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Abstract: Precise estimation of the position of robots, which is essential in mobile robotics, is difficult 

to achieve. However, particle filter shows great promise in this area. The number of samples used in 

this study is closely related to the operation time in particle filtering. The main issue in real-time im-

plementation with regard to particle filter is to reduce the operation time, which led to the development 

of the adaptive particle filter (APF). We propose a new APF which adjusts the variance and then uses 

the gradient data to generate samples near the high likelihood region. The experiment results show that 

the new APF performs better, in terms of the total operation time and sample set size, than the standard 

particle filter and the APF using Kullback-Leibler distance sampling. 
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1. INTRODUCTION 

 

Navigation is the very challenging competences 

required of a mobile robot. The navigation challenge for 

a mobile robot involves executing a course of action to 

reach its goal position. Success in navigation requires 

success in the four branches of navigation: perception, 

localization, cognition, and motion control. Localization 

of a mobile robot involves determining its position and 

heading with respect to known locations in the 

environment. This is an important issue for mobile robot 

research since it is essential to a mobile robot to ensure 

long-term reliable operations. One of the most reliable 

solutions to the localization problem is to design and 

deploy an active beacon system specifically for the target 

environment. This is the preferred technique used for 

both industrial and military applications as a way of 

ensuring the highest possible reliability of localization 

[1]. The mathematical treatment of navigation is quite 

difficult because of the uncertainties associated with the 

sensors used in the process and the variability of the 

environment. There are various reasons for the 

occurrence of errors in the accuracy of localization, one 

of which is that the sensor information is generally 

unreliable and contains noise. Wheel slippage is also a 

reason why such errors occur. With the passage of time, 

these errors accumulate and the location becomes 

increasingly inaccurate. Thus, researchers have strived to 

come up with ways to reduce such errors [2,14]. 

This paper focuses on localization using active ul-

trasonic beacon systems placed at known positions in the 

environment [3]. They use ultrasonic pulses to deter-

mine the distance between a robot and beacons and 

estimate the position of a mobile robot. Although these 

methods experience random large noise, they have the 

advantage that errors are not accumulated.  

The classic optimal solution for linear system models 

under Gaussian noises is the well known Kalman Filter 

[4,5]. However, most real-world problems involve 

elements of nongaussianity and nonlinearity. Conse-

quently, it is usually impossible to derive a solution 

based on the Kalman Filter. A suboptimal method, the so 

called Extended Kalman Filter, has been quite popular in 

dealing with nonlinear stochastic and measurement 

models. However, it has a drawback in that this 

approximation method does not take into account all 

statistical characteristics of the processes, and hence 

leads to poor results [6]. 

In nonlinear state space models with nongaussian 

noise, the Monte Carlo methods show good performance. 

Monte Carlo methods are very flexible and so do not re-

quire any assumptions about the probability distributions 

of the data.  

Particle filtering is most popular among techniques 

based on the Monte Carlo method. Particle filtering is a 

modern Bayesian method based on numerical approxi-

mation of posterior distributions [7,8]. The drawback of 

particle filtering is that it usually requires a large number 

of samples to produce reliable results. In particle filtering, 

the smaller the size of the sample set, the smaller the 

computational cost. Therefore, we should keep the sam-

ple set size as small as possible in order to improve the 

efficiency of particle filtering. An improved form of par-

ticle filter is the adaptive particle filter (APF), which 

controls the sample set size and, at the same time, main-

tains the precision of an estimate [9]. There are two types 

of APF: likelihood based adaptation, and Kullback-

Leibler Distance (KLD) sampling. In both samplings, 
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samples are generated randomly, which results in some 

of them being generated in the low likelihood region [10]. 

Such samples prevent the estimates from being accurate. 

Therefore, in order to improve the accuracy of estimates, 

we intend to consider two factors: variance and gradient.  

We propose a new APF which adjusts the variance and 

then uses the gradient data to generate samples near a 

high likelihood region. When samples are generated, the 

proposed APF calculates the gradient, unlike the 

standard APF. Thus, the operation time increases. 

However, as the calculated gradient data is used the 

estimates are more precise. Therefore, less samples need 

to be generated, which leads to a drop in the total number 

of samples and eventually reduces the total operation 

time. In conclusion, both the sample set size and total 

operation time are reduced. To show the effectiveness of 

the proposed adaptive particle filter for the localization 

of a mobile robot, an experiment in ultrasonic beacon 

systems is presented. 

This paper is organized as follows. Section 2 introduc-

es the general particle filter and APF. For lower compu-

tational cost and high accuracy of estimations, the pro-

posed method is presented in Section 3. The experiment 

setup of the mobile robot with the ultrasonic beacon 

system is specified in Section 4. The experiment results 

and the analysis of such results are presented in Section 5. 

Finally, the conclusion is provided in Section 6. 

 

2. PARTICLE FILTER 

 

2.1. General particle filter 

Particle filter represents the required posterior proba-

bility density function ( )0: 1:
|

t t
p r z  by a set of random 

samples with associated weights. r denotes a sample, and 

z denotes a measurement. These samples are called ‘par-

ticles’. The probability assigned to each particle is pro-

portional to the weight [7,9]. 

In order to explain the details of the algorithm, let 

{ }0:
1

,

N
i i

t t
i

r w

=

 denote a random measure that characterizes 

the posterior probability density distribution 
0: 1:

{ | }.
t t
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r i N= ⋅⋅⋅  is a set of particles with their asso-

ciated weights, { }, 1, , .
i

t
w i N= ⋅⋅⋅  The weights are nor-
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w =∑  N  is the number of samples 

used in the approximation. The posterior probability den-

sity distributions at time t can be approximated as 
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According to the Bayes theorem, we can conclude 
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If the importance density is chosen to factorize such that 
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then the weight update equation are given by 
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The choice of proposal distribution 
0: 1 0:

( | , )
t t t

q r r z
−

 is 

one of the most important issues for particle filtering, 

and has to include the most recent observations. The fol-

lowing equation is chosen to minimize the noise va-

riance: 

0: 1 0: 0: 1 0:
( | , ) ( | , ).
t t t t t t

q r r z p r r z
− −

=  (7) 

For convenience, the most common choice is the prior 

distribution as follows: 

0: 1 0: 1
( | , ) ( | ).
t t t t t

q r r z p r r
− −

=  (8) 

By substituting equations, the weight update equation 

is simplified as follows: 

1

1 1
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The particle filter described above is called the Se-

quential Importance Sampling (SIS) [2]. A common 

problem with the SIS method is that after a few iterations, 

most particles have negligible weights, called ‘degenera-

cy phenomenon’. The resampling scheme is very impor-

tant to avoid the degeneracy phenomenon of the particles 

[9]. Resampling is a method to eliminate particles with 

small weights and replicate particles with large weights, 

in which we are interested. 

 

2.2. Adaptive particle filter  

In particle filtering, a large number of samples are re-

quired to achieve a certain level of accuracy. Many sam-

ples are required for two reasons: a) to accurately ap-

proximate posterior density of the state over time, and b) 

to allow the mobile robot to return to its original position 

if it loses track of its position. However, the larger the 

size of the sample set, the larger the computational cost. 

Therefore, in order to reduce the computational cost, that 

is, to boost the efficiency of the particle filter, an adap-

tive particle filter is proposed [10]. This method chooses 
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a small number of samples if the mobile robot tracks its 

position accurately, whereas it chooses a large number of 

samples if the position of the mobile robot is not tracked 

accurately. Fox introduced two kinds of APF: likelihood 

based adaptation and KLD sampling [10].  

1) Likelihood based adaptation: In the likelihood 

based adaptation, a sum of weight is a measure of uncer-

tainty. Samples are generated until the sum of non-

normalized likelihood exceeds a pre-specified threshold. 

If all sampled particles have low likelihood scores, a sum 

total does not exceed the threshold. This method has the 

advantage of introducing no overhead in spite of iterative 

calculation and the calculation being simple, but it shows 

poorer performance compared to KLD sampling [10]. 

2) KLD sampling: Fox showed how to determine the 

number of samples so that the distance between the sam-

ple based Maximum Likelihood Estimate (MLE) and the 

true posterior does not exceed a pre-specified threshold 

ε  [10]. KLD sampling measures the approximation 

error by Kullback-Leibler distance between the true dis-

tribution and its sampled representation. The KLD is a 

measure of the difference between two probability distri-

butions p  and q :  

( )
( , ) ( ) log .

( )
x

p x
K p q p x

q x
=∑  (10) 

Through numerical equations, we can identify the rela-

tionship between the number of samples and the result-

ing approximation quality. If we choose the number of 

samples 
x

n  as 

2
1,1

1

2
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n X
δ

ε
− −

=  (11) 

then we can guarantee that with probability 1 ,δ−  the 

KLD between the MLE and the true distribution is less 

than .ε  For details, refer to [10].  

In order to determine ,
x

n  we need to compute the 

values of the chi-square distribution. The best solution is 

given by the Wilson-Hilferty transformation [13], which 

yields 

3
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where 
1
z

δ−
 is the upper 1 δ−  value of the standard 

normal distribution [10]. This method shows excellent 

performance in practice.  

 

3. NOVEL ADAPTIVE PARTICLE FILTER 

 

3.1. Adaptive particle filter using adjusted variance 

In KLD sampling, samples are generated randomly, 

most of which are generated near the low likelihood re-

gion due to their state being highly uncertain. Although 

samples are generated, they do not contribute to the im-

provement of the estimates nor reduce the operation time.  

We propose a new APF that can lead to effective sam-

pling by adjusting the variance size. The basic idea is to 

increase variance inversely proportional to the likelihood 

and generate samples. Such likelihood is correlated to the 

KLD. The lower the likelihood, the further away the 

KLD is. If the KLD is large, it means that the true distri-

bution and the sample are far apart from each other. So 

the variance size has to be increased by a large quantity 

in order to generate samples near the true distribution. 

Using the equation described in (12), the number of re-

quired samples can be calculated. The adjusted variance 

is calculated by using the relationship between the max-

imum number of samples and the number of required 

samples. The adjusted variance is given by 

,x

ad lb

total

n

N
σ σ ε= + ⋅  (13) 

where 
ad

σ  denotes the adjusted variance, 
lb

σ  denotes 

the low bound variance, ε  denotes a maximum value 

of KLD, 
x

n  denotes the number of required samples, 

and 
total

N  denotes the number of total samples. 
lb

σ  is 

an application specific design parameter, and we set 

lb
σ ε�  in this paper. If the KLD is small, 

x
n  tends to 

decrease. For example, /
x total

n N  becomes very small 

and 
ad

σ  will be similar to .
lb

σ  On the contrary, if the 

KLD is large, /
x total

n N  will become closer to 1 and 

ad
σ  will be similar to .ε  

 

3.2. Generation of samples using gradient 

Considering the APF, the number of samples is 

adapted by state uncertainty. When samples are increas-

ing, they are generated randomly and are distributed 

widely. New samples have low weights because of a 

large state uncertainty. Therefore, many new samples are 

generated that do not satisfy a condition, so an increase 

in wasted operation time is experienced. Therefore, we 

propose the novel adaptive particle filter for effective 

sampling by taking advantage of current observation and 

its gradient information. The basic idea essentially calcu-

lates the gradient information from the probability densi-

ty function of observation and generates new samples 

toward the high likelihood region, along the gradient-

descent direction.  

Consider the following nonlinear state space model 

1
( , ),

( , ),

t t t t

t t t t

r f r w

l h r v

−

=

=

 (14) 

where 
t
r  denotes the state of the system at time ,t  

t
l  

denotes the output observation, 
t

w  denotes the process 

noise, and vt denotes the measurement noise. lt is meas-

ured by using the difference in transmission speed of the 

signals sent from the beacon. The state equation in (14) 

characterizes the state transition probability 
1

( ),
t t

p r r
−

 

whereas the measurement equation in (14) describes the 

probability ( )
t t

p l r  which is related to the measure-
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ment noise model. The mapping f and h represent the 
motion and measurement models. If ( )tp l  is a Gaussian 
probability density function of measurement model, the 
gradient at the state tr  is given by 

( )2

2

( )( ( )) 1 exp ,
2 2i

t i
t

t

r r
r r

l h rp h r
r r σ π σ=

=

⎡ ⎤⎧ ⎫−∂ ∂ ⎪ ⎪⎢ ⎥= −⎨ ⎬∂ ∂ ⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
 

 (15) 
where σ  is the variance of a Gaussian probability den-
sity function. 

Depending on whether the gradient is positive or nega-
tive, we can identify the relative location of the current 
sample between the beacon and the observation. Consid-
ering the geometric structure of the ultrasonic beacon 
system, if the gradient is positive, it means that the dis-
tance between the current sample and the beacon is 
shorter than the distance between the observation and the 
beacon. In other words, the current sample is nearer to 
the beacon than the observation. Therefore, new samples 
should be generated farther than the current sample from 
the beacon according to the adjusted variance in order for 
the proposed APF to be efficient. On the other hand, if 
the gradient is negative, the distance between the current 
sample and the beacon is longer than the distance be-
tween the observation and the beacon. In other words, 
the current sample is farther away from the beacon than 
the observation. Therefore, new samples should be gen-
erated nearer to the beacon according to the adjusted 
variance. This may be described as follows:  
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i
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i
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r rt
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r otherwise

σ β

σ β

+
=

⎧ ∂+ ⋅ ∃ >⎪ ∂= ⎨
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where β  represents random numbers whose elements 
are normally distributed with mean 0 and variance 1. The 
new i N

tr
+  calculated above is used to update the weight 

in (9). As a result, new samples may be generated in the 
high likelihood region by using this method. This ensures 
localization to be accurate and reduces operation time 
due to small sample set size.  

 
4. EXPERIMENT SETUP 

 
4.1. Ultrasonic beacon system 

The ultrasonic beacon system is composed of a beacon, 
which emits ultrasonic waves and RF signals, and a 
listener, which receives the ultrasonic waves and RF 
signals sent from the beacon. The beacon is installed on 
the ceiling or walls of a room and the listener is attached 
to the mobile robot.  

The mobile robot uses the ultrasonic waves and RF 
signals, received by the listener, to identify the distance 
between itself and the beacon. The difference in the 
transmission speed of the ultrasonic waves and RF 
signals is utilized in figuring out such distance. At first, 
the listener receives the RF signals, which are 

transmitted faster than the ultrasonic waves, followed by 
the ultrasonic waves. Then, the mobile robot calculates 
the distance between itself and the beacon using the time 
difference of which the signal and wave were received. 
Finally, the mobile robot utilizes such distance data to 
estimate its position. 

 
4.2. Modeling 

1 1( , )X Y  coordinates are absolute coordinates based 
on the robot’s external position. 2 2( , )X Y  coordinates 
are local coordinates in which the heading direction of 
the robot is 2X -axis. ( , )x y  is the center of the mobile 
robot. θ  is the heading angle. In the real world, error 
occurs due to wheel slippage and the rough surface of the 
ground. Assuming that the mobile robot moves in a two 
dimensional space, the motion model is given as follows:  

1
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1
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 (17) 

tr  is a measurement and we set ( , , ),t t t tr x y θ=  where 
( , )t tx y  is a position vector and tθ  is a heading angle 
at time .t  ( , )t tu d θ= Δ  represents input signal, and wt 
is independent noise. The measurement equation repre-
sents sensor uncertainty using probability. The measure-
ment equation is given as follows: 

1/ 22 2 2

( , )

( ) ( ) ( )

t t t

t B t B t B t

l h r v

x x y y z z v

=

⎡ ⎤= − + − + − +⎣ ⎦
 (18) 

where tv  is mutually independent noise, and ( ,Bx  
,By )Bz  is position of beacons. 

 
4.3. Parameter set up 

The operation time of particle filtering is important for 
localization in real time and is directly linked to the 
number of samples. To demonstrate the relationship be-
tween the number of samples and operation time, we 
experimented with the localization of mobile robots us-
ing a particle filter with fixed samples. We set the maxi-

 

 
Fig. 1. Coordinates of mobile robot. 
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mum number of APF samples taking such results into 

account, and then performed an experiment on localiza-

tion using the standard APF and the proposed APF. Fi-

nally, we compared the experiment results in terms of 

Root Mean Square Error (RMSE), total samples, and 

operation time. In the experiment, we set the robot’s 

speed at 30cm/s and angle variation at 6 / .s°  
lb

σ  is 

determined based on the result of the experiment. Each 

covariance of noise is set up as follows: 

5 0 0

0 5 0 ,     = [2].

0 0 /180
t t

w v
P P

pi

 
 =  
  

 

 

5. EXPERIMENTAL RESULTS 

 

5.1. Localization using particle filter with fixed samples 

A particle filter with various samples is used to identi-

fy the relationship between efficiency and accuracy. The 

accuracy of the particle filter is measured by RMSE be-

tween actual and estimated state. Fig. 2 shows the result 

of localization. 

The more samples are used in a particle filter, the 

more the state is accurately estimated. However, the op-

eration time increases in proportion to the number of 

samples, and the performance of the particle filter is 

closely related to the number of samples. We found out 

that the accuracy of a particle filter with more than 

20,000 samples was similar to that of a particle filter 

with 20,000 samples. Given this, it was deemed suffi-

cient to represent the posterior density function using a 

particle filter with 20,000 samples. Therefore, we set the 

maximum number of samples at 20,000 for APF. 

 

5.2. Localization using APF 

5.2.1 Set up of 
lb

σ  

Table 1 shows the localization accuracy and operation 

time with respect to the changes in .
lb

σ  Setting the 

lb
σ  smaller than the initial variance ( 5)

lb
σ =  tends to 

result in better performance in terms of the sample set 

size, RMSE, and operation time. For example, when the 

lb
σ  is set at 0.5, the sample set size and operation time 

show the best performance. Thus, we set the 
lb

σ  at 0.5 

and conducted the experiment.  

 

5.2.2 Comparison of performance: particle filter, stan-

dard APF and proposed APF 

Experimental results are shown in Figs. 3 through 7. Figs. 

3, 4 and 5 show the useful samples generated, where 

◦ represents the true motion of a mobile robot and * 

represents the useful samples generated using PF, APF 

 

Fig. 2. RMSE and Operation time by number of samples.

 

Table 1. Localization accuracy and operation time vs

.
lb

σ  

lb
σ  

Sample 

set size 

RMSE 

(cm) 

Operation 

time (s) 

5 5431 4.846 4.153 

3 5254 4.636 3.972 

1 5071 4.557 3.811 

0.5 4863 4.412 3.706 

0 5017 4.434 3.799 

 

Fig. 3. The useful samples generated using the PF 

(5000 samples per a step). 

 

Fig. 4. The useful samples generated using the standard 

APF. 
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and the proposed method, respectively. The results of the 

PF with the 5000 fixed samples are shown in Fig. 3. In 

this case, though many more samples are used in total 

localization than the proposed methods, its performance 

is poor in a corner. Moreover, we see that the proposed 

method is similar to the standard APF when the robot 

goes straight, but the proposed method is better when the 

robot turns a corner as shown in Figs. 4 and 5. 

Fig. 6 shows the estimate errors on each case. Fig. 7 

shows the results when the proposed APF with adjusted 

variance was compared to the standard APF in terms of 

the total number of samples. Moreover, Table 2 

represents the RMSE of robot states and the elapsed CPU 

time per unit of PF, APF and the proposed APF method, 

which indicate the localization accuracy and operation 

time, respectively.  

We can clearly confirm that the total number of sam-

ples using the proposed APF is much smaller than that of 

the standard APF. In addition, we can greatly reduce the 

operation time. The proposed method is better when the 

robot turns a corner and Table 2 shows that the im-

provements of RMSE and operation time are 42.4% and 

26.8%, respectively. 

 

6. CONCLUSIONS 

 

In this paper, we proposed a new APF by adjusting the 

variance and using gradient. This algorithm generates 

new samples in the high likelihood region as uncertainty 

increases. Hence the proposed method is more accurate 

and reduces computational costs. The approach has been 

implemented and evaluated on the localization of a mo-

bile robot in an ultrasonic beacon system. From the re-

sults of the experiment, the proposed APF was found to 

show better performance in terms of sample set size, 

RMSE and total operation time.  
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