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Spectral Factorization for Multiple Input Delayed Discrete-Time Systems with 
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Abstract: This paper deals with the linear quadratic regulation problems for the linear discrete-time 

systems with l  input delays. The design of the optimal control law is transformed into solving one 

Diophantine equation and one spectral factorization with delays. A new and simple approach for the 

spectral factorization is proposed based on reorganized innovation analysis. The calculation of spectral 

factor comes down to solving 1l +  Riccati equations with the same dimension as the original systems. 
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1. INTRODUCTION 

 

The linear quadratic regulation (LQR) problems for 

time-delay systems have attracted much attention as the 

time-delays occur naturally in many engineering fields 

such as chemical processes and communication systems. 

For continuous-time systems, a number of different 

techniques have been introduced to cope with the LQR 

problems [1-3]. Among them, the infinite-dimensional 

approach in [2,3] leads to the solutions in terms of 

operator Riccati equations, which are difficult to be 

calculated. Another solutions to the LQR with multiple 

input delays were given in [1], where the LQR problems 

have been considered as a limiting case of H∞ control for 

systems with input delays. In the discrete-time context, 

when there is only a single input delay, the optimal 

tracking problem has been addressed in [4]. For systems 

with multiple input delays, earlier approach is to convert 

a delay problem into a delay-free one by state 

augmentation [5]. However, the solutions depend on 

solving higher dimension Riccati equation, which leads 

to a much expensive computational cost, especially when 

the delays are large. 

In this paper, we shall study the steady-state LQR for 

the discrete-time systems with l input delays by applying 

spectral factorization approach [6,7]. The optimal control 

law will be given in terms of the solutions to one 

Diophantine equation and one spectral factorization with 

delays. Different from the state-augmentation approach 

as in traditional [5], we propose a new and simple 

approach to deal with the spectral factorization with 

delays by applying the reorganized innovation approach 

[8-10]. It is to be shown that the calculation of spectral 

factorization only requires solving 1l +  standard 

Riccati equations with same dimension as the original 

systems. 

 

2. PROBLEM FORMULATION 

 

Consider the discrete-time systems with l input delays 

described by  

( )

0

( 1) ( ) ( ),
l

T T

i i i

i

x t x t u t h

=

+ = Φ + Γ −∑  (1) 

where ( ) n

x t R∈  is the state, ( ) ip
iu t R∈  are control 

input. T  stands for the transpose. The time-delays 
i
h  

satisfy 
0 1

0 .
l

h h h= < < <�  

The quadratic cost function associated with (1) is 

0 0

( ) ( ) ( ) ( ),

i

l
T T

i i i i i

i t h t

J u t h R u t h x t Qx t
∞ ∞

= = =

= − − +∑∑ ∑  (2) 

where the matrices 
i

R  are positive definite and the 

matrix Q is non-negative definite and bounded. 

The LQR problem is stated as: Find the control input 

sequence { ( ), 0,1, , , 0 },
i
u t i l t= ≤ < ∞�  which can 

make the resultant systems asymptotically stable and 

minimize the cost function (2). 

 

3. SOLUTIONS TO STEADY-STATE LQR 

 

Denote 

0 1
( ) { ( ), ( ), , ( )},

l
u t col u t u t u t= �  (3) 
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the equations (1)- (2) can be respectively rewritten as  

1( 1) ( ) ( ) ( ),T T
x t x t q u t

−

+ = Φ +Γ  (4) 

0 0

( ) ( ) ( ) ( ),T T

t t

J u t Ru t x t Qx t
∞ ∞

= =

= +∑ ∑  (5) 

where  

11
(0) (1) ( )

0 1

( ) ,

,

lhhT T T T

l

l

q q q

R R R R

−−−  Γ = Γ Γ Γ 

= ⊕ ⊕ ⊕

�

�

 (6) 

and 1
q
−  is the backward shift operator, i.e., 1 ( )q s t

−

=  

( 1),s t −  the symbol ⊕  denotes a block diagonal 

matrix and {}col ⋅  denotes column vector. 

Let us introduce a right coprime matrix-fraction 

description (MFD) of the transfer matrix for (4) 

1 1 1 1 1 1 1( ) ( ) ( )[ ( )] ,T T T T

n
I q q q C q A q

− − − − − − −

−Φ Γ =  (7) 

where 1( )T
C q

−  and 1( )T
A q

−  are polynomial matrices. 

By applying the results in [6], the optimal control law, 

denoted by ( ),u t
∗  associated with (4) and (5) is given 

as 
1 1 1( ) ( ) ( ) ( ),u t q q x tα β

∗ − − −
= −  (8) 

where  

1 1 1 1 1( ) ( ) ( ) ( ) ( ),T T T
q A q q C q D qα β
− − − − −

+ =  (9) 

while 1( )T
D q

−  is a polynomial matrix and satisfies  

1 1 1( ) ( ) ( ) ( ) ( ) ( ),T T T
D q D q C q QC q A q RA q

− − −

= +  (10) 

where 1( )T
D q

−  exists if and only if [7] 

1

0
1

( )
.

( )

T

l
T

RA q
rank p p

QC q

−

−

 
= + + 

  
�  (11) 

Now we have the following results. 

Theorem 1: Consider the system (1)-(2). The optimal 

control ( ), 0,1, , , 0
i
u t i l t
∗

= ≤ < ∞�  are computed by 

]

1

1

( ) 0 0 0 0 ( ).
i

l blocks

i p

i blocks

u t I u t

+

∗ ∗

+

= 

�������������

� �

�������

 (12) 

Proof: By making use of (3) and (8), (12) is derectly 

obtained.                                     � 

 

4. SPECTRAL FACTORIZATION 

 

4.1. ARMA innovation model 

To give the solutions to spectral factor D(q), we 

introduce discrete-time backwards stochastic models 

( ) ( 1) ( ),X t X t e t= Φ + +  (13) 

( ) ( ) ( )( ) ( 1) ( ),

, 0,1, ,

i

i

i i h i

h i

Y t X t v t

t t h i l

= Γ + +

= + = �

 (14) 

where ( ) n

e t R∈  and ( ) ( )
ip

iv t R∈  are mutually uncor-

related zero means white noises with [ ( ) ( )]TE e k e j  

kjQδ=  and ( ) ( )[ ( ) ( )]T
i i i kjE v k v j R δ=  respectively. kjδ  

is Kronecker delta function, and [ ]E ⋅  denotes the 

mathematical expectation.  

Denote 

(0) (1) ( )( ) { ( ), ( ), , ( )}.
l

Y t col Y t Y t Y t= �  (15) 

Using (15), we define 

ˆ( ) ( ) ( | 1),W t Y t Y t t≡ − +  (16) 

where ˆ( | 1)Y t t +  is the one-step prediction. 

It follows from (16) that 

ˆ( ) ( ) ( ),

ˆ ˆˆ ( ) { ( 1 | 1), , ( 1 | 1)},

χ

χ

= Γ +

= + + + +�

lh

Y t t W t

t col X t t X t t
 (17) 

where  

(0) ( ) ( ) ,i l
Γ = Γ ⊕ ⊕Γ ⊕ ⊕Γ� �  (18) 

ˆ ˆ( 1| 1) ( 1| 1) ( ) ( ),+ + = + + +
i

i

h

h i
X t t q X t t K q W t  (19) 

1

( ) ,
ih

j
i ij

j

K q K q
=

=∑  (20) 

1[ ( 1) ( )] ,
i

T
ij h WK E X t W t j Q

−

= + +  (21) 

[ ( ) ( )].T

W
Q E W t W t=  (22) 

In the above, q  is the forward shift operator, i.e., 

( ) ( 1).qs t s t= +  

By substituting (19) into (17), it follows that 

ˆ( ) ( ) ( 1 | 1) ( ) ( ) ( ),Y t q X t t K q W t W t= Γ + + + +  (23) 

where  

1

(0)

(1) 1(1)

( )
( )

0

( )
( ) , ( ) .

( )l

h

h
l l

l

K qq
q K q

K qq

Γ   
   ΓΓ   Γ = =   
   
  Γ Γ    

��
 (24) 

On the other hand, we have  

ˆ ( | )X t t =
0

ˆ ( 1 | 1) ( ),X t t K W tΦ + + +  (25) 

where 
0

K  is defined as  

1

0
[ ( ) ( )] .T

W
K E X t W t Q

−

=  (26) 

Substituting (25) into (23) and using (7) yields  

0
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ).

A q Y t C q K W t A q K q W t

A q W t

= +

+

 (27) 

We now present the results for spectral factorization. 

Theorem 2: The spectral factor ( )D q  in (10) is 
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given as 

1 2

0
( ) { ( ) ( ) ( ) ( )} .

W
D q C q K A q K q A q Q= + +  (28) 

Proof: By making use of (15), it follows from (14) 

that  

( ) ( ) ( ),

( ) { ( 1), , ( 1), , ( 1)},
i lh h

Y t t v t

t col X t X t X t

χ

χ

= Γ +

= + + +� �

 (29) 

where 

(0) (1) ( )( ) { ( ), ( ), , ( )},
l

v t col v t v t v t= �  (30) 

is a white noise with zero mean and covariance matrix R 

as in (6). 

Noting that (29) can be further rewritten as  

( ) ( ) ( 1) ( ),Y t q X t v t= Γ + +  (31) 

where ( )qΓ  is as in (24). 

From (13), we have 

1( 1) ( ) ( ).
n

X t I q qe t
−

+ = −Φ  (32) 

Substituting (32) into (31) and using (7) yields 

( ) ( ) ( ) ( ) ( ) ( ).A q Y t C q e t A q v t= +  (33) 

By comparing (33) with (27), (28) follows derectly.  � 

 

4.2. Computation of 
0
, , 1, , , 1, , ,ij iK K j h i l= =� �  

and QW 

Denote 

(0) (1) ( 1)

1

(0) (1) ( )

{ ( ), ( ), , ( )},

,
( )

{ ( ), ( ), , ( )},

.

i

i i

l

l

col Y t Y t Y t

N h t N h
Y t

col Y t Y t Y t

t N h

−

−




− < ≤ −
= 

 ≤ −

�

�

 (34) 

In view of (34), the linear space { ( ), ( 1),L Y N Y N −  

, ( )}Y t�  spanned by observation { ( ), ( 1), ,Y N Y N − �  

( )}Y t  is equivalent to 

11 1 1 1
{ ( ), , ( ); ; ( 1), , ( )},

ll l h h
L Y N Y t Y t Y t

+ +
−� � �  

where 

( ) ( 1) ( ), 1, , ,1,
s s s

Y t X t V t s l l= Γ + + = + �  (35) 

and 

(0) (1) 1 ( 1) 1( ) { ( ), ( ), , ( )},
s s s

Y t col Y t Y t h Y t h
− −

= − −�  

(0) (1) 1 ( 1) 1( ) { ( ), ( ), , ( )},
s s s

V t col v t v t h v t h
− −

= − −�  

(0) (1) ( 1) .

T T T T

s s−
 Γ = Γ Γ Γ �  

It is obvious that ( )
s

V t  is a white noise with zero 

mean and covariance matrix 
0 1

.

s
V s

Q R R
−

= ⊕ ⊕�  

Based on the new observation ( ),
s

Y t  we define  

ˆ( ) ( ) ( ),
s s s

W t Y t Y t≡ −  (36) 

where ˆ ( )
s

Y t  is projection of ( )
s

Y t  onto linear space 

1 1
{ ( ), , ( ); ; ( 1), , ( 1)}.

l sl l h s h s
L Y N Y t Y t Y t

+ +
− +� � �  

Then it follows from (35) and (36) that  

( ) ( 1 | 1, ) ( ),
s s s

W t X t t s V t= Γ + + +
�  (37) 

where 

ˆ( 1 | 1, ) ( 1) ( 1 | 1, ),X t t s X t X t t s+ + = + − + +
�  (38) 

while ˆ ( 1 | 1, )X t t s+ +  is the projection of ( 1)X t +  

onto the linear space 
1 1

{ ( ), , ( ); ; (
l sl l h s h

L W N W t W t
+ +

� �  

1), , ( 1)}.
s

W t− +�  

Lemma 1: The uncorrelated white noise sequence 

1
{ ( ),

l
W N

+ 1
, ( );

ll h
W t

+
� ;� ( 1),

s
s h

W t − ,�

1
( ); ;

ss h
W t

−

�

11 1
( 1), , ( )}
h

W t W t− �  is called reorganized innovation 

sequence, which contains the same observation informa-

tion as { ( ), ( 1), , ( )}.Y N Y N Y t− �  

Proof: The proof is similar to that of Lemma 2.1 in 

[9].                                        � 

Next, we are to compute the reorganized innovation 

covariance matrices. 

From (37), for 1,s l= +  the reorganized innovation 

covariance matrix is given by 

1 1 1 1 1
[ ( ) ( )] ,

l l

T T

W l l l l V
Q E W t W t P Q

+
+ + + +

≡ = Γ Γ +  (39) 

where P  satisfies the following algebraic Riccati 

equation  

1

1

1 1
.

l

T T T

l W l
P P Q P Q P

+

−

+ +
= Φ Φ + −Φ Γ Γ Φ  (40) 

Similarly, for , 1, ,1,i l l= − �  the reorganized innova-

tion covariance matrices are given by 

1

1

( ) [ ( ) ( )] ( ) ,

1, 2, , ,

i i

T T

W i i i i i V

l i l i l i

Q k E W t k W t k P k Q

k h h h h h h

−

−

≡ − − = Γ Γ +

= − + − + −�

 

 (41) 

where ( )
i
P k  satisfies the following Riccati equation 

1

( ) ( 1) ( 1)

( 1) ( 1)
i

T T

i i i i

T

W i i

P k P k Q P k

Q k P k−

= Φ − Φ + −Φ − Γ

× − Γ − Φ

 (42) 

with 
1

( ) ( )
i l i i l i
P h h P h h

+
− = −  and (0) .

l
P P=  

Further, for the sake of convenience to discuss, we 

define 

1
( ,0) [ ( 1 ) ( 1 | 1, 1)],T

l
U d E X t d X t t l

+
≡ + − + + +

�  

( , ) [ ( 1 ) ( 1 | 1 , )],T

i
U d k E X t d X t k t k i≡ + − + − + −

�  

where ( 1 | 1, 1)X t t l+ + +
�  and ( 1 | 1 , )X t k t k i+ − + −

�  

are as in (38). 

The 
1
( ,0)

l
U d

+
 and ( , )

i
U d k  can be calculated in 

the lemma below 

Lemma 2: 
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1

[ ] , 0,
( ,0)

, 0,

T d

l
d

P d
U d

P d

−

+

 Α ≤
= 

Φ >
 (43) 

( ) ( ) ( 1), ,
( , )

( ), ,

T T

i i i

i
d k

i

P d d k k d
U d k

P k k d
−

 Α Α − ≥
= 

Φ <

�

 (44) 

where  

1

1

1 1
,

l

T

l W l
P Q

+

−

+ +
Α = Φ−Φ Γ Γ  

1( ) ( ) .
i

T

i i i W i
k P k Q−

Α = Φ−Φ Γ Γ  

Proof: The proof is similar to Lemma 3 in [11].    � 

Next, the innovation covariance matrix 
W

Q  is 

calculated by using reorganized innovation analysis 

approach in the following theorem. 

Theorem 3: The innovation covariance matrix 
W

Q  

is given as 

(0) (0) 0

( ) ( )

,

l

ll

T T

X X

W

T

l l lX

Q R Q

Q

Q Q R

ς

ςς

 Γ Γ +
 
 =
 

Γ Γ +  

� �

�

�

� � �

�

 (45) 

where 

1
( , ),

l lX
Q U h h=�  

1
( , ),

i
l i lX

Q U h h h
ς

= −�  

'
'

' '

1
( , ), , , , 1, ,1

i
i

i l l ii
Q U h h h h i i i i l l
ς ς +

= − − ≠ = − �  

and  

1

1

1

1

1

1 1

1 1

2 1

1

1

1 1 1

1

1

1 1 1

( , )( ( )

( , ))

( , )

( ) ( , )

( , )

( ) ( ,

i i

m m

m

T

i l i l i n i W l i

T

i i l i l i

h hi
T

m l i l m m

m n

T

W l m m m l i l m

h

T

l i l

n

T

W l l i l

Q U h h h h I Q h h

U h h h h

U h h h h n

Q h h n U h h h h n

U h h h h n

Q h h n U h h h h

ς
+

−

−

+ +

+ +

−

= =

−

−

=

−

= − − −Γ −

×Γ − −

− − − + Γ

× − + Γ − − +

− − − + Γ

× − + Γ − −

∑ ∑

∑

1
)n+

 

wth ( , )
s

U ⋅ ⋅  and ( ), 1, ,1,
s

W
Q s l⋅ = + �  calculated by 

(43), (44) and (39), (41), respectively. 

Proof: Note that (16), the innovation W(t) allows us to 

be rewritten as 

( ) ( ) ( ),

( ) { ( 1 | 1,1), ( ), , ( )},
i l

W t t v t

t col X t t t t

χ

χ ς ς

= Γ +

= + +

�

�� � �

 (46) 

where 

ˆ( 1 | 1,1) ( 1) ( 1 | 1,1),X t t X t X t t+ + = + − + +
�  

and  

ˆ( ) ( 1) ( 1 | 1)
i ii h h

t X t X t tς = + − + +  

1

1

1

1 1

1

1

1 1

2 1

1

1

1 1 1

1

1

1 1

( 1| 1, 1) ( , )

( ) ( )

( , )

( ) ( )

( , )

( ) ( ).

i i

i i

m m

m m

h h i l i l i

T

i W l i i h

h hi
T

m l i l m m

m n

W l m m h

h

T

l i l

n

W l h

X t t i U h h h h

Q h h W t

U h h h h n

Q h h n W t n

U h h h h n

Q h h n W t n

+

−

+

−

+ +

−

= =

−

−

=

−

= + + + − − −

×Γ −

− − − + Γ

× − + −

− − − + Γ

× − + −

∑ ∑

∑

�

 

Substituting (46) into (22) and using Lemma 2, we 

prove (45).                                   � 

What comes on next is to calculate K0 and Kij in the 

following theorem, respectively. 

Theorem 4: The K0 is calculated as  

1

1

0
[ ] ,

i l

T

X X X X W
K Q

ς ς ς

−

= Π Π Π Π Γ� �  (47) 

where 

1
( 1, ),

X l l
U h hΠ = +  

and  

1

1

1

1

1 1 1

1

1 1

2 1

1

1

1 1 1

1

1

1 1 1

( 1, ) ( 1, )

( ) ( , ))

( 1, )

( ) ( , )

( 1, )

( )

i

i

m m

m

T

X i l l i i l l i i

T

W l i i i l i l i

h hi
T

m l l m m

m n

T

W l m m m l i l m

h

T

l l

n

T

W l

U h h h U h h h

Q h h U h h h h

U h h h n

Q h h n U h h h h n

U h h h n

Q h h n U

ς

+

−

+ + +

−

+ +

−

= =

−

−

=

−

Π = + − − + − Γ

× − Γ − −

− + − + Γ

× − + Γ − − +

− + − + Γ

× − + Γ

∑ ∑

∑

1
( , ).

l i l
h h h h n− − +

 

The ,ijK 1, , , 1, ,
i

j h i l= =� �  are given as 

1

1
[ ] ,

i l

T
ij X X X X WK Q

ς ς ς

−

= Ω Ω Ω Ω Γ� �  (48) 

where 

1
( , ),

X l i l
U h h h jΩ = − −  

and 

1

1

1

1

1 1

0

1

1 1

2 1

1

1

1 1 1

1

( , )

( , )

( ) ( , )

( , )

( ) ( , )

( , )

i

i

m m

m

X i l i l i

j
T

i l i l i i

n

T
W l i i i l i l i

h hi
T

m l i l i m

m n

T
W l m m m l i l m

h
T

l i l

n

U h h h h j

U h h h h n

Q h h n U h h j h h n

U h h h h n

Q h h n U h h j h h n

U h h h h n

ς

+

−

+

+ +

=

−

+ +

−

= =

−

−

=

Ω = − − −

− − − − Γ

× − − Γ − − − −

− − − + Γ

× − + Γ − − − +

− − − + Γ

∑

∑ ∑

∑

1

1

1 1 1 1
( ) ( , ).T

W l l i lQ h h n U h h j h h n−
× − + Γ − − − +
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In the above, 
1
( , )

l
U

+
⋅ ⋅  and 

1
( )

lW
Q

+

⋅  are obtained by 

(43) and (39), respectively. Ui ( , )⋅ ⋅  are given by (44), 

and ( )
iW

Q ⋅  are computed by (41). 

Proof: The proof is similar to the Theorem 3.      � 

 

5. COMPARISON OF COMPUTATIONAL COST 

 

This section is devoted to compare the computational 

cost for the spectral factorization via the presented 

approach and the state augmented method.  

Consider the systems (13)-(14) with n = p0 = p1 = p2 =2 

and l = 2. Let MDaug and MDnew denote the number of 

multiplications and divisions for the augmented method 

and the new approach in one step, respectively. Then, the 

simulation results are shown in Table 1. 

As is obvious from Table 1, the larger the time-delays 

h1, h2, the larger the difference of the computational cost 

between the state augmentation and the presented 

approach, which implies the presented approach in this 

paper is simpler. 

 

6. CONCLUSIONS 

 

In this paper, the optimal controllers are designed via 

one Diophantine equation and one spectral factorization 

with delays, where the key technique for deriving 

spectral factorization is the time-domain reorganized 

innovation approach. In contrast to the augmented 

method, the presented approach is simpler for derivation 

and calculation, especially when delays are larger. 
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Table 1. Computational cost for various delays h1, h2.  

h1 1 1 2 4 

h2 2 3 4 5 

aug
MD  1848 2552 4824 11112

new
MD  820 932 1044 1156

aug new
MD MD−  1028 1620 3780 9956

 


