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Abstract: The 
2

L L
∞

−  filtering problem for continuous-time polytopic uncertain stochastic time-

delay systems is investigated. The main purpose is to design a full-order filter guaranteeing a pre-

scribed 
2

L L
∞

−  attenuation level for the filtering error system. A simple alternative proof is given for 

an enhanced LMI (linear matrix inequality) representation of 
2

L L
∞

−  performance. Based on the cri-

terion which keeps Lyapunov matrices out of the products of system dynamic matrices, a sufficient 

condition for the existence of a robust estimator is formulated in terms of LMIs. The corresponding fil-

ter design is cast into a convex optimization problem. A numerical example is employed to demon-

strate the feasibility and advantage of the proposed design. 
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1. INTRODUCTION 

 

Over the past decades, considerable attention has been 

devoted to state estimating problem, and many signifi-

cant results have been reported in literature. When a pri-

ori information on the external noises is not precisely 

known, the celebrated Kalman filtering scheme is no 

longer applicable. In such cases, we can resort to H
∞

 

filtering [1-4] and energy-to-peak 
2

( )L L
∞

−  filtering 

[5-8]. The 
2

L L
∞

−  performance was first proposed in 

[9]. As is mentioned in [5] and [7], the objective of the 

2
L L

∞
−  filter design is to minimize the peak value of 

the estimation error for all possible bounded energy dis-

turbance. Time-delays are often encountered in various 

engineering systems such as long transmission line, 

chemical processes and nuclear reactors, and so on. The 

characteristics of dynamic systems can be significantly 

affected by the presence of uncertainties and time-delays, 

even to the extent of instability or poor performance [10-

12]. Reference [7] proposed the 
2

L L
∞

−  filter design 

approaches for polytopic uncertain systems with multiple 

time-varying state delays. Delay-independent and depen-

dent sufficient conditions for the design of 
2

L L
∞

−  

filter are presented, respectively. 

The analysis and design of estimators for systems with 

stochastic uncertainties have recently received much 

attention [13,14]. Reference [14] presents the reduced-

order H
∞

 estimator for stochastic systems with exactly 

known matrices, and the full-order H
∞

 filtering prob-

lem has also been solved for systems with both stochastic 

uncertainties and polytopic uncertain parameters in [15]. 

To the best of the authors’ knowledge, however, up to 

now, few papers have been made to extend these results 

to the case of time-delayed stochastic systems, whether 

with or without parameter uncertainties. Very recently, 

[6] considered the 
2

L L
∞

−  filter design problem for 

uncertain stochastic time-delay systems. Sufficient con-

ditions are formulated in terms of LMIs, which contain 

the products of system matrices and Lyapunov matrices. 

In this paper, we investigate the robust 
2

L L
∞

−  fil-

tering problem for continuous-time polytopic uncertain 

stochastic system with time-varying delay based on [6] 

and so-called “Small Scalar Method” [10,16]. The paper 

is organized as follows. Section 2 states the class of sto-

chastic time-delay systems for which the filter will be 

designed. Section 3 gives a new 
2

L L
∞

−  performance 

criterion, which exhibits a kind of decoupling between 

Lyapunov matrices and system dynamic matrices by 

introducing slack matrices. Section 4 presents a suffi-

cient condition for the existence of the robust 
2

L L
∞

−  

estimator in terms of LMIs based on the preliminary 

formulation of Section 3. A simulation example is used 

to illustrate the procedure and performance of the pro-

posed approach in Section 5, which is followed by con-

clusions in Section 6. 

© ICROS, KIEE and Springer 2010 

__________  

 Manuscript received March 27, 2009; revised December 23,
2009; accepted February 14, 2009. Recommended by Editorial
Board member Bin Jiang under the direction of Editor Young Il
Lee. This work was supported by the National Natural Science
Foundation of China (No. 60772046, 60904031 and 60974044),
Natural Science Foundation of Guangdong Province (No.
9451805707002681), Basic Research Plan in Shenzhen City (No.
JC200903120195A) and Science Research Fund for Young
Teachers in Harbin University of Science and Technology (No.
2008XQJZ021). 
 Ying Zhang is with Information and Control Research Center,
Shenzhen Graduate School, Harbin Institute of Technology,
Shenzhen 518055 and the Dept. of Automation, Harbin University
of Science and Technology, Harbin 150080, china (e-mail: zhan-
gying@hit.edu.cn). 
 Ai-Guo Wu and Guang-Ren Duan are with Information and
Control Research Center, Shenzhen Graduate School, Harbin
Institute of Technology, Shenzhen 518055, china (e-mails: agwu
@163.com; g.r.duan@hit.edu.cn). 



Ying Zhang, Ai-Guo Wu, and Guang-Ren Duan 

 

 

742 

2. PROBLEM DESCRIPTION 

 

Consider the following stochastic system with time-

varying delay: 

[ ]

[ ]

[ ]

[ ]

( ) ( ) ( ( )) ( )

( ) ( ( )) ( )

( ) ( ) ( ( )) ( )

( ) ( ( )) ( )

( ) ( )

( ) ( ), , 0 ,

d

d

d

d

dx t Ax t A x t d t Bw t dt

Mx t M x t d t dv t

dy t Cx t C x t d t Dw t dt

Nx t N x t d t dv t

z t Lx t

x t t t dφ

 = + − +


+ + −


= + − +


+ + −
 =

  = ∈ − 

 (1) 

where ( ) n
x t ∈R  is the state vector, ( ) my t ∈R is the 

measurement output, and ( ) p
z t ∈R  is the signal to be 

estimated, ( ) l
w t ∈R  is the disturbance input which 

belongs to 
2
[0, ),L ∞  and ( )v t  is a one-dimensional 

Brownian motion satisfying { ( )} 0,dv t =E
2{ ( ) }dv tE =dt. 

In addition, ( )d t is a time-varying delay satisfying 

0 ( ) ,d t d< ≤ < ∞  ( ) 1,d t τ≤ <
�  where d  and τ  are 

real constant scalars, ( )tφ  is a real-valued initial vector 

function that is continuous on the interval [ , 0].d−  

Assumption 1: The state-space data is assumed to be 

subject to uncertainties in the form of a polytopic model 

1

,

0 0

i i i ir

d d d d i di di di di

i

i i i

A C M N A C M N

A C M N A C M N

B D L B D L

α

=

  
  ∈   
     

∑  

 (2) 

where α ∈Γ  and  

1 2

1

: ( , , , ) : 1, 0 .
r

r i i

i

α α α α α

=

  
Γ = = ≥ 

  
∑�  

Consider an estimator or filter described by 

( ) ( ) ( )

( ) ( ),

F F F F

F F F

dx t A x t B dy t

z t C x t

= +


=
 (3) 

where ( ) n

F
x t ∈R  is the filter state vector and ,

F
A  

,
F

B
F

C  are appropriately dimensioned filter matrices to 

be determined. 

Augmenting the model (1) to include the states of the 

filter, we obtain the following filtering error system: 

( ) ( ) ( ( )) ( )

( ) ( ( )) ( )

( ) ( )

( ) ( ) 0 , , 0 ,

d

d

T
T

d t A t A t d t Bw t dt

M t M t d t dv t

e t C t

t t t d

ξ ξ ξ

ξ ξ

ξ

ξ φ

  = + − + 
  + + − 


=


   = ∈ −   

 (4) 

where  

( ) ( ) ( ) , ( ) ( ) ( ),
T

T T

F F
t x t x t e t z t z tξ  = = −   

00
, , ,

0

d

d

F dF F F

AA B
A A B

B CB C A B D

    
= = =    
    

 

[ ]
00

, , .
00

d

d F

F dF

MM
M M C L C

B NB N

  
= = = −  
   

 

Before presenting the main objective of this paper, we 

first introduce the following definitions for the filtering 

error system (4), which will be essential for our deriva-

tion. 

Definition 1: The filtering error system (4) with 

( ) 0w t =  is said to be mean-square stable if for any ε > 0 

there is a ( ) 0δ ε >  such that { }2( ) ,E tξ ε<  0t >  

when sup { }2( ) ( )E sφ δ ε< ( 0).d s− ≤ ≤  In addition, 

if { }2lmi ( ) 0
t

E tξ
→∞

=  for any initial conditions, then the 

filtering error system (4) is said to be mean-square 

asymptotically stable. 

Definition 2: Given a scalar 0,γ >  the filtering error 

system (4) is said to be mean-square asymptotically sta-

ble with an 
2

L L
∞

−  disturbance attenuation γ  if it is 

mean-square asymptotically stable and under zero initial 

conditions, 
2E

e wγ
∞

<  for all nonzero 
2
[0, )w L∈ ∞  

where { }2sup ( ) .
tE

e E e t
∞

=  

Our objective is to develop a robust filter of form (3) 

such that for all admissible uncertainties and time-delays, 

the filtering error system (4) is mean-square asymptoti-

cally stable with an 
2

L L
∞

−  disturbance attenuation 

level .γ  Filters guaranteeing such a performance are 

called 
2

L L
∞

−  filters or energy-to-peak filters. 

Throughout this paper, we make the following as-

sumption. 

Assumption 2: System (1) is mean-square asymptoti-

cally stable. 

Remark 1: The original system to be estimated has to 

be mean-square asymptotically stable, which is a prere-

quisite for the filtering error system (4) to be mean-

square asymptotically stable. 

 

3. FILTERING ANALYSIS 

 

In this section, an improved LMI criterion for 

2
L L

∞
−  performance analysis is presented. As a prelim-

inary, we first provide an existing one. 

Lemma 1 [6]: Consider system (1) and suppose that 

the filter matrices ( , , )
F F F

A B C  in (3) are given. Then 

the filtering error system (4) is mean-square asymptoti-

cally stable with an 
2

L L
∞

−  disturbance attenuation 

level bound γ  if there exist 2 2
0

n n

P
×

< ∈R  and 

2 2
0

n n

Q
×

< ∈R  satisfying 
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0

0,
(1 ) 0

0 0

d

T T

d

T T

d d

T

P PM PM

M P PA A P Q PA PB

M P A P Q

B P I

τ

 −
 

+ + 
Ψ = < 

− − 
 − 

 (5) 

2
0.

T
P C

C Iγ

 
> 

  
 (6) 

By some algorithmic transformation and techniques, 

we can obtain the following conclusion. 

Theorem 1: Consider system (1) and suppose that the 

filter matrices ( , , )
F F F

A B C  in (3) are given. Then the 

filtering error system (4) is mean-square asymptotically 

stable with an 
2

L L
∞

−  disturbance attenuation level 

bound γ  if there exist 2 2
0

n n

P
×

< ∈R  and 0 Q< ∈  

2 2n n×

R  and matrices 2 2
, ,

n n

F G V
×

∈R  satisfying (6) 

and 

* * * *

* * *

0 * *

(1 ) *

0 0

T

T T T

T T

T T T

d d d

T T

P V V

M V F A A F Q

P F G A G G

M V A F A G Q

B F B G I

τ

 − −
 

+ + 
 

− + − − 
 

− − 
 − 
 0.<  (7) 

Proof: We need only to prove that (7) is equivalent to 

(5). If (5) holds, due to the strictness of it, there exists a 

positive scalar θ  satisfying 

0

0 0.
2

T

dT

d

T

A
A A B

A

B

θ

 
 
 

 Ψ + <   
 
 
 

 

By the Schur Complement Lemma, the above relation is 

equivalent to 

* * * *

* * *

0 2 * * 0.

(1 ) *

0 0

T T

T T T

d d d

T T

P

M P PA A P Q

A I

M P A P A Q

B P B I

θ θ

θ τ

θ

− 
 

+ + 
 − <
 
 − −
 

−  

 (8) 

Selecting T
F F= =P and ,

T
G G Iθ= =  we can obtain 

* * * *

* * *

0 * *

(1 ) *

0 0

T T T

T T

T T T

d d d

T T

P

M P F A A F Q

P F G A G G

M P A F A G Q

B F B G I

τ

− 
 

+ + 
 

− + − − 
 − −
 
 − 

 

 0.<  (9) 

In addition, since 

0 0 0 0

0 0 0

0 0 0

0 0 0

T

T

d

T

I

I A
T

A I

B I

 
 
 

=  
 
 
 

 

has full row rank, pre- and post-multiplying the both 

sides of (9) by T  and its transpose, respectively, gives 

(5). So conditions (9) and (5) are equivalent. In the fol-

lowing, we will show the equivalence between condi-

tions (9) and (7). 

By selecting T
V V P= =  in condition (9), we can 

obtain (7). On the other hand, if condition (7) holds, we 

have 0.
T

V V P+ − >  Therefore, V  is a singular ma-

trix. In addition, by 1( ) ( ) 0,T
V P P V P

−

− − ≥  we can 

obtain 1
.

T T
V P V V V P

− ≥ + −  Then we can infer from 

(7) that 

1 * * * *

* * *

0 * *

(1 ) *

0 0

T

T T T

T T

T T T

d d d

T T

V P V

M V F A A F Q

P F G A G G

M V A F A G Q

B F B G I

τ

− −
 

+ + 
 

− + − − 
 

− − 
 − 
 0.<  

Performing congruent transformation to the above in-

equality by diag( , , , , )T
J PV I I I I

−

=  yields (9). Based 

on the above deduction, it is known that conditions (7) 

and (5) are equivalent, which completes this proof. 

Remark 2: The above theorem exhibits the separation 

property between system matrices and Lyapounov ma-

trices with the help of introduced additional matrices. 

 

4. FILTERING SYNTHESIS 

 

In the following, we will focus on the design of 

2
L L

∞
−  filters in the form (3) based on Theorem 1, that 

is, to determine the filter matrices ( , , )
F F F

A B C  which 

will guarantee the filtering error system (4) to be mean-

square asymptotically stable with an 
2

L L
∞

−  distur-

bance attenuation performance. It may not be directly 

applicable to 
2

L L
∞

−  filtering design due to the pres-

ence of the products of ,F G  with ,A ,
d

A ,B  and V  

with ,M .

d
M  To enable the sub-optimal 

2
L L

∞
−  

filtering design, the matrices are specialized as 

, ,F G V G= Λ = Υ  

where 
1 2

diag( , ),
n n
I Iλ λΛ =  

1 2
diag( , )

n n
I Iν νΥ =  with 

1 2 1
, ,λ λ ν  and 

2
ν  being real scalars. Using the above 

, ,F V  (7) can be rewritten as 
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*

0

0

T

T T T

T

T T

d d

T

P G G

M G G A A G Q

P G G A

M G A G

B G

 − Υ − Υ


Υ Λ + Λ +


−Λ +


Υ Λ
 Λ

 

* * *

* * *

* * 0.

(1 ) *

0

T

T

d

T

G G

A G Q

B G I

τ




− − <

− −


− 

 

The following theorem provides sufficient conditions for 

the existence of such L2 − L∞ filters for system (1). 

Theorem 2: Consider system (1). An admissible 

L2 −L∞ filter of the form (3) exists if there exist positive 

definite matrices 
11

,

n n

P
×

∈R  
22

,

n n

P
×

∈R  
11

Q ∈  

,

n n×

R  
22

,

n n

Q
×

∈R  matrices 
12

,

n n

P
×

∈R  
12

,

n n

Q
×

∈R  

,

n n
X

×

∈R ,

n n

R
×

∈R ,

n n

U
×

∈R ,

n n

F
A

×

∈R
F

B ∈  

,

n m×

R  m n

F
C

×

∈R  and scalars 
1 2 1 2
, , ,λ λ ν ν  satisfying 

LMIs (10-13). 

11

21 22

31 1 33

41 1 43 44

53 54

63 64

71 1 73 1

81 1 83 1

93 1

* * * *

* * *

* *

*

0 0

0 0

0 0

T

T

T

T T

T T T T T

d d d d F

T T T T T

d d d d F

T T T T

F

M R

M R

X X

R X U

M R A R A X C B

M R A R A X C B

B R B X D B

ν

ν

ν λ

ν λ

λ

Ω
Ω Ω
Ω Ω

Ω Ω Ω


Ω Ω − −


Ω Ω − − −

Ω Ω +
Ω Ω +

 Ω +

 

 

11

12 22

* * * *

* * * *

* * * *

* * * *

* * * * 0,

* * *

(1 ) * *

(1 ) (1 ) *

0 0

T

T

d

T T

d

T

R R

A R Q

A R Q Q

B R I

τ

τ τ








<

− −


− − 


− − − − 
− 

 (10) 

11 12

12 22

2

0,

T

T T T

F

T

F

P P L

P P L C

L L C Iγ

 
 

− > 
 

−  

 (11) 

11 12

12 22

0,
T

P P

P P

 
> 

 
 (12) 

11 12

12 22

0,
T

Q Q

Q Q

 
> 

 
 (13) 

where 

11 11 1 1 22 22 1 1

21 12 1 1 2

31 41 1 2

33 1 2 11

43 1 2 12

44 1 22

53 11 1

54 12 1

, ,

,

,

( ) ( ) ,

( ) ( ) ,

( ) ,

,

T T

T T T

T T T

F

T T T T

F F

T T T T T T

F F

T T

T

F

P X X P R R

P R X U

M X N B

X A A X B C C B Q

R A A X C B A Q

R A A R Q

P X X A B C

P R

ν ν ν ν

ν ν ν

ν ν

λ λ

λ λ

λ

λ

λ

Ω = − − Ω = − −

Ω = − − −

Ω = Ω = +

Ω = + + + +

Ω = + + + +

Ω = + +

Ω = − + +

Ω = − +

63 12 1 2

64 22 1 93 1 2

71 81 1 2

73 83 1 2

,

,

, ,

,

.

T

F F

T T T

T T T T

F

T T T

d d F

T T T

d d F

X A B C A

P X U R A

P R R A B X D B

M X N B

A X C B

λ λ

λ λ λ

ν ν

λ λ

+ +

Ω = − − +

Ω = − + Ω = +

Ω = Ω = +

Ω = Ω = +

 

In addition, an admissible estimator with the form of (3) 

can be given by 

1 1
, , .

F F F F F F
A U A B U B C C

− −

= = =  (14) 

Proof: Since (10) implies 

*
0,

T

T T T

X X

X U R R R

 +
> 

+ + +  
 

where X  and R  are nonsingular. Then we can con-

struct the matrices G  and 1
G

−  as 

1

2 3

,

X X
G

X X

 
=  
 

 
1

1 1

2 3

.

R Y
G

Y Y

−

−

 
=  
  

 

Introduce matrices 

1

1 2

22

0
, , ,

00 0

X II I R

XR Y

−    
Σ = Π = Π =    

    
 

then we have 
1 2

.GΠ = Π  Without loss of generality, it 

is assumed that both 
2

Y  and 

2
X  are nonsingular. 

Therefore, 
1

Π Σ  is also nonsingular. Let 

1

2

.
0

I I
J

Y R

 
= Π Σ =  

 
 

By some algebraic operations we can obtain 

11 12

12 22

,

T

T

P P

J PJ

P P

 
=  
 

 
11 12

12 22

,

T

T

Q Q
J QJ

Q Q

 
=  
 

 

2 2
,

T T T T

F FT T

T T

X M X B N X M X B N
J G MJ

R M R M

 + +
=  
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2 2
,

T T

d

T T T T

d F d d F d

T T

d d

J G M J

X M X B N X M X B N

R M R M

 + +
=  
  

2 2 2 2
,

T T

T T T T T

F F F

T T

J G AJ

X A X B C X A X B C X A Y R

R A R A

 + + +
=  
  

2 2

,

T

T T

X R
J GJ

X R Y X R

 
=  

+ 
 

2
,

T T T T T

F
B GJ B X D B X B R = +   

2 2
,

T T T T

d F d d F dT T

d
T T

d d

X A X B C X A X B C
J G A J

R A R A

 + +
=  
  

[ ]2
.

F
CJ L L C Y R= −  

Based on the above relations, and define 

2 2 2 2

2 2

, ,

, .

T T

F F

T

F F F F

U X Y R A X A Y R

B X B C C Y R

= =

= =

 (15) 

It can be readily established that (10) and (11) read as 

( ) *

( )

0 ( )

0

T T

T T T T T

T T T

T T T T

d d

T

J P G G J

J M GJ J G A A G Q J

J P G A G J

J M GJ J A GJ

B GJ

 − Υ − Υ


Υ Λ + Λ +


− Λ +


Υ Λ
 Λ

 

 

* * *

* * *

( ) * * 0

(1 ) *

0

T T

T T T

d

T

J G G J

J A GJ J QJ

B GJ I

τ




− − <

− −


− 

 (16) 

and 

2
0.

T T T
J PJ J C

CJ Iγ

 
> 

  
 (17) 

Then by virtue of the nonsingularity of J, performing 

congruence transformations to (16) by diag( , ,T T
J J
− −  

, , )T T
J J I
− −  and to (17) by diag( , )T

J I
−  yields (7) 

and (6), respectively. In addition, the conditions that P 

and Q are positive definite are equivalent to LMIs (12) 

and (13). 

Denote the filter transfer function from y(t) to zF(t) by 
1( ) .

Fz y F F F FT C sI A B D
−

= − +  By substituting the filter 

matrices with (14), we have 

1 1 1 1 1

2 2 2 2

1 1 1

( )

( ) .

F

T T
z y F F F F

F F F F

T C R Y sI X A R Y X B D

C sI U A U B D

− − − − − − −

− − −

= − +

= − +

 

 (18) 

Therefore, we conclude from Theorem 1 that the filter 

with a state-space ( , , )
F F F

A B C  defined in (14) guaran-

tees the filtering error system (4) to be mean-square 

asymptotically stable with an 
2

L L
∞

−  disturbance at-

tenuation level bound .γ  This completes the proof. 

Theorem 2 addresses the 
2

L L
∞

−  filtering problem 

for system (1) where the system matrices are all known. 

However, usually uncertain parameters are presented in 

the system matrices ( , , , , , , , , ,
d d d d

A A B M M C C D N N  

).L  Now, by virtue of the property of polytopic uncer-

tainties, we present the robust 
2

L L
∞

−  filtering results 

for system (1) with polytopic uncertainties in the follow-

ing theorem without proof which can be obtained along 

the same lines of reasoning as in the derivation of Theo-

rem 2. 

Theorem 3: Consider system (1). An admissible ro-

bust 
2

L L
∞

−  filter of the form (3) exists if for 

1,2, , ,i r= �  there exist positive definite matrices 

11
,

n n

i
P

×

∈R
22

,

n n

i
P

×

∈R
11

,

n n

i
Q

×

∈R
22

,

n n

i
Q

×

∈R  ma-

trices 
12

,

n n

i
P

×

∈R
12

,

n n

i
Q

×

∈R ,

n n

X
×

∈R ,

n n

R
×

∈R  

,

n n

U
×

∈R ,

n n

F
A

×

∈R ,

n m

F
B

×

∈R
m n

F
C

×

∈R  and sca-

lars 
1 2 1 2
, , ,λ λ ν ν  satisfying (10-13), where matrices 

11
,P

22
,P

11
,Q

22
,Q

12
,P

12
Q  take 

11
,
i

P
22

,
i

P
11
,
i

Q
22

,
i

Q  

12
,
i

P
12

,
i

Q  respectively. Then an admissible estimator 

with the form of (3) can be given by (14). 

 

5. ILLUSTRATIVE EXAMPLE 

 

Example 1: Consider the following stochastic system 

(1) with the following matrices: 

0 3 0.5
,

4 5
A

ρ+ 
=  − − 

 
0.1 0

,
0.2 0.2 0.3

d
A

σ

− 
=  − + 

 

0.4545
,

0.9090
B

− 
=  
 

 [ ]1 2 ,C =  1,D =  

[ ]0.5 0.3 ,
d

C =  [ ]1.5 2 ,L =  

0.5 0
,

0 0.5
d

M M
 

= =  
 

 [ ]1 2 ,
d

N N= =  0.3,τ =  

where ρ  and σ  are uncertain real parameters satisfy-

ing 

1, 1.ρ σ≤ ≤  (19) 

Our aim is to design a strictly proper estimator (3) 

such that the resulting filtering error system (4) is mean-

square asymptotically stable with an 
2

L L
∞

−  noise 

attenuation level .γ  For simplicity, we assume the sys-

tem matrices are perfectly known, that is, 0.ρ σ= =  

From Theorem 2, when 
1 2 1 2

( , , , )λ λ ν ν  are fixed to be 

(40,32,40,40),  the minimum achievable noise attenua-

tion level is given by *
0.6811,γ =  and the correspond-
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ing estimator matrices are given by 

0.2832 0.0990
,

0.1053 0.1201
R

 
=  
 

 
0.4450 0.1631

,
0.1475 0.1930

X
 

=  
 

 

0.2524 0.0868
,

0.1008 0.1546
U

− − 
=  − − 

 
0.6734 0.0017

,
0.6572 0.8371

F
A

− 
=  
 

 

0.0150
,

0.0356
F

B
− 

=  − 
 [ ]0.6950 1.1455 .

F
C =  

Then, from (14) the associated matrices for the desired 

filter (3) are given by 

1.5542 2.4092
,

3.2385 6.9862
F

A
− 

=  − − 
 

0.0255
,

0.2472
F

B
− 

=  
 

 

[ ]0.6950 1.1455 .
F

C =  

When the command Fminsearch is used and the initial 

value of 
1 2 1 2

( , , , )λ λ ν ν  is chosen to be (40,32,40,40),  

the minimum guaranteed cost is given by *
0.6577,γ =  

when 

1 2 1 2
( , , , )λ λ ν ν =(14.8729,37.8809,17.0437,49.1361) 

and the corresponding estimator is given by 

1.5735 2.4729
,

2.8999 6.4811
F

A
− 

=  − − 
 

0.0292
,

0.2501
F

B
− 

=  
 

 

[ ]0.7139 1.1796 .
F

C =  

By the method proposed in [6], the minimum 
2

L L
∞

−  

noise attenuation level *
0.7865.γ =  

Now assume the uncertain parameters ρ  and σ  

are as in (19). The uncertain parameters in this example 

can be modeled as polytopic uncertainty. The parameter 

uncertainty can be represented by a four-vertex polytope, 

and the minimum 
2

L L
∞

−  noise attenuation level 

bound obtained from Theorem 3 is *
0.7460γ =  when 

1 2 1 2
( , , , ) (39.3650,29.5234,40.3365,34.3422)λ λ ν ν =  and 

the corresponding filter matrices are 

1.0858 2.4672
,

3.4066 5.5509
F

A
− 

=  − − 
 

0.0625
,

0.3291
F

B
− 

=  
 

 

[ ]0.7441 1.1107 .
F

C =  

By the approach proposed in [6], the minimum 
2

L L
∞

−  

noise attenuation level g *
0.9236.γ =  

Therefore, for this example, the robust 
2

L L
∞

−  filter 

design method proposed in this paper produces less con-

servative result than the results in [6], which is consistent 

with intuitive analysis and existing conclusions in the 

literature. 

 

6. CONCLUSIONS 

 

The robust 
2

L L
∞

−  filtering problem of polytopic 

uncertain stochastic time-delay systems is studied in this 

paper. A new 
2

L L
∞

−  performance criterion is pro-

posed, which exhibits a kind of decoupling between 

Lyapunov matrices and system dynamic matrices. Based 

on this, a sufficient condition for the existence of a ro-

bust estimator is provided in terms of LMIs. It is shown 

that the proposed method is less conservative than some 

existing ones by introducing some additional matrices. A 

numerical example is given to demonstrate the feasibility 

and advantage of the proposed criterion. 
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