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A New Genetic Approach for Structure Learning of Bayesian Networks: 

Matrix Genetic Algorithm 
 

Jaehun Lee, Wooyong Chung, Euntai Kim*, and Soohan Kim 

 

Abstract: In this paper, a novel method for structure learning of a Bayesian network (BN) is 

developed. A new genetic approach called the matrix genetic algorithm (MGA) is proposed. In this 

method, an individual structure is represented as a matrix chromosome and each matrix chromosome is 

encoded as concatenation of upper and lower triangular parts. The two triangular parts denote the 

connection in the BN structure. Further, new genetic operators are developed to implement the MGA. 

The genetic operators are closed in the set of the directed acyclic graph (DAG). Finally, the proposed 

scheme is applied to real world and benchmark applications, and its effectiveness is demonstrated 

through computer simulation. 
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1. INTRODUCTION 

 

A Bayesian network (BN) is a probabilistic approach 

for reasoning under uncertainty, and has become a 

popular knowledge representation scheme in several 

fields such as data mining and knowledge discovery [1-

3]. A BN is a graphical model which denotes a joint 

probabilistic distribution of given variables under their 

dependence relationships. In a BN, structure is bounded 

to a directed acyclic graph (DAG). Each node is connect-

ed to its parent’s nodes and each arc represents the 

conditional dependency between two connected nodes.  

When a database of cases is provided and a BN is to 

be designed, the most important yet difficult job is to 

determine the structure of the BN. For example, one 

must determine how many nodes to use and which node 

should be connected to which node (that is, the topology 

of the BN). This task is called the structure learning of 

the BN, and several methods for this have been reported 

[4-11]. The most popular method among these is the K2 

algorithm [11]. The K2 algorithm assumes ordering 

among variables and searches for an appropriate 

structure under the given ordering. But this method is 

heuristic, and its performance is not guaranteed. In 

addition, if no or only partial information is available 

about the causal relationship among the variables, the K2 

algorithm does not work well. 

Genetic Algorithms (GAs) are an alternative scheme 

that can be applied to the structure learning problem. 

They provide an adaptive and robust optimization 

procedure, and are an effective choice for the structure 

learning of the BN, because learning is highly combina-

torial in a huge search space. Several studies based on 

GAs have been reported [7-9]. However, most of the 

existing methods predetermine the order of BN variables 

thereby restricting the search space of the BN structure.  

In this paper, a new structure learning method for BN 

is developed. We propose a matrix chromosome to 

represent the BN structure. Each chromosome is 

decomposed into two triangular parts: the first triangular 

part represents the conditional dependencies among the 

BN nodes in a fixed order, and the second triangular part 

represents the conditional dependencies among the BN 

nodes in reverse order. This allows all possible 

connections among BN nodes, unlike existing methods.  

The remainder of the paper is organized as follows. In 

Section 2, a brief introduction to the BN and GAs is 

given. In Section 3, a new algorithm for the structure 

learning of the BN is proposed, and the appropriate 

genetic operators are introduced. In Section 4, the 

proposed method is applied to real world and benchmark 

problems including a database of virtual home network 

systems [14], a database of car diagnosis problems as 

suggested by Norsys [15], and a database of ALARM 

networks constructed by Beinlinch et al. [11]. Finally, 

some conclusions are drawn in Section 5. 

 

2. PRELIMINARY FUNDAMENTALS: BAYESIAN 

NETWORKS AND GENETIC ALGORITHMS 

 

2.1. Bayesian networks 

A Bayesian network (BN) is a probabilistic framework 
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for reasoning under uncertainty, and has gained 

popularity in recent years in the artificial intelligence 

community. A BN is composed of a network structure 

and a set of parameters associated with the structure. The 

structure of the BN is a directed acyclic graph (DAG), in 

which each node represents a random variable and each 

arc represents the conditional dependency (topology) 

between two nodes [16]. 

To specify the BN completely with respect to the 

DAG, the prior probabilities for all root nodes (nodes 

with no predecessors) and conditional probabilities for 

all other nodes must be determined. The joint probability 

of any particular instantiation of all variables in the BN 

can be calculated by 

( )( ) | ( ) ,
i i

i

P U P A pa A=∏  (1) 

where { }1 2
, , ,

n
U A A A= �  is a set of nodes of the BN, 

n is the number of variables, and ( )
i

pa A  is the parent 

set of the variable .

i
A  For example, the probability of 

the BN shown in Fig. 1 is computed by 

1 2 3 4 1 2

5 2 3 6 4 7 5

( ) ( ) ( ) ( ) ( | , )

            ( | , ) ( | ) ( | ).

P U P A P A P A P A A A

P A A A P A A P A A

=

 (2) 

The process of building the BN can be separated into 

two tasks: structure learning and parameter learning. 

Structure learning involves determining an appropriate 

structure for the BN such that the BN accommodates the 

given set of samples. Parameter learning includes 

computing the conditional probabilities for the given BN 

structure such that the output of the BN approximates the 

distribution of the given set of samples. The most 

popular parameter learning method is the expectation 

maximization (EM) algorithm [17]. In this paper, we 

focus on the structure learning of the BN and build an 

appropriate BN structure. 

 

2.2. Genetic algorithm 

A genetic algorithm (GA) is the implementation of a 

biological metaphor. In the algorithm, learning is viewed 

as a competition among a population of evolving 

individuals. The goodness of each candidate solution is 

evaluated based on its fitness and the population evolves 

by selection, crossover, and mutation. 

The general procedure for a GA is summarized as 

follows. An initial population of individuals called 

chromosomes is randomly created. Then, promising 

individuals are selected to reproduce offspring for the 

next generation. The number of copies in a generation is 

proportional to their relative fitness value. The selected 

individuals undergo crossover and mutation to search for 

a global optimal solution. When the new population 

includes an individual that has a satisfactory fitness value, 

the algorithm stops and the problem is solved. If not, 

then the algorithm is repeated until a termination 

condition is satisfied. The pseudo code of a simple 

genetic algorithm (SGA) is shown in Fig. 2. 

 

3. NEW STRUCTURE LEARNING OF BAYESIAN 

NETWORK BASED ON GENETIC ALGORITHMS 

 

Over the past decade, GAs have been considered as 

the promising structure learning method for BN 

compared to K2, since K2 is too heuristic. In this section, 

a new approach for structure learning of a BN, based on 

a genetic algorithm, is proposed. The proposed method 

explores a wider solution space than the existing GA-

based structure learning methods. 

 

3.1. Existing methods for BN structure learning 

In this subsection, existing methods [7,10,19] for 

structure learning of BNs based on GAs are briefly 

summarized. The BN structure with n variables is repre-

sented by a n n×  connectivity matrix ( ),ijC c=  where 

1       

0 ,
ij

if i is a parent of j
c

otherwise


= 


 (3) 

and each BN is encoded as a chromosome, 

11 12 1 21 22 2 1 2
.

n n n n nn
c c c c c c c c c� � � �  (4) 

With this representation, the plain crossover and 

mutation would produce illegal (non-DAG) BN 

structures. In [7], to overcome this problem, the 

connectivity matrix was limited to being upper triangular 

as 

 

Fig. 1. An example of a bayesian network. 

 Fig. 2. The pseudo code of a simple genetic algorithm.
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and the connectivity matrix was encoded as a chromo-

some, 

12 13 1 23 24 2 2 1 2 1
.

n n n n n n n n
X c c c c c c c c c

− − − −

= � � �  (6) 

In other words, the ordering among the BN variables 

was fixed and node 
i

A  was allowed to have another 

node jA  as a parent node only if node jA  comes 

before node Ai in the ordering. This scheme restricts ijc  

to 0 and narrows the search space such that the GA can 

find only a suboptimal solution if the fixed ordering of 

the nodes is wrong. If there is no prior knowledge about 

the ordering between variables, as is usually the case, the 

resulting structure will not be satisfactory. 

To overcome this limitation, the ordering and 

connectivity among variables are encoded separately and 

optimized simultaneously in [10] and [19]. In [10], the 

ordering and connectivity among the variables are 

encoded as 

1 2

12 13 1 23 24 2 2 1 2 1

,

,

o n

c n n n n n n n n

X x x x

X c c c c c c c c c
− − − −

=

=

�

� � �

 (7) 

where 
o

X  is an integer-coded chromosome and denotes 

the ordering among the BN nodes, { }1, ,
i
x n∈ �  is an 

integer, and   .i jx x iff i j≠ ≠  
c

X  is a binary-coded 

chromosome and denotes the upper triangular connec-

tivity matrix by 

12 13 1 1 1

23 2 1 2

1

0

0 0

,

0 0 0 0

0 0 0 0 0

1       

0 .

n n

n n

n n

i j

ij

c c c c

c c c

C

c

if x is a parent of x
c

otherwise

−

−

−

 
 
 
 =
 
 
 
 


= 


�

�

� � � � � �

�

�

 (8) 

Further, it was rigorously proven in [10] that there is 

no BN structure that cannot be represented by this dual 

encoding, and that this dual encoding explores the entire 

solution space of BN structures. 

 

3.2. Matrix genetic algorithm for BN structure learning 

In [10], the entire solution space was searched for the 

fittest BN structure. However, the limitation of this is 

that when crossover is applied to connectivity chromo-

somes, the resulting offspring BNs may completely or at 

least seriously differ from the parent BNs because they 

have different ordering chromosomes. Thus, it is very 

likely that superior features of the parents are not 

inherited in the offspring, degrading the performance of 

evolution. 

Thus, to overcome this problem, we propose a new 

genetic method called the Matrix Genetic Algorithm 

(MGA) for structure learning of the BN. Unlike existing 

methods, the ordering between nodes is fixed, but the 

connectivity matrix is not confined to being triangular. 

Instead, the BN structure is encoded as a matrix 

chromosome composed of upper and lower triangular 

matrices. We also introduce new genetic crossover and 

mutation operators tailored for the MGA. 

 

3.2.1 Encoding 

We encode each BN structure with variables as 

follows: 

12 13 1 23 2 1 21 31 32 1

,

,

u l

n n n n nn

X X X

c c c c c c c c c c
− −

=

= � � � �

 (9) 

where 

12 13 1 1 1

21 23 2 1 2

11 12 1 2 1

1 2 2 1

12 13 1 23 2 1

21 31 32 41 43 1 1

0
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0
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1       
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,

.
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n n
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n n nn nn

i j

ij

u n n n n

l n nn

c c c c

c c c c

C

c c c c

c c c c
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c

otherwise
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It should be noted that, unlike existing methods 

[7,10,19], the connectivity of the BN structure is encoded 

not as an upper triangular matrix but as a full matrix with 

zeros on the diagonal. Thus, this encoding intuitively 

encompasses all the possible BN structures but could 

include the cycle, which is a violation of the acyclic 

property of the BN. 

 

3.2.2 Crossover 

Here, we introduce a new crossover operator for the 

proposed MGA. First, the crossover operation is applied 

to the site between the upper and lower sub-

chromosomes (triangular matrices). The crossover at the 

site between the upper and lower sub-chromosomes may 

violate the acyclic property of the BN and, if so, we 

repair the offspring simply by removing their cycles. 

More specifically, let us consider the following two BN 

structures:  

1 1

2 2

1

2

,

,

u l

u l

X X X

X X X

=

=

 (11) 

where 

1

1

1 1 1 1 1 1

12 13 1 23 2 1

1 1 1 1 1 1 1

21 31 32 41 43 1 1

,

,

u n n n n

l n nn

X c c c c c c

X c c c c c c c

−

−

=

=

� � �

� � �
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2

2

2 2 2 2 2 2

12 13 1 23 2 1

2 2 2 2 2 2 2

21 31 32 41 43 1 1

,

.

u n n n n

l n nn

X c c c c c c

X c c c c c c c

−

−

=

=

� � �
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 (12) 

After the first crossover operation, the resulting offspr-

ing chromosomes become 

1 22 1

2 11 2

1

2

  ,

  ,

l u

l u

c r r

u l

c r r

u l

X X X or X X

X X X or X X

=

=

 (13) 

where 

12 13 1 23 24 2 ( 1)

21 31 32 41 43 1 2 ( 1)

,

,

0       

.

k

k

r
u n n n n

r
l n n n n

ij k
ij

X c c c c c c c

X c c c c c c c c

if a cycle occurs inside the network
c

c otherwise

−

−

=

=


= 


� � �

� � �  (14) 

That is, 
2

r

l
X  is the alteration of 

2l
X  obtained by 

simply removing the inner cycle in the chromosome 

1 2
.

u l
X X  In this crossover, there are two possible 

options for each offspring. For example, for 
1
,

c

X  the 

options are 
1 2

r

u l
X X  or 

1 2

r

u l
X X  and either of the two 

chromosomes are selected according to the following 

probabilities. 

For 
1
,

c

X  

1 2

1 2

1

1

1 1

1 1 1

1 2

1 1 2 1

1

2

2 1

1 1 1

1 2

1 1 2 1

( ) ,  

( ) ,

n n

ij

i j ic r
u l n n n i

ij ij

i j i i j

n i

ij

i jc r
u l n n n i

ij ij

i j i i j

c

P X X X

c c

c

P X X X

c c

−

= = +

− −

= = + = =

−

= =

− −

= = + = =

= =

+

= =

+

∑ ∑

∑ ∑ ∑∑

∑∑

∑ ∑ ∑∑

 (15a) 

and for 
2
,

c

X  

2 1

2 1

1

2

1 1

2 1 1

1 2

2 1 1 1

1

1

2 1

2 1 1

1 2

2 1 1 1

( ) ,

( ) .

n n

ij

i j ic r
u l n i n n

ij ij

i j i j i

n i

ij

i jc r
u l n i n n

ij ij

i j i j i

c

P X X X

c c

c

P X X X

c c

−

= = +

− −

= = = = +

−

= =

− −

= = = = +

= =

+

= =

+

∑ ∑

∑∑ ∑ ∑

∑∑

∑∑ ∑ ∑

 (15b) 

The logic for this choice is that a triangle with more 

connections as a dominant half is selected and the other 

triangle with fewer connections after repair is connected 

such that the inner cycle is removed. The choice, 

however, is not deterministic but probabilistic as in 

equation (15). For example, for 
1
,

c

X  the sub-chromo-

some 
1u

X  is selected for the first half of the chromo-

some (the upper triangular part) with a probability from 

equation (15) and if so, 
2l

X  is modified (or repaired) 

into 
2l

r

X  by (14) and 
1u

X  and 
2l

r

X  are concatenated 

into a single chromosome. 

The second crossover operation is applied to the inside 

of the upper and lower sub-chromosomes. Consider the 

two BN structures in equation (11) and let us index the 

subchromosomes as  

1 2 ( 1)

2

1 2 ( 1)

2

,

where 1,2

i

i

i i i

u n n

i i i

l n n

X u u u

X l l l i

−

−

=

= =

�

�

 (16) 

for convenience of explanation. If the second crossover 

occurs between the i th and 1i + th genes in the first 

half sub-chromosome and the second crossover occurs 

between the j th and 1j + th genes in the second half 

sub-chromosome, then the second crossover is defined as  

1 1

2 2

1

2

,

,

c c

c c

c r

u l

c r

u l

X X X

X X X

=

=

 (17) 

where 

1

1

2

2

1 1 1 2 2 2
1 2 1 2 ( 1)

2

1 1 1 2 2 2
1 2 1 2 ( 1)

2

2 2 2 1 1 1
1 2 1 2 ( 1)

2

2 2 2 1 1 1
1 2 1 2 ( 1)

2

,

,

,

,

c

c

c

c

i i i n nu

j j j n nl

i i i n nu

j j j n nl

X u u u u u u

X l l l l l l

X u u u u u u

X l l l l l l

+ + −

+ + −

+ + −

+ + −

=

=

=

=

� �

� �

� �

� �

 (18) 

and 
1

,
c

r

l
X

2
c

r

u

X  is the repaired result of 
1

,
c
l

X
2
c

u

X  using 

equation (14) such that there are no cycles in the 

corresponding chromosome. 

 

3.2.3 Mutation 

In this subsection, we develop a new mutation 

operator for the proposed MGA. As in the crossover 

operations, we select a triangle with more connections as 

a dominant half and mutate the other triangle with fewer 

connections randomly such that there is no cycle in the 

resulting chromosome. More specifically, if 
u l

X X X=  

is mutated, the new chromosome is  

1 1

1 1 2 1

   

,

m

m

n n n i
r

u ij ijlm
i j i i j

r
lu

X X if c c
X

X X otherwise

− −

= = + = =


>

= 



∑ ∑ ∑∑
 (19) 

where
m

r

l
X  and

m

r

u

X  are random but repaired by (14) 
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such that there is no cycle in 
m

r

u l
X X  or .

m

r

lu
X X  

Therefore,  

12 13 1 23 24 2 ( 1)

21 31 32 41 43 1 2 ( 1)

,

,

0       

0  1 .

m

m

r r r r r r r r
n n n nu

r r r r r r r r r
n n n nl

r
ij

X c c c c c c c

X c c c c c c c c

if a cycle occurs inside the network
c

or otherwise

−

−

=

=


= 


� � �

� � �  

 (20) 

3.2.4 Fitness function 

To evaluate the given chromosome (the BN structure), 

we use the following theorem which was reported in [11]. 

Theorem 1: Let U  be a set of n  discrete variables 

where a variable Ai in U has ri possible value assign-

ments: 
1

( , , ).
ii ir

v v�  Let D  be a database of m  cases 

where each case contains a value assignment for each 

variable in U. Let 
s

B  denote a belief network structure 

containing just the variables in U. Each variable 
i

A  in 

s
B  has a set of parents which are represented with a list 

of variables ( ).
i

pa A  Let ijw  denotes the j th unique 

instantiation of ( )
i

pa A  relative to D. Suppose there are 

i
q  such unique instantiations of ( ).

i
pa A  Define ijkN  

to be the number of cases in D  in which variable 
i

A  

has the value 
ik
v  and ( )

i
pa A  is instantiated as .ijw  

Let 
1

.

ir

ij ijk

k

N N

=

=∑  If the cases occur independently and 

the probability density function, ( | ),
p s

f B B  is uniform, 

then it follows that 

1 1 1

( 1)!
( , ) ( ) !

( 1)!

i iq rn
i

s s ijk
ij ii j k

r
P B D P B N

N r
= = =

−

=

+ −
∏∏ ∏  (21) 

� 

Since ( , ) ( ) ( | )
s s s

P B D P B P D B=  and ( )
s

P B  is 

uniformly distributed, the fittest BN structure B
s
 is 

determined by maximizing 

1 1 1

( 1)!
( | ) !

( 1)!

i iq rn
i

s ijk
ij ii j k

r
P D B N

N r
= = =

−

=

+ −
∏∏ ∏  (22) 

 

4. SIMULATION 

 

In this section, the proposed method is applied to three 

real world problems and its performance is compared 

with those of existing methods. The three problems 

considered are the home network system [14, 20], the car 

diagnosis problem [15], and the ALARM network [21]. 

For each problem, a fixed set of GA parameters was 

used including a population size ( )
size
P  of 50, a 

crossover rate ( )
c
p  of 0.65 and a mutation rate ( )

m
p  

of 0.05. The three methods were then compared in terms 

of the effectiveness of the structure. The same simulation 

was then repeated while varying the GA parameters and 

checking whether the comparison results were consistent. 

Two population sizes (50 and 100), three crossover rates 

(0.4, 0.65, and 0.9), and two mutation rates (0.05 and 

0.15) were used. For each set of GA parameters, 10 

independent runs were made with each run stopped when 

5,000 BN structures were evaluated. 

In all runs, the maximum number of parents of each 

node (in-degree of BN structure) was restricted to five 

for simplicity. Without this restriction, the number of 

possible configurations of the parent set would increase 

exponentially with the number of parents [22]. 

 

4.1. Home network system 

A home network system is a typical test bed of the 

ubiquitous computing and sensor network, and is 

expected to upgrade the quality of living over the next 

decade. In a home network system, the key issue is 

context-aware computing. Context-aware computing is 

jargon coined by computer scientists and it is aimed at 

providing users in a smart home with human friendly 

services by (1) gathering information about the users 

from various sensors distributed in a smart home and (2) 

recognizing the intention of the users.  

In the implementation of context-aware computing in 

a smart home, it is assumed that home appliances and 

devices are equipped with wired/wireless sensors, and 

information about the circumstances under which the 

appliances operate are gathered. It is known that the 

contexts of user activities can be presumed from the state 

of the environment in [20], but there is no well known 

tool for developing the context-aware applications. 

In this example, the BN is applied to the context-

aware computing. We developed a virtual home in which 

a single user lives and home appliances are equipped 

with wired/wireless sensors. His (or her) intention or 

action is presumed by the BN. A web-based virtual 

action simulator was developed in FLASH and a 

database for a context-aware system was built to train the 

BN [14]. Fig. 3 shows the BN structure of the context-

aware system. 

Forty-two random variables were used to implement 

the context awareness of the BN. Twenty-one variables 

represent the state of the home appliances such as the TV, 

lights in the living room, the refrigerator, among others. 

The other twenty-one variables represent the activities of 

a single user such as whether he/she is studying, sleeping, 

or dressing. Using the proposed method, the BN is 

 

Time Location Light TV

Watching

TV
Shower Studying

Sensor Data Human Action
 

Fig. 3. An example of the BN structure for a home 

network system. 
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trained such that the action of the user is presumed from 

measurements of the sensors distributed in the context-

aware home.  

Fig. 4 shows the structure learning result of a specific 

run under the standard set of GA parameters (population 

size = 50, crossover rate = 0.65, mutation rate = 0.05). 

The short-dashed, long-dashed, and solid lines denote the 

performances of the methods used in [7,10], and the 

MGA, respectively. In the figure, a lower vertical value 

indicates better performance since the negative logarithm 

of the probability is plotted. 

As the vertical value approaches zero, the probability 

approaches one meaning that BN accommodates all the 

cases in the database. From Fig, 4, it can be seen that the 

proposed method converges quickly and outperforms the 

existing methods [7,10]. The reasons for the superiority 

of the proposed method could be (1) no prior knowledge 

of the causal relation for the given network is assumed 

and, as stated in Section 3, (2) the proposed MGA passes 

the superior genes from generation to generation more 

efficiently than the method in [10].  

Table 1 compares results from the methods in [7,10], 

and the proposed method in terms of equation (22). The 

proposed MGA outperforms the existing methods not 

only on average, but also in the best and worst cases. 

Tables 2, 3, and 4 show the performances of the 

methods in [7,10], and the proposed method in terms of 

equation (22), respectively, while varying the GA 

parameters. The set of GA parameters used in the 

simulation are listed in the first column. From the tables, 

it can be seen that all the three methods perform their 

 

Table 2. The performances of the method in [7] with 

various parameters (home network system).  

GA parameters 
Average Variance 

Best Worst 

0.4, 0.05, 50
c m size
p p P= = =  

33590.13 7848290.10

29545.27 38091.62 

0.9, 0.05, 50
c m size
p p P= = =  

33974.26 3413800.24

31705.53 36576.58 

0.4, 0.15, 50
c m size
p p P= = =  

45338.2 3355819.07

42070.51 47054.68 

0.65, 0.15, 50
c m size
p p P= = =  

46324.2 4205066.25

43866.84 49754.24 

0.9, 0.15, 50
c m size
p p P= = =  

45199.51 9951885.5

39930.35 48574.1 

0.65, 0.05, 50
c m size
p p P= = =  

22507.35 7470452.42

18404.05 28117.36 

0.65, 0.05, 100
c m size
p p P= = =  

33405.87 5500013.51

26880.32 36082.38 

 

Table 3. The performances of the method in [10] with 

various parameters (home network system).  

GA parameters 
Average Variance 

Best Worst 

0.4, 0.05, 50
c m size
p p P= = =  

23956.98 2517574.58

21653.24 25930.32 

0.9, 0.05, 50
c m size
p p P= = =  

21337.34 1367195.86

19927.22 23461.91 

0.4, 0.15, 50
c m size
p p P= = =  

24292.19 7288403.13

20650.62 28602.93 

0.65, 0.15, 50
c m size
p p P= = =  

23200.76 3425767.05

20421.56 25839.42 

0.9, 0.15, 50
c m size
p p P= = =  

26023.81 9070632.76

22740.04 30872.69 

0.65, 0.05, 50
c m size
p p P= = =  

20661.83 2055700.73

17626.14 22245.77 

0.65, 0.05, 100
c m size
p p P= = =  22518.89 3728110.08

 

Table 4. The performances of the proposed MGA with 

various parameters (home network system).  

GA parameters 
Average Variance 

Best Worst 

0.4, 0.05, 50
c m size
p p P= = =  

4465.89 201.64 

4458.11 4494.21 

0.9, 0.05, 50
c m size
p p P= = =  

4492.4 2300.22 

4458.11 4580.46 

0.4, 0.15, 50
c m size
p p P= = =  

4840.4 127874.85

4458.11 5382.57 

0.65, 0.15, 50
c m size
p p P= = =  

4664.35 14633.46 

4460.92 4839.75 

0.9, 0.15, 50
c m size
p p P= = =  

4664.35 14633.46 

4460.92 4839.75 

0.65, 0.05, 50
c m size
p p P= = =  

4463.15 98.67 

4458.11 4481.27 

0.65, 0.05, 100
c m size
p p P= = =  

4568.57 10248.49 

4458.11 4762.35 

Fig. 4. Performance of the existing and proposed

methods (home network system). 

 

Table 1. The comparison of the proposed and existing 

methods (home network system). 

Trial time 
Larrañaga 

et al. [7] 

Lee et al. 

[10] 

Proposed 

MGA 

1 23895.26 17626.14 4460.89 

2 28117.36 21105.52 4481.27 

3 21809.5 20482.32 4458.11 

4 19619.23 20547.76 4458.11 

5 21850.03 22245.77 4458.11 

6 21608.97 19160.47 4458.11 

7 18404.05 22117.03 4458.11 

8 21460.08 21836.7 4482.56 

9 23702.79 21367.96 4458.11 

10 24606.22 20128.63 4458.11 

avg. 22507.35 20661.83 4463.15 

var. 7470452.4 2055700.7 98.67 

Best 18404.05 17626.14 4458.11 

worst 28117.36 22245.77 4481.27 
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best when the genetic probabilities are moderate and the 

population size is small. For other sets of GA parameters, 

the MGA demonstrates very consistent performance 

while the other two methods are highly affected by 

parameter changes. Therefore, the proposed MGA is 

more robust than existing methods under various experi-

mental conditions and shows consistently outstanding 

results with different GA parameters. 

 

4.2. Car diagnosis problem 

The car diagnosis problem introduced by Norsys is 

considered in [15]. In this problem, the reason why a car 

does not move is presumed based on spark plugs, 

headlights, main fuse, among others. All nodes of the 

network are discrete variables. Some of them can take on 

three discrete states, while others can take on two states. 

A database of two thousand cases was utilized to train 

the BN. The database was generated using the Netica 

tool [15]. Fig. 5 shows the structure of the car diagnosis 

problem depicted by Netica from which sample cases 

were collected. 

Fig. 6 shows the structure learning result of a specific 

run under the standard set of GA parameters (population 

size = 50, crossover rate = 0.65, mutation rate = 0.05). 

The short-dashed, long-dashed, and solid lines denote the 

performances of the methods in [7,10], and the MGA, 

respectively. As in Fig. 4, the vertical axis denotes the 

negative logarithm of the probability and a lower value 

reflects better performance. 

The proposed method clearly outperforms the existing 

methods during evolution, as shown in Fig. 6. Table 5 

compares the results using the methods in [7,10], and the 

proposed MGA in terms of (22). The proposed method 

 

Table 5. The comparison of the proposed and existing 

methods (car diagnosis problem).  

Trial time 
Larrañaga 

et al. [7] 

Lee et al. 

[10] 

Proposed 

MGA 

1 19687.91 15686.31 8954.81 

2 18628.41 17093.18 8954.81 

3 19864.35 17040.01 8954.81 

4 18601.86 17311.46 8954.81 

5 17214.43 15844.87 8954.81 

6 19547.03 14520.13 8954.81 

7 19462.29 19270.1 8954.81 

8 20566.02 16871.59 8954.81 

9 18916.31 16536.65 8954.81 

10 16188.72 14707.35 8954.81 

avg. 18867.73 16488.17 8954.81 

var. 1711766.9 1926464.7 0 

Best 16188.72 14520.13 8954.81 

worst 20566.02 19270.1 8954.81 

 

Table 6. The performances of the method in [7] with 

various parameters (car diagnosis problem).  

GA parameters 
Average Variance 

Best Worst 

0.4, 0.05, 50
c m size
p p P= = =  

18368.4 5304206.4

14416.66 20408.46

0.9, 0.05, 50
c m size
p p P= = =  

18869.21 1698531.13

17563.87 21217.07

0.4, 0.15, 50
c m size
p p P= = =  

31617.62 4114496.38

29233.23 34629.94

0.65, 0.15, 50
c m size
p p P= = =  

28866.97 3327884.4

26714.66 32148.35

0.9, 0.15, 50
c m size
p p P= = =  

32295.5 6573958.79

29466.96 35996.97

0.65, 0.05, 50
c m size
p p P= = =  

18867.73 1711766.9

16188.72 20566.02

0.65, 0.05, 100
c m size
p p P= = =  

19465.97 6056734.11

15927.08 23306.73

 

Table 7. The performances of the method in [10] with 

various parameters (car diagnosis problem). 

GA parameters 
Average Variance

Best Worst 

0.4, 0.05, 50
c m size
p p P= = =  

15917.75 5060879.36

13464.59 19796.9 

0.9, 0.05, 50
c m size
p p P= = =  

18151.59 3865968.94

14879.42 20149.28

0.4, 0.15, 50
c m size
p p P= = =  

23942.66 2238232.94

22402.89 26662.97

0.65, 0.15, 50
c m size
p p P= = =  

25722.75 2898446.39

22482.1 27508.1 

0.9, 0.15, 50
c m size
p p P= = =  

26672.84 9703812.46

20857.47 29615.95

0.65, 0.05, 50
c m size
p p P= = =  

16488.17 1926464.7

14520.13 19270.1 

0.65, 0.05, 100
c m size
p p P= = =  

18606.82 3043408.32

16049.6 21270.92

 

Fig. 5. The structure of the car diagnosis problem

network. 

 

Fig. 6. Performance of the existing and proposed

methods (car diagnosis problem). 
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outperforms the existing methods not only on average, 

but also in the best and worst cases. 

Table 6, 7, and 8 show the learning results of the car 

diagnosis problem for a variety of GA parameters. The 

simulation parameters are same as the previous section. 

Existing methods show the best performance when the 

genetic probabilities are low and the population size is 

small. For the proposed method, the effect of parameter 

variation is very small, and its performance is good and 

consistent compared to existing methods. 

 

4.3. ALARM network 

ALARM (A Logical Alarm Reduction Mechanism) is 

a medical diagnostic system for patient monitoring. It is 

a complex belief network with eight diagnoses, sixteen 

findings, and thirteen intermediate variables [21]. A 

database of two thousand cases was utilized to train the 

BN. As in the previous example, the database is 

generated using the Netica tool [15]. Fig. 7 shows the 

structure of the ALARM network depicted by Netica 

from which sample cases were collected. 

Fig. 8 shows the learning result of the first run for the 

ALARM network problem. As in the previous examples, 

a lower vertical value means better performance as the 

negative logarithm of the probability is plotted. As 

before, in the case of the ALARM network, the proposed 

method shows good performance after tens of 

generations, as shown in Fig. 8. Table 9 compares the 

results from the methods in [7,10], and the proposed 

method in terms of (22). As seen in the previous two 

examples, the proposed method outperforms the existing 

methods not only on average, but also in the best and 

worst cases. 

Table 10, 11, and 12 shows the learning results of the 

ALARM network problem for a variety of GA 

Fig. 8. Performance of the existing and proposed 

methods (ALARM network). 

 

Table 9. The comparison of the proposed and existing 

methods (ALARM network).  

Trial time 
Larrañaga 

et al. [7] 

Lee et al. 

[10] 

Proposed 

MGA 

1 84963.27 62540.11 18946.06 

2 80986.9 79860.14 18946.06 

3 82846.11 67474.26 18946.06 

4 81709.27 75552.21 18946.06 

5 84640.98 84972.31 18946.06 

6 84479.74 74377.18 18946.06 

7 79468.78 82558.87 18946.06 

8 84059.88 70288.06 18946.06 

9 86332.95 66382.3 18946.06 

10 88639.38 68647.62 18964.73 

avg. 83812.73 73265.31 18947.93 

var. 7153099.99 55501237.33 34.86 

Best 79468.78 62540.11 18946.06 

worst 88639.38 84972.31 18964.73 

Table 8. The performances of the proposed MGA with 

various parameters (car diagnosis problem).  

GA parameters 
Average Variance 

Best Worst 

0.4, 0.05, 50
c m size
p p P= = =  

8954.81 0 

8954.81 8954.81 

0.9, 0.05, 50
c m size
p p P= = =  

8954.81 0 

8954.81 8954.81 

0.4, 0.15, 50
c m size
p p P= = =  

9417.52 53808.72

9021.04 9698.79 

0.65, 0.15, 50
c m size
p p P= = =

9417.52 53808.72

9021.04 9698.79 

0.9, 0.15, 50
c m size
p p P= = =  

9417.52 53808.72

9021.04 9698.79 

0.65, 0.05, 50
c m size
p p P= = =

8954.81 0 

8954.81 8954.81 

0.65, 0.05, 100
c m size
p p P= = =

8954.81 0 

8954.81 8954.81 

 

 

Fig. 7. The structure of the ALARM network. 
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parameters. Both the conventional and proposed methods 

show their best performances when the genetic 

probabilities are moderate and the population size is 

small. The proposed method shows good and consistent 

results compared with the other methods. 

 

5. CONCLUSIONS 

 

In this paper, a new approach for structure learning of 

BN named was proposed, called MGA. In the proposed 

method, an individual is represented as a matrix 

chromosome and uses both the upper and lower 

triangular parts of the matrix. Further, new crossover and 

mutation operations were introduced to implement 

evolution of the matrix encoding. The MGA has an 

effective way of passing the good features of the parents 

to their offspring compared with previous methods, and 

thereby improves the performance of BN structure 

learning.  

The proposed method was applied to three real world 

and benchmark problems. The simulation results 

demonstrated superior performance of the suggested 

method compared to previous methods for all three 

problems. 
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