
International Journal of Control, Automation, and Systems (2010) 8(2):482-489 
DOI 10.1007/s12555-010-0238-0 

 

http://www.springer.com/12555

Delay-dependent H∞ Performance Analysis for Markovian Jump Systems with 

Mode-dependent Time Varying Delays and Partially Known Transition Rates 
 

Xudong Zhao and Qingshuang Zeng 

 

Abstract: This paper deals with the H∞ performance analysis problems for a class of Markovian jump 

systems with partially known transition rates and time-delays which are time varying and depend on 

system mode. Following the recent study on the class of systems, improved sufficient conditions for 

H∞ performance of the underlying systems are derived in form of LMI by constructing a new Lyapu-

nov-Krasovskii functional. Illustrative numerical examples are provided to demonstrate the effective-

ness of the proposed approach. 
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1. INTRODUCTION 

 

In recent years, much attention has been devoted to the 

time-delayed jump linear systems with Markovian jump-

ing parameters [1-4]. The system is described by a set of 

time-delayed linear systems with the transitions between 

models determined by a Markov chain in a finite mode 

set [5]. With the maturity of H
∞

 control theory, many 

works have been devoted to H
∞

 control of time de-

layed Markovian jump linear systems. Based on the sto-

chastic version of bounded real lemma, necessary and 

sufficient conditions for the existence of H
∞

 controllers 

for continuous stochastic systems were presented in 

terms of coupled nonlinear matrix inequalities in the 

work [6]. The corresponding results for discrete-time 

systems can be found in the paper [7]. When both para-

meter uncertainty and time delay appear in a stochastic 

model, the H
∞

 control problem was solved in the work 

[8], where state feedback controllers were designed un-

der the assumption that all state variables are available. 

However, the results obtained in [8] cannot be applicable 

to the case when some of the actual states are not availa-

ble. Ref [9] and [10] concerned with robust output feed-

back stabilization and H
∞

 control problems for sto-

chastic systems with parameter uncertainties and time 

delays when the actual state is not available directly. 

It is worth pointing out that recent research effort in 

the study of delay systems are towards developing less 

conservative delay-dependent results. It has been shown 

that the conservatism in the existing delay-dependent 

results are mainly caused by using model transformation 

to the original delay system or resorting to bounding 

techniques for some cross terms. Considering this, it can 

be found that the results in [4] are less conservative by 

avoiding the use of these techniques 

On the other hand, very recently, Markovian jump sys-

tems with mode-dependent time delays, where the time 

delays are dependent of the system modes have been 

studied. In [12], some robust stability conditions which 

are less conservative in some cases were presented in 

terms of LMIs. The robust H∞ control results in the dis-

crete context can be found in [11]. Robust H∞ filtering 

problems were investigated in [12] and [13], and some 

other results for this class Markovian jump systems can 

be found in [1, 14-16. etc]. But to the best of the authors’ 

knowledge, the problem of delay-dependent H∞ perfor-

mance for such systems has not been fully investigated, 

which is still open and remains challenging. 

We note that the H∞ performance criteria used in the 

corresponding results of [1,5,11-16] are all derived by 

taking the Lyapunov-Krasovskii functional with the simi-

lar form as following: 
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When revisiting these results of these references, we 

find that the results still leaves three points for improve-

ment: 

1. These results only made use of the information of 

upper bound ,�  but not the subsystems’ upper 

bounds of the time varying delays, that may bring us 

some conservativeness.  

2. These results for Markovian jump systems with 

mode-dependent time varying delays are developed 

based on the assumption that the derivative of subsys-
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tems’ time varying delays had the upper bounds 

1, .
i

i Sµ < ∈  However, in many practical applications, 

the upper bounds of 
i

µ  are not always restricted to 

be 1. 

3. So far, almost all the issues on Markovian jump sys-

tems with mode-dependent time-varying delays have 

been investigated assuming the complete knowledge 

of these transition probabilities. However, the likelih-

ood to obtain the complete knowledge of these transi-

tion probabilities is questionable and the cost may be 

probably high [17]. More recently, some attentions 

have been already drawn to the class of systems with-

out time delays for discrete-time [18,19]. However, to 

the authors’ best knowledge, the problem of delay-

dependent stability and H∞ performance analysis for 

this class of continuous-time systems with mode-

dependent time-varying delays hasn’t been studied, 

say, what is the exact impact of the unknown transi-

tion rates to the system with mode-dependent time-

varying delays? 

Taking these three points into account, we will devel-

op an improved criterion to guarantee the exponential 

mean-square stability with γ -disturbance attenuation 

for the Markovian systems with mode-dependent time 

delays by constructing a different Lyapunov-Krasovskii 

functional. And then, basing on this new criterion, a co-

rollary will be induced. Last, numerical examples will be 

provided to demonstrate the effectiveness of the pro-

posed approach, and give the results of comparison. 

However, it needs to be pointed out that owing to the 

restrictions on the authors’ knowledge and the technique 

difficulties caused by the mode-dependent time delays, 

we haven’t solve the stability problem of such systems 

with completely unknown transition rates in this paper, 

and it needs us to study in the future work. 

 

2. PROBLEM FORMULATION AND 

PRELIMINARIES 

 

Notation: In this paper, E[ ]i  stands for the mathe-

matical expectation.   i  denotes the Euclidean norm 

for vector or the spectral norm of matrix. 0M >  is 

used to denote a symmetric positive-definite matrix. 

When ( ) {1, },r t i S N= ∈ = �  we mark ( ( )).
i

A A r t=  

Consider the following stochastic system with 

Markovian switching: 

1

2
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( ( )) ( )
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D r t w t

z t E r t x t E r t x t d r t t

D r t w t
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= + −
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= + −
 +

 =      ∈ −

�
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 (1) 

where ( ) n
x t R∈  is the states; ( ) p

w t R∈ is the noise 

signal which is assumed to be an arbitrary signal in 
2
( );[0, ]L ∞  ( ) q

z t R∈ is the controlled output; Initial 

function 
0

2( ) ([ ,0]; ),n

t L Rϕ ∈ −�
F

 here 
0

2
)([ ,0]; n

L R−�
F

 

denotes the family of n

R −  valued stochastic process 

( ),sξ 0s− ≤ ≤�  such that ( )sξ  is 
0
−F  measurable 

and 
0 2

( ) .s dsξ
−

Ε < ∞∫ �
 In the system (1) ( )

i
td  de-

notes the mode-dependent time-varying delays which 

satisfies: 0 ( ) , ( ) ,
i i i i

d t h d t µ≤ ≤ ≤� max{ }.
i

i S

h
∈

=�  ( )r t  is 

a homogenous stationary Markov chain defined on a 

complete probability space { , ,P}Ω F  and taking values 

in a finite set {1, }S N= � . It’s state transition rates ma-

trix ( )ij N Nµ
×

Ξ =  has the following form: 

( )
P{ ( ) | ( ) }=

1 ( ) ,

ij

ii

t t j i
r t t j r t i

t t j i

µ ο

µ ο

∆ + ∆ ≠ 
+ ∆ = = 

+ ∆ + ∆ =
 (2) 

where 
1,

0, , .
N

ij ii ij

j j i

j iµ µ µ

= ≠

≥ ≠ = − ∑  In addition, the 

transition rates of the Markov chain in this paper are 

considered to be partially available, namely, some ele-

ments in matrix Ξ  are time-invariant but unknown. For 

notation clarity, ,i S∀ ∈  we denote { : if isi
kn ijS j µ�  

known}, { : if is unknown},i
uk ijS j µ  �

i

kn

i
kn ij

j S

µ µ

∈

∑�  

throughout the paper. Furthermore, we assume the di-

agonal elements of Ξ  are known. 

Definition 1: For a given real number 0,γ >  the 

Markovian jump system (1) is said to be exponentially 

mean-square stable with γ -disturbance attenuation, if 

for any initial mode, it is exponentially mean-square sta-

ble with ( ) 0w t =  and under zero-initial conditions for 

any nonzero 2( ) ([0, ])w t L∈ ∞  the following inequality 

holds: .
2

2
E

z wγ<  

 

3. MAIN RESULTS 

 

The purposes of this section are to derive the H∞ per-

formance criteria for system (1) when the transition rates 

are partially known and the time-varying delays are 

mode-dependent. 

Theorem 1: For any given 0,γ > 0,
i
h > ,

i
µ  the 

Markovian jump system (1) is exponentially mean-

square stable with γ -disturbance attenuation, if there 

exist matrices 0,
i
P >

1
0,

i
Q >

2
0,

i
Q > 0,

i
R > 0,

i
S >  

0,Z >
1

0,Q >
2

0,Q > ,
ki

L ,
ki

M ,
ki

N 1, 5,k = �  with 

appropriate dimensions, for any 1, ,i N= �  such that: 

1 3

2

(1 )
0,

*

i kn

kn i i

kn

i

µ + Ψ Ψ
< 

Ψ  
 (3) 

1 3

2

0, ,
*

uk

i i i

uk
uk

i

j S
 Ψ Ψ
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Ψ  

 (4) 
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1 1 1

,

1

,

(1 )( )

*

i

kn

i

kn

i
kn ii i ij j

j i j S

ij j

j i j S

Q Q Q

Q

µ µ µ

µ

≠ ∈

≠ ∈

 + − +
 
  < 0,
 −
 
 

∑

∑
 (5) 

1 1 1

1

,
*

ii i j i
uk

j

Q Q Q
j S

Q

µ− + 
< 0, ∀ ∈ 

−  
 (6) 

2 2 2

,

2

,

(1 )( )

*

i

kn

i

kn

i
kn ii i ij j

j i j S

ij j

j i j S

Q Q Q

Q

µ µ µ

µ

≠ ∈

≠ ∈

 + − +
 
  < 0,
 −
 
 

∑

∑
 (7) 

2 2 2

2

,
*

ii i j i
uk

j

Q Q Q
j S

Q

µ− + 
< 0, ∀ ∈ 

−  
 (8) 

,iR Z<  (9) 

,
i

S Z<  (10) 

where 
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1 1

2 1 2 2 2 2 2

2
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,
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Proof: When w(t)=0, first, in order to cast our model 

involved into the framework of the Markov processes, 

we define a new process ( ) ( ),
t
x s x t s= + [ 2 ,0].s∈ − �  

We choose a Lyapunov–Krasovskii functional: 

1 2 3 4
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where ,
i
P

1
,iQ

2
,
i

Q
1
,Q

2
,Q ,Z ,1,2,i N= �  are posi-

tive definite matrices with appropriate dimensions and: 

1

, 1, 2.
N

ij kj k

j

Q Q kµ

=

≤ =∑  (11) 
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Let L be the weak infinitesimal generator of the ran-

dom process { , 0},
t
x t ≥  Then, for each ( ) , ,r t i i S= ∈  

it can be shown that: 
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Similar to the process above, we can obtain: 
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By the Newton–Leibniz formula and (1), for any ap-

propriately dimensioned matrices Li, Ni, Mi, i = 1, ,N�  

we have: 
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According to the integral algorithms, we get: 

( )T T

T

( )

( ) ( ) ( ) ( )

( ) ( ) .

i

i

i

t t d t

t t h

t

t d t

x s Zx s ds x s Zx s ds

x s Zx s ds

−

− −

−

≥

+

∫ ∫

∫

�

� � � �

� �

 

Using this and combining (9)-(17), we have: 
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( , , ) ( , , ) ( , , )

( , , )

2 ( ) ( ( ) ( ( ))) ( ) ( )

( ) ( ) (1 ) ( ( )) ( ( ))

( ) ( )

t

t t t

t i i i i i

N

i i di i ij j

j

i i i i i

i i i ij j

LV x t i

LV x t i LV x t i LV x t i

LV x t i

x t P A x t A x t d t x t P x t

x t Q x t x t d t Q x t d t

x t h Q x t h h x

µ

µ

µ

=

≤ + +

+  + ϒ + ϒ + ϒ + ϒ + ϒ

≤ + − +

+ − − − −

− − − +

∑

T

1,

T
1 2

T T
2

1

( ) ( )

(

( )) ( ( )) ( ) ( )

( ) ( )

N

j j i

i i i i

N

ij j i i i

j

x t x t

t

d t Q x t d t x t Q x t

h x t h Q x t h Zµ

= ≠

=

− − +

+ − − +

∑

∑ � ��
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T T
1 2

1

1

1

( )

( ) ( ) ( ) ( ) 2 ( ) ( ( )

( ( ))) 2 ( ) ( ( ( )) ( ))

( ) ( ) 2 ( ) ( ( )

( ( )) ( )) ( ) ( )

[ ( ) ( ) ] [ ( )
i

i

i i i i

i i i i i i

di i i i i i

t

i i
t d t

x t Q x t x t Q x t t L x t

x t d t t M x t d t x t h

h t M T M t t N A x t

A x t d t x t h t L R L t

t L x s Z Z L t

η

η

η η η

η η

η η

Τ

Τ

Τ − Τ Τ

Τ − Τ

Τ Τ − Τ

−

+ + +

− − + − − −

+ + −

− − +

− +

� �

�

�

＋

( ) 1

T 1

( )]

[ ( ) ( ) ] [ ( ) ( )]

( ) ( ) 2 ( ) ( ( ) ( ( )))

2 ( ) ( ( ( )) ( ))

2 ( ) ( ( ) ( ( )) ( ))

( ) ( ) ( ) (

i

i

t d t

i i
t h

i i i

i i i

i i di i

i i i i

Zx s ds

t M x s Z Z M t Zx s ds

t t t L x t x t d t

t M x t d t x t h

t N A x t A x t d t x t

x t Zx t h t L R L

η η

η η η

η

η

η η

−
Τ Τ − Τ

−

Τ Τ

Τ

Τ

Τ − Τ

+

− + +

= Σ + − −

+ − − −

+ − − − +

+ +

∫

∫

�

� �

�

� ��

1

1

( )

( ) 1

)

( ) ( )

[ ( ) ( ) ] [ ( ) ( )]

[ ( ) ( ) ] [ ( ) ( )] ,

i

i

i

i i i i

t

i i
t d t

t d t

i i
t h

t

h t M T M t

t L x s Z Z L t Zx s ds

t M x s Z Z M t Zx s ds

η η

η η

η η

Τ − Τ

Τ Τ − Τ

−

−
Τ Τ − Τ

−

+

− + +

− + +

∫

∫

� �

� �

 (18) 

where 

1 1 1 1 1 1
( )

*

*

*

i i i i i i i i

i

LL N A N A
Τ Τ
−

Π − Ω

Σ =




＋ ＋ ＋

 

 
1 2

3 3 3 3

0 0

(1 ) 0 0

* ( ) 0

* *

i di

i i i

i i i i

PA

Q

M M

Z

µ

Τ


− − +Ω 
Π Ω

�

＋ ＋ ＋

 

with 

1 2 1

, ,

3 2

,

, ,

.

i ij j i ij j i

j i j S j i j S

i ij j i

j i j S

P h Q

h Q

µ µ

µ

≠ ∈ ≠ ∈

≠ ∈

Ω = Ω =

Ω =

∑ ∑

∑
 

Since 0,Z >  the last two terms in (18) are all less 

than 0. To complete the proof, we set: 

1 1 1

4 4 4

, , ,

{1, },

i i i

i i i

i i i

L M N

L M N

L M N

i S N

     
     = = =     
          

∈ =

� � �

�

 (19) 

from (18), (19) and by Schur complement we can see 

that (9)-(11),(20) holding and ( , , ) 0
t

LV x t i <  are equiv-

alent, then similar to [5], the exponential mean-square 

stability can be established.  

'

1 1 2 3
{ , , ,0,0,0} 0,

i i i i
diagΨ + Ω Ω Ω <  (20) 

where 

1 1 2 3 1 1

2 5 6 2 2

' 3 8 3 3
1

4 4 4

*

* *
.

* * *

* * * * 0

* * * * *

i i i i i i i i

i i i i i i i

i i i i i i
i

i i i i i

i

i

h L h M

h L h M

h L h M

h L h M

R

S

 Π Λ Λ Λ
 

Π Λ Λ 
 

Π Λ Ψ =
 

Π 
 −
 

−  

 

By Schur complement, note that (11), (20) can be 

rewritten respectively as: 

,

,

(1 )( )

*

, 1,2,
*

i

kn

i

kn

i

uk

i
kn k ii ki ij kj

j i j S

ij kj

j i j S

k ii ki kj

ij
kjj S

Q Q Q

Q

Q Q Q
k

Q

µ µ µ

µ

µ

µ

≠ ∈

≠ ∈

∈

 + − +
 
 
 −
 
 

− + 
+ < 0 = 

−  

∑

∑

∑

 (21) 

' ' '

1 3 1 3

2 2

(1 )
0,

* *i

uk

i kn uk
kn i i i i

ijkn uk
j Si i

µ
µ

∈

   + Ψ Ψ Ψ Ψ
+ <   

Ψ Ψ      
∑  (22) 

where 

'
3

,

1

,

2

,

1

2
3

0 0

0 0

0 0 ,

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0
,

0 0 0

0 0 0

0 0 0

i

kn

i

kn

i

kn

kn
i

ij j

j i j S

ij j i

j i j S

ij j i

j i j S

j

j i

uk j i
i

P

h Q

h Q

P

h Q

h Q

µ

µ

µ

≠ ∈

≠ ∈

≠ ∈

Ψ =

 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 Ψ =
 
 
 
 
 

∑

∑

∑

 

Then, from (2), (21), (22), we obtain when (3)-(10) 

hold, the system is exponential mean-square stable under 

partially known transition rates, which is concluded from 

the obvious fact that no knowledge on ,

i
ij ukj Sµ ∀ ∈  is 

required in (3)-(10). When ( ) 0,w t ≠  and under zero-

initial conditions, we set T T T( ) [ ( ) ( ( ))
i

t x t x t d tη = −  

T T T( ) ( ) ( )].
i

x t h x t w t− �  Then we can complete the 

proof of Theorem 1 by using the technique in establish-

ing the H
∞

 performance in [12]. This is the end of 

proof.                                        � 
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Remark 1: Theorem 1 develops a H
∞

 performance 

criterion for continuous time Markovian jump systems 

with mode-dependent time varying delays and partially 

known transition rates. Comparing with most existing 

H
∞

 performance results of this class of systems, the 

result of Theorem 1 makes use of the information of the 

subsystems’ upper bounds of the time varying delays, 

which may bring us less conservativeness. Moreover, the 

upper bounds of 
i

µ  are not restricted to be 1 in this pa-

per. Therefore, our result is more natural and reasonable 

to the Markovian jump systems. 

Now, the following corollary presents a sufficient con-

dition for the H
∞

 performance of system (1) with com-

pletely known transition rates. 

Corollary 1: Consider the Markovian jump system (1) 

with mode-dependent time-varying delays and complete-

ly known transition probabilities. For given scalars 

0,γ > 0,
i
h > ,

i
µ  The corresponding system is expo-

nentially mean-square stable with γ -disturbance attenu-

ation, if there exist matrices 0,
i
P >

1
0,

i
Q >

2
0,

i
Q >  

1
0,Q >

2
0,Q > 0,

i
R > 0,

i
S > 0,Z > ,

ki
L ,

ki
M ,

ki
N  

1, 5,k = �  with appropriate dimensions, for any 

1, ,i N= �  such that: 

1 11 12 13 14 1 1

2 21 22 23 2 2

3 31 32 3 3

4 41 4 4

5 2 5 5

*

* * 0

* * * 0

* * * *

* * * * * 0 0

* * * * * * 0

* * * * * * *

i i i i i i

i di i i i i

i i i i i

i i i i i

i i i i i i

i

i

E h L h M

E h L h M

h L h M

h L h M

D h L h M

I

R

S

Τ

Τ

Τ

 Θ Η Η Η Η
 

Θ Η Η Η 
 

Θ Η Η 
 

Θ Η 
 Θ
 

− 
 

− 
 − 

 

 0,<  (23) 

1

, 1, 2,
N

ij kj k

j

Q Q kµ

=

≤ =∑  (24) 

,
i

R Z<  (25) 

,
i

S Z<  (26) 

where 

1 1 2 1 2 1

1 1 1

1

2 1 1 2 2 2

1,

2 2 2

3 2 2 3 3

1

4 4 4

( )

( ) ,

(1 )

( ) ,

,

,

i i i i i i i i

N

i ij j i i i i

j

N

i i i ij j i i i i

j j i

i i di i di

N

i i j i i ij
j

i i i

PA PA Q Q Q Q L

L P N A N A

Q h Q L L M

M N A N A

Q h Q M M
i

Z N N

µ

µ µ

µ

Τ Τ

Τ

=

Τ

= ≠

Τ Τ

Τ

=

Τ

Θ = + + + + + +

+ + − −

Θ = − − + − − +

+ − −

Θ = − + − −

Θ = + +

∑

∑

∑

� �

�

 

5

2
5 5 1 1

11 2 2 1 1 1

,12 3 3 1 13 4 4 1

14 1 5 5 1 1

21 3 3 3 2

22 4 4 4 2

23 5

( ) ,

,

,

,

,

,

ii i i i

i di i i i i i i di

i i i i i i i i

i i i i i i i

i i di i i

i i di i i

i

I N D N D

PA L A N M L N A

L A N M L A N N

PD L A N N D

M L A N M

M L A N N

L

γ
Τ

Τ Τ Τ

Τ Τ Τ Τ Τ Τ

Τ Τ Τ

Τ Τ Τ Τ

Τ Τ Τ Τ

Τ

Θ = − − −

Η = + − + − −

Η = − − Η = − +

Η = + − −

Η = − − −

Η = − − +

Η = − + 5 5 2 1

,31 4 3 32 5 3 1

41 5 4 1

,

,

.

i di i i i

i i i i i

i i i

M A N N D

M N M N D

N N D

Τ Τ Τ

Τ Τ

Τ

− −

Η = − + Η = − −

Η = −

 

Proof: By Theorem 1, the desired result can be ob-

tained. This is the end of proof.                    � 

Remark 2: We can rapidly obtain that the conditions 

(3)-(4), (5)-(6), (7)-(8) will reduce to (23), (24) respec-

tively when the i th row of Ξ  are all available. 

 

4. NUMERICAL EXAMPLES 

 

To show the advantages of the delay-dependent crite-

rion from H
∞

 performance in Corollary 1, we provide 

the following example. 

Example 1: Consider a stochastic delay system with 

Markovian jump parameters in the form of (1) with two 

modes. The dynamics of the system are described as 

1 2

1 2

11 12

3 1 0 4.5 0.5 0.1

0.3 3.5 1 , 0.1 3.5 0.3 ,

0.1 0.3 3.8 0.1 1 2

0.2 0.1 0.6 0 0.3 0.6

0.5 1 0.8 , 0.1 0.5 0 ,

0 1 2.5 0.6 1 0.8

1 0.6

0 , 0.5 ,

1 0

d d

A A

A A

D D E

− − −   
   = − = −   
   − − − −   

− −   
   = − − =   
   − − −   

−   
   = =   
      

[ ]

[ ] [ ]

[ ]

1

1 2

2 21 22

0.5 0.1 1 ,

0.2 0.1 0.1 , 0 1 0.6 ,

0.1 0.1 0.3 , =0.1, =0.1.

d

d

E E

E D D

= −

= − =

= −

 

The transition rates matrix is supposed to be: 

0.5 0.5
.

0.3 0.3

− 
Ξ =  − 

 

To compare the stochastic H
∞

 performance result in 

Corollary 1 with the results for systems with mode-

dependent time delays in [12-14], we first assume: 

1
0.6,h =

2
0.4,h =

2
0.3.µ =  For given 

1
,µ  the mini-

mum 
min

,γ  which satisfies the LMIs in (23)-(26), can 

be calculated by solving a quasi-convex optimization 

problem. Table 1 presents the comparison results. Next, 

we further assume: 
1

0.6,h =
1

0.6,µ =
2

0.3,µ =  for 

given 
2
,h  the comparisons of minimum 

min
γ  are 
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listed in Table 2. Tables 1 and 2 show that the result in 

Corollary 1 is much less conservative, and we find that 

the corresponding methods in [12-14] are unsolvable 

when 1,
i

µ ≥  however, by the method of Corollary 1, 

there’s no such restriction. 

To illustrate the effectiveness of Corollary 1 when the 

systems’ time varying delays are mode-independent, let 

us consider the following example: 

Example 2: Consider a Markovian jump system in (1) 

with two modes and the following parameters [4]: 

1

3.4888 0.8057
,

0.6451 3.2684
A

− 
=  − − 

2

2.4898 0.2895
,

1.3396 0.0211
A

− 
=  − 

 

1

0.8620 1.2919
,

0.6841 2.0729
d
A

− − 
=  − − 

2

2.8306 0.4978
,

0.8436 1.0115
d
A

− 
=  − − 

 

11

0.0403
,

0.6771
D

 
=  
 

12

0.5689
,

0.2556
D

 
=  − 

 

1
[ 0.3775 0.2959],E = − −

2
[ 1.4751 0.2340],E = − −

 

1
[0 0],

d
E =

 2
[0 0],

d
E =

 21
0.1184,D =

 

22
0.3148,D =

 11
3,µ = −

 12
3,µ =

 21
0.6,µ =

 

22
0.6.µ = −

 

We assume that 
1 2

1.5.µ µ= =  By the method of [4], 

we obtain the �  is 0.2772, whereas by Corollary 1 we 

obtain the �  is 0.3439 when 
1 2

.h h=  It is clear that 

the obtained result of this paper is significantly better 

than that in [4]. 

Now, Example 3 will illustrate how the unknown ele-

ments in the transition rates matrix effect on the γ -

disturbance attenuation. 

Example 3: Consider a stochastic delay system with 

Markovian jump parameters in the form of (1) with three 

modes. The dynamics of the system are described as: 

1

0.75 0.75
,

1.5 1.5
A

− − 
=  − 

2

0.15 0.49
,

1.5 2.1
A

− − 
=  − 

 

3

0.3 0.15
,

1.5 1.8
A

− − 
=  − 

1

0.11 0.24
,

0.53 0.37
d

A
 

=  − − 
 

2

0.59 0.01
,

0.07 0.61
d

A
− 

=  − − 
3

0.52 0.24
,

0.02 0.45
d

A
 

=  − 
 

11

1
,

1
D

 
=  
 

12

0.6
,

0
D

− 
=  
 

13

0.1
,

0.1
D

− 
=  
 

 

1
[0.5 0.1],E = −

2
[1 0.6],E =

3
[0 0.4],E =  

1
[0.2 0.1],

d
E = −

2
[0.1 0.3],

d
E = −

3
[ 0.1 0.3],

d
E = −  

21
0.1,D =

22
0.1,D =

23
0.1,D =

1
0.2,µ =

2
0.3,µ =  

3
0.1,µ =

 

The three cases of the transition rates matrix are consi-

dered as: 

Case 1: 

0.9 0.4 0.5

0.1 0.9 0.8 ,

0.7 0.4 1.1

− 
 Ξ = − 
 − 

 

Case 2: 

0.9 ? ?

0.1 0.9 0.8 ,

0.7 0.4 1.1

− 
 Ξ = − 
 − 

 

Case 3: 

0.9 ? ?

? 0.9 ? ,

0.7 0.4 1.1

− 
 Ξ = − 
 − 

 

where “?” represents the inaccessible element. We as-

sume 
1 2 3

0.5h h h= = =  and under the three cases above, 

Table 3 lists the minimum of γ  which can be computed 

by the method of Theorem 1 in this paper. Table 3 shows 

that the 
min

γ  increases when the number of unknown 

elements increases. 

 

5. CONCLUSIONS 

 

In this paper, the H∞ performance analysis problems 

for a class of Markovian jump systems with partially 

known transition rates and mode-dependent time-delays 

are investigated. By using a different Lyapunov-

Krasovskii functional, improved delay-dependent H
∞

 

performance conditions are obtained in terms of linear 

matrix inequalities. The results in this paper are more 

general to deal with this class of systems, and have less 

conservativeness. Some examples are given to illustrate 

that the criteria performance is feasible and effective. 
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