

where 

1

1 1 1 2 1

1 1 2 2

( ) ( ) ( )

( ) ( )

T T
l l l

T T
l l p

k i A k i C D D Q k i

Q k i C k i C D D I

− 
  

+ = + + × + ,

+ = + + + ,

K P

P

 (29) 

and 
1
( )

l
k i+P  is calculated by (23). 

Remark 2: The calculation procedure for ˆ( )x k =  

ˆ ( 1)x k,  is as 

• Compute ˆ ( 2)x
l
k ,  with ˆ ( 1 2)x

l
k − ,  by (26); 

• Compute ˆ ( 1)x
l
k i+ ,  for 1 2i l= , , ,�  with ˆ ( 1)x

l
k ,  

ˆ ( 2)x
l
k= ,  by (28). 

Then ˆ ( )x k  is obtained by ˆ ( 1)x
l
k i+ ,  at i l= . 

 

3.1.4 Calculation of ( | 1)ûu l
k k −  

In this part, we shall calculate ( | 1).ûu l
k k −  For the 

convenience of discussion, we denote 

11
( ) ( ) 1 1l

l

k

u l lk i
R k k i i l

+ ,
< , + >, = , , − .u e� �  (30) 

Lemma 5: ( | 1)ûu l
k k −  is calculated by 

[ ]

[ ]

1

2 1 1

1

1

11

1

1

ˆ( | 1) ( ) ( ) ( 1)ˆ

( )

ˆ( ) ( 1)

xu

x

l

l

T

u l l l l

l
k T

lk i

i

l l

k k D Q k k C k

R C Q k i

k i C k i

−

−
−

+ ,

=

− = − ,

+ +

× + − + , ,

∑

Y

Y

 (31) 

where ˆ ( 1) 1 1x
l
k i i l+ , , = , , −�  can be computed in (28), 

ˆ ˆ( 1) ( 2)x x
l l
k k, = ,  is calculated by (26), and 

1

l

l

k

k i
R

+ ,
 is 

calculated recursively as 

[ ]11 11
( 1)

2 1

l l

l l

Tk k

lk i k i
R R A K k i C

i l

+ , + − ,
= ,− + −

= , , −�

 (32) 

with 

1 1 211
( )l

l

Tk

lk
R D k D 

 + , = − .K  (33) 

In addition 
1
( )

l
k i+K  and 

1
( )

l
Q k i+  are respectively 

as in (24) and (25), and 
1
( )

l
k i+P  is the solution to (23). 

 

3.2. Calculation of covariance ( )
z

w
Q k  

In this part, we shall calculate the covariance matrix 

( ) ( ) ( ) .w w
z

w z z
Q k < k k >= ,  

Lemma 6: The covariance matrix ( )
z

w
Q k  is 

computed by 
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1 2 2

1 1

2

21

( )

( ) 0

( )
, ,

( )

z

l

l

w

T T
p

T
k T
k

k T T
rk

Q k

C k C D D I k l

k C R L
k l

LR C L k L Iγ

 
  
 ,

,

 + + , ≤ < ,

 = ∆  ≥ 
 ∆ −  

P

 (34) 

where 

1 1 2 2

2 2 1 2 2 2

1

1

11 1

1

( ) ( )

( ) ( )

( )l l

l l

T T
p

T T T
q l p

l T
k kT

lk i k i
i

k C k C D D I

k I D C k C D D I D

R C Q k i C R
 
  
 

 
  

−
−

+ , + ,
=

∆ = + +

∆ = − + +

− + ,∑

P

P
 (35) 

while 
1 2
( ) ( )

l l
k k=P P  is the solution to Riccati recursion 

(21) and 
1

l

l

k

k i
R

+ ,
 is as in (32). 

Proof: For 0 ,k l≤ <  the proof is straightforward 

from (13) and (14). 

In case of ,k l≥  note that ( | 1) 0,ûu
k k − =  it 

follows from (13) and (14) that 

[ ]

2

ˆ( ) ( ) ( )

ˆ( ) ( | 1)
0

( )0
( )

( ) ( | 1)0 ˆ

z z z

r n

u

z

uu l l

k k k

C
k k k

kD
k

k k kL

 
 
 
 × 

= −

= − −

  
+ + ,   − −   

w y y

x x

u
v

u u

 (36) 

where ˆ ( | 1)x k k −  and ( | 1)ûu l
k k −  are respectively 

the projections of ( )x k  and ( )u
u l
k  onto { (0)y

z
,L  

( 1)},y
z
k, −�  or equivalently 

2 2
{ (0) ( 1)w w

l
k, , − ;�L  

1 1
( ) ( 1)}.w w

l
k k, , −�  Thus ( ) ( ) ( )w w

z
w z z

Q k < k k >= ,  

is given from (36) as 

1

2 2

2

2

2

( )

( ) 0

0 0

( ) ( )0 0

( ) ( )0 0

( ) 0
( )

( )0 0

0( )0
( ) ,

( )0 0 0

z
w

T

T

u u

l l

T

u

l

T
pu

l r

Q k

C k C

k kD D

k kL L

kC D
k

k L

IkD C
k

kL I

λ λ

λ

λ γ

 
 
 
 
 

 
=  
 

      
+ ,      
      

    
+ ,     
    

    
+ , +    

−    

u u

u

e

u

e

P

 (37) 

where 

ˆ( ) ( ) ( | 1),e x xk k k k= − −
1
( ) ( ) ( )e ek k k=< , >P  and 

( ) ( ) ( | 1).ˆu uul u l l
k k k kλ = − −  From (12) and (13), it is 

easy to observe that ( )u
u
k  is uncorrelated with ( )

l
kλ  

and ( ).e k  Thus (37) follows that 

1
( ) 0

( )
0 0z

T

w

C k C
Q k

 
=  
 

P
 (38) 

 [ ]

2 2

2

2

2

00 0

0 00 ( ) ( )

0
0 ( ) ( )

0 0

000
.

( ) ( )0 0 0

T
q

l l

T

l

T
p

l r

ID D

L L< k k >

C D
< k k >

L

ID C

< k k >L I

λ λ

λ

λ γ

 
 
 
 
 

    
+     ,    

   
+ ,   
   

    
+ +    , −    

e

e

 

From (31), ( )
l
kλ is given by 

1

2 1 1

1

1

1 11

1

( ) ( ) ( ) ( )

( ) ( )

u w

w
l

l

T

l u l l l

l
k T

l lk i

i

k k D Q k k

R C Q k i k i

λ
−

−
−

+ ,

=

= −

− + + ,∑
 (39) 

it is easy to know that ( )
l
kλ  is uncorrelated with 

1 1 1
( ) ( 1) ( 1),w w w

l l
k k k, + , , −�  and thus (39) follows 

that 

1

2 1 2

1

1

11 1

1

( ) ( ) ( )

( )l l

l l

T
l l l

l T
k kT

l qk i k i
i

k k D Q k D

R C Q k i C R I

λ λ

 
 
  

−

−
−

+ , + ,

=

, +

+ + = .∑
 (40) 

Similarly we can derive that 

1
( ) ( )e

lk

l k
k k Rλ

,

, = .  (41) 

Thus ( )
z

w
Q k  is computed from (38) as (34).  � 

 

4. H∞ DECONVOLUTION FIXED-LAG 

SMOOTHER 

 

Having calculated ˆ ( ),x k  ( | 1)ûu l
k k −  and ( ),

z
w

Q k  

we are now in the position to present the H∞ 

deconvolution fixed-lag smoother. 

Theorem 1: Consider the system model (1)-(3), given 

a scalar 0γ >  and an integer 0.l >  Suppose 
2
( )kP  

is the bounded solution to Riccati equation (21) and 

1
( )kP  is calculated by (23). Then the H∞ deconvolution 

fixed-lag smoother that achieves (4) exists if and only if 

2

0
( )

{ }z

p

v

p r

I k l
Q k

diag I I k lγ

, ≤ < ,
= 

,− , ≥
 

and ( )
z

w
Q k  have the same inertia for 0 ,k N= , ,�  

where ( )
z

w
Q k  is as (34). 

If this is the case, one possible level- γ  H
∞
 white 

noise fixed-lag smoother is given by 

( | ) ( | )ˆul l
š k k L k ku= ,  (42) 

where ( | )ˆu l
k ku  is obtained from the projection of 

( )u
u l
k  onto { (0) ( )},y y

z z
k, ,�L  which is given by 

[ ]1

2 1
ˆ( | ) ( ) ( ) ( 1)ˆ

T

u l l l l
k k D Q k y k Cx ku

−

= − ,  (43) 
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[ ]

1

11

1

( )

ˆ( ) ( 1)

l

l

l
k T

lk i

i

l l

R C Q k i

y k i Cx k i

−

+ ,

=

+ +

× + − + , ,

∑
 

where ˆ ˆ( 1) ( 2)
l l

x k x k, = ,  and ˆ( 1)
l

x k i+ ,  for 1i l= , ,�  

are calculated by (26) and (28), respectively. In addition, 

1

l

l

k

k i
R

+ ,
is calculated by (32)-(33), 

1
( )

l
Q k i+  is as (25). 

Proof: From Lemma 1, it is easy to know that the 

H
∞
 deconvolution fixed-lag smoother that achieves (4) 

exists if and only if ( )
z

w
Q k  and ( )

z
v

Q k  have the 

same inertia, where ( )
z
v

Q k  is as (9) and ( )
z

w
Q k  is as 

(34). If this is the case, the minimum value of ( )
l N,

⋅J  

is given by (15), where ˆ( )x k  and ( | 1)ˆu l
k ku −  in (15) 

are obtained from ˆ ( )x k  and ( | 1)ûu l
k k −  which have 

been calculated in last section. Note (34), it is obvious 

that ( ) 0
z

w
Q k >  for 0 .k l≤ <  For ,k l≥  using matrix 

LDU, ( )
z

w
Q k  is given by 

11

1

321 11

1

11 21

0 ( ) 0
( )

0 ( )( ) ( )

( ) ( )

0

z
w

I R k
Q k

kR k R k I

I R k R k

I

−

−

   
=    ∆  

 
× , 
 

 (44) 

where 

1

3 22 21 11 12
( ) ( ) ( ) ( ) ( )k R k R k R k R k

−

∆ = − ,  (45) 

while 
11 1 2 2
( ) ( ) ,T T

pR k C k C D D I= + +P
21 1
( ) ,lk T

k
R k LR C

,

=  

( )12 21
( ) ( )R k R k=  and 2

22 2
( ) ( ) T

r
R k L k L Iγ= ∆ −  and 

2
( )k∆  is as in (35). Thus, from (44), ( )

z
w

Q k  and 

( )
z
v

Q k  have the same inertia if and only if 
11
( ) 0R k >  

and 
3
( ) 0.k∆ <  Substituting (44) into (15) yields 

[ ] [ ]

(

[ ])
(

[ ])

1

11

0

1

21 11

1

3

1

21 11

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

( | ) ( | 1)ˆ

ˆ( ) ( ) ( ) ( )

( ) ( | ) ( | 1)ˆ

ˆ( ) ( ) ( ) ( ) .

N
Tm

l N

k

N

ul l

k l

T

ul l

y k Cx k R k y k Cx k

š k k L k ku

R k R k y k Cx k

k k k L k kš u

R k R k y k Cx k

−

,

=

=

−

−

−

⋅ = − −

+ − −

− −

×∆ − −

− −

∑

∑

J

 (46) 

Since 
11
( ) 0R k >  and 

3
( ) 0,k∆ <  to achieve ( )m

l N,
⋅J  

0,>  one natural choice is to set 

[ ]1

21 11

( | ) ( | 1)ˆ

ˆ( ) ( ) ( ) ( ) 0

ul l
š k k L k ku

R k R k y k Cx k−

− −

− − = ,
 

Thus the H
∞
 deconvolution smoother ( | )

l
š k k  can be 

given by 

[ ]

[ ]

1

21 11

1

11

( | )

ˆ( ) ( ) ( ) ( ) ( | 1)ˆ

ˆ( ) ( ) ( ) ( | 1).ˆl

l

u l

k T

u lk

š k k

R k R k y k Cx k L k ku

LR C Q k y k Cx k L k ku

−

−

,

= − + −

= − + −

 (47) 

Note ( | 1)ˆu l
k ku −  in (31), therefore, substituting (31) 

into (47), it follows that 

( | ) ( | )ˆul l
š k k L k ku= ,  (48) 

where ( | )ˆu l
k ku  is as (43).         � 

Remark 3: The design of the H∞ deconvolution fixed-

lag smoother in Hilbert space is equivalent to the design 

of the H2 deconvolution fixed-lag smoother in Krein 

space. However, the H∞ deconvolution fixed-lag 

smoother needs the existence condition, i.e., the first part 

of Theorem 1. 

Remark 4: Consider the fixed-lag (l > 0) smoothing 

of the system model (1)-(3), note (42) and (43), the 

fixed-lag smoother can be composed of 1l +  parts, one 

of which is the H
∞
 deconvolution filtering ( | )

l l
š k k =  

( | ),ˆu l l
L k ku  and the other l  parts are the projections 

of ( )u
u l

L k  onto 
1

( 1) ( ),w w
l l
k k+ , ,�  respectively. 

 

5. NUMERICAL EXAMPLE 

 

In this section, we will give an example to show the 

proposed approach.  

Consider the system with 
0 9 0 5

( ) ,
0 0 5

A k
. . 

=  . 
( )B k  

1
,

0 5

 
=  . 

[ ]( ) 2 1 ,C k =
1

1
( ) ,

2
D k

 
=  
 

2
( ) 4,D k = ( )L k =  

1, and the input sequences are ( ) (0 1),u k ,∼ N  the 

initial value 
0

(0 | ) ,
0

x l
 

=  
 

�

1 0
(0) ,

0 1
P

 
=  
 

0

1 0
.

0 1

 
Π =  

 
 

Take 100N = , 20l =  and 2
1 05.γ = .  

 

Fig. 1. The smoothing estimate for signal s(k) with 
2

1 05.γ = .  
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In according to formulations (42) and (43) in Theorem 

1, we can give the smoothing estimate for s(k) as in Figs. 

1 and 2. From the below two figures, it can be easily 

seen that the proposed approach can give a good 

smoothing estimation to the unknown input.  

 

6. CONCLUSIONS 

 

The H∞ deconvolution fixed-lag smoothing has been 

studied for the linear time-invariant discrete-time system. 

A new approach to the problem has been proposed by 

using the innovation analysis in Krein space. It has been 

clearly shown that the calculation for the H∞ deconvolu-

tion estimate is equivalent to the one for the H2 estimate 

in a ceratin Krein-space. The optimal deconvolution 

fixed-lag smoother is calculated in terms of the solutions 

to Riccati equations with the same order as the original 

system [13].  
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