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Robust H∞ Fuzzy Control for Discrete-time Nonlinear Systems 
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Abstract: This paper studies the problem of robust H∞ control for discrete-time nonlinear systems 

presented as Takagi--Sugeno’s fuzzy models. The generalized non-parallel distributed compensation 

(non-PDC) law and non-quadratic Lyapunov function is constructed by the proposed homogeneouspo-

lynomially basis-dependent matrix function (HPB-MF for abbreviation). Based on the generalized non-

PDC law and non-quadratic Lyapunov function, some linear matrix inequalities (LMIs) are obtained by 

exploiting the possible combinations of the basis functions. These LMIs ensure the asymptotic stability 

of the closed-loop system and guarantee a norm bound constraint on disturbance attenuation. In addi-

tion, it is shown that the LMIs become less conservative as the degree of HPB-MF increases. The merit 

of the methods presented in this paper lies in their less conservatism than other methods, as shown by a 

numerical example borrowed from the literature. 

 

Keywords: Homogeneous polynomially basis-dependent matrix function, robust control, linear matrix 
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1. INTRODUCTION 

 

Over the past few years, there have significant 

research efforts devoted to the analysis and control 

design of Takagi--Sugeno’s(T-S) fuzzy systems (see [1-3] 

and the references therein). The main motivation for its 

development was its applications on the stability and 

performance of many practical nonlinear systems [4-7]. 

Undoubtedly, the Lyapunov theory is one of the 

approaches to deal with this issue and the quadratic 

Lyapunov function is the main technique for testing the 

stability [8-11]. To overcome the conservatism arisen 

from the use of a single Lyapunov matrix in quadratic 

stability methods, more effective Lyapunov methods 

have been presented. See, for example, piecewise 

quadratic Lyapunov functions [12,13], the weighting-

dependent Lyapunov functions [14,15], etc. Many 

important issues have been studied for T-S fuzzy control 

systems, such as, H∞ performance [16,17], robustness 

[18,19], reliability [20,21], time-delay [22,23] and 

adaptive control [24,25]. It is noted that all of the 

aforementioned research efforts have been focused on 

PDC law, on the other hand, using the non-PDC law 

design methods along with non-quadratic Lyapunov 

functions, some conditions were proposed in [26]. More 

recently, based on an extended non-quadratic Lyapunov 

function with more variables, some conditions were 

provided in [27-30] which were less conservative than 

those in [26]. 

Generally speaking, in order to reduce the conserva-

tism, the main technique is to introduce more slack 

variables. For example in [8,27,28], ,ijQ
kl
ijQ  and 

kl
Θ  

are introduced to obtain less conservative results. But for 

robust H∞ control problem, since the computa-tional 

effort has to be considered, it is impractical to introduce 

so large number of variables ,

kl
ijQ  

kl
Θ  etc. except for 

[16] in which the slack variables ijlQ  are introduced 

partially. In order to obtain less conservative results and 

consider the computational burden, in this paper, we give 

another method to introduce variables. 

This paper focuses on the robust H∞ controller design 

of discrete-time T-S fuzzy models. First, the HPB-MF is 

proposed. Then, the generalized non-PDC law and non-

quadratic Lyapunov function are obtained by the 

application of the HPB-MF. Some new conditions to 

stabilize the fuzzy system are obtained by using the 

generalized non-PDC law and non-quadratic Lyapunov 

function. These conditions are expressed as LMIs by 

exploiting the possible combinations of fuzzy basis 

functions. It is shown that these conditions become less 

conservative as the degree of HPB-MF increases since 

more free variables are generated leading to less 

conservative results. Although the number of the LMIs 

also increases, each LMI is easy to be fulfilled. Moreover, 

if the conditions are fulfilled for a certain degree, then a 

feasible solution exists for all larger ones. 

The paper is organized as follows: The problems to be 

treated are formally stated in Section 2 and the HPB-MF 

is also introduced in this section. Section 3 is devoted to 

obtain theoretical results. Some comparisons to show the 

effectiveness of our methods are available in Section 4. 
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Section 5 concludes the paper. 

In this paper, for two symmetric matrices A  and ,B  

A B>  means that A B−  is positive definite. T
A  

denotes the transpose of .A  A star ( )∗  in a symmetric 

matrix denotes the transposed element in the symmetric 

position. The symbol I
n
 stands for the identity matrix in 

.

n n

R
×  [ )2

0,l ∞  refers to the space of square summable 

infinite vector sequences. 
2

•  stands for the 
2
l  norm. 

 

2. PROBLEM STATEMENT AND 

PRELIMINARIES 

 

The discrete-time T--S fuzzy system under investiga-

tion is described as follows: 

1

1

1

( 1) ( ( ))( ( )) ( )

              ( ( ))( ( )) ( )

              ( ( )) ( ),

r

i i i

i

r

i i i

i

r

i i

i

x k h k A A k x k

h k B B k u k

h k E k

ξ

ξ

ξ ω

=

=

=

+ = + ∆

+ + ∆

+

∑

∑

∑

 (1) 

1

( ) ( ( ))( ( ) ( ) ( ),
r

i i i i

i

z k h k C x k D u k M kξ ω
=

= + +∑  (2) 

where ( )x k  is the state, ( ) m
u k R∈  is the control input, 

( ) p
z k R∈  is the controlled output, ( ) s

k Rω ∈  is an 

exoge-nous disturbance input. Matrices n n

i
A R

×

∈
i

B ∈  

,

n m

R
×

,

n s
iE R

×

∈ ,

p n
iC R

×

∈ ,

p m
iD R

×

∈
p s

iM R
×

∈  are 

system matrices. 1,2, ,i r= �  and r  is the number of 

IF--THEN rules. ( )
i

A k∆  and ( )
i

B k∆  represent the 

time-varying uncertainties which have the following 

structure: 

[ ] [ ]1 2
( )  ( ) ( )  , 1,2, ,
i i i i

A k B k HF k E E i r∆ ∆ = = �  (3) 

where ( )F k R
α β×

∈  is an unknown matrix function 

with Lebesgue measurable elements and satisfying 

( ) ( ) .T
F k F k Iβ≤  (4) 

,

n

H R
α×

∈
1

n

i
E R

β×

∈  and 
1

m

i
E R

β×
∈  are known con-

stant matrices with appropriate dimensions that specify 

how the uncertain parameters in ( )F k  enter the 

nominal matrices 
i

A  and .
i

B  ( )( )
i
h kξ  is the basis 

functions which satisfies 

1

( ( )) 0, ( ( )) 1.
r

i i

i

h k h kξ ξ
=

≥ =∑  (5) 

The aim of this paper is to construct the control law 

( )u k  such that the closed-loop system (3), (4) has the 

property that for any nonzero [ )2
( ) 0,k lω ∈ ∞  and all 

admissible uncertainties, 
2

( ) ( )z k kγ ω<  under zero-

initial condition. 

For simplicity, the basis functions ( ( ))
i
h kξ  in (1) are 

represented as 
i
h  and ( ( 1))

i
h kξ + = .

i
h
+

 

Let 

{ }
1 2

,

1 2

1 2

{ ,

               , {1,2, , }},

q

q r

i i i q

q

H h h h i i i

i i i r
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∈

� �
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 (6) 

{ }
1 2

,

1 2
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               , {1,2, , }}

q

q r

i i i q

q

H h h h i i i

i i i r

+ + + +
= ≤

∈

� �

� �

 (7) 

and the corresponding subscript is 

{ } { }{ },

1 2 1 2 1 2, , , 1, 2, ,
q r

q q q
i i i i i i i i i r℘ = ≤ ∈� � � �  

There are 
( 1)!

!( 1)!

q r

q r

+ −

−

 elements in { }, .H q r  For 

example, as 3, 3r q= =  

{ }3,3

3 2 2 2 2 3 2 2 3
1 1 2 1 3 1 2 1 2 3 1 3 2 2 3 2 3 3{ , , , , , , , , , },

H

h h h h h h h h h h h h h h h h h h

=

 

{ }3,3
{111,112,113,122,123,133,222,223,233,333}.℘ =  

Definition 1: The HPB-MF is defined as follows 

( )
{ }

1 2 1 2 1 2
,

1 2

{ , }
, ,

q q q
q r

i i iq

q r
i i i i i i i i i

h h h H

f H S h h h S

∈
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�

�  

 (8) 

( )
{ }

1 2 1 2 1 2
,

1 2

{ , }
, ,

q q q
q r

i i iq

q r
i i i i i i i i i

h h h H

f H S h h h S

+ + +

+ + + +

∈

= ∑� �

�

�

 (9) 

where 
1 2 qi i i

S
�

 are matrix variables and q is the degree 

of HPB-MF. 

For example as 3,r = 3q =  one has 

{ }( )
1 2 3

3,3 3 2 2
1 111 1 2 112 1 3 113

2 3
1 2 122 1 2 3 123 2 222

2 3
2 3 223 3 333

,
i i i

f H S h S h h S h h S

h h S h h h S h S

h h S h S

= + +

+ + +

+ +

 

and for the special cases 1q =  and 0,q =  one gets 

{ }( )
1

1,

1 1 2 2, ( ) .
r

i r r
f H S S H h S h S h S= = + + +�  (10) 

Definition 2: For each 
{ }

1 2

,

q

q r

i i ih h h H∈�  

1 2

1 2 1 21 2
, .

r

q

d d d

i i i r r
h h h h h h d d d q= + + =� � �  (11) 

The function 
1 2

( )
q

g i i i�  dependent on the value of 

1
,i

2
,

q
i i�  is defined as follows 

( )1 2

1 2

!
.

! !
q

r

q
g i i i

d d d
=�

�

 (12) 
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For example, as 3,r = 3,q =
1 2

1,i i= = 3 2,i =  one 

has 2

1 1 2 1 2
,h h h h h=

1
2,d =

2
1,d =

3
0,d =  then 

( )
3!

112 3.
2!1!0!

g = =  

Definition 3: The { }( )
1 2

,

,

q

q r

i i if H S
�

 is said to be 

positive definite (semi-definite) in 
{ },q r

H  if there exist 

some matrices 
1 2 qi i i

S
�

 such that { }( )
1 2

,

,

q

q r

i i if H S
�

 

0>
{ }( )

1 2

,

( , 0)
q

q r

i i if H S ≥
�

 for all 
{ }

1 2

,

.

q

q r

i i ih h h H∈�  

The following well known lemma is useful in this 

paper. 

Lemma 1 [31]: Let, ,A ,H E  and F be real matrices 

of appropriate dimensions with .

T
F F I≤  For any 

matrix 0P >  and scalar 0ε >  such that T
P HHε−  

0,>  then we have 

( ) ( )1 1( ) .
T T T T

A HEF P A HEF A P HH A E Eε ε
− −

+ + ≤ − +

 

3. MAIN RESULTS 

 

Theorem 1: Consider the following control law 

{ }( ) { }( )
1 2 1 1 2 1

1, 1,1( ) , , ( ).
q q
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i i i i i iu k f H Y f H G x k
− −

− −−

=
� �

 (13) 

The closed-loop system (1), (2) is asymptotically stable 

with γ  disturbance attenuation, if there exist matrices 
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Proof: Applying the generalized control law (13), it 

follows from (1)-(3) and (10) that the closed-loop system 

can be described as 
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It is easy to verify that if the LMIs in Theorem 1 hold, 

then 0.Ω <  

On the other hand, let 
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[0  )k lω ∈ ∞  and zero initial condi-

tion ( )0 0,x =  one gets 

( ) ( ) ( ) ( ) ( )( )( )
( )( )

1

2

0

N
T T

N

k

J z k z k k k V x k

V x N

γ ω ω

−

=

= − + ∆

−

∑
 

and hence, 0Ω <  implies 0
N

J <  which guarantees 

that the closed-loop system (1), (2) is asymptotically 

stable with γ  disturbance attenuation for all admissible 

uncertainties.                                  � 

The following Theorem 2 shows that lower 

disturbance attenuation can be obtained by increasing q. 

Theorem 2: For some given value of ,q  the 

corresponding theorem obtained from Theorem 1 is 

expressed as LMIs and denoted as 
( )1, 1,

.

q q q
T

− −

∆
 For any 

integer q̂  satisfying ˆ ,q q>  
� � �( )1, 1,q q q

T
− −

∆
 is feasible if 

( )1, 1,q q q
T

− −

∆
 is feasible. 

Proof: Suppose the LMIs in 
( )1, 1,q q q

T
− −

∆
 are feasible, 

let 

{ }( ) { }( )
1 2 1 2 1

, 1,

1

, , ,

q q

r
q r q r

i i i i i i i

i

f H G h f H G
−

−

=

 
=  
 
∑� �

 (18) 

 

{ }( ) { }( )
1 2 1 2 1

, 1,

1

, , ,

q q

r
q r q r

i i i i i i i

i

f H Y h f H Y
−

−

=

 
=  
 
∑� �

 (19) 

 

{ }( ) { }( )
1 2 1 1 2

1, ,

1

, , ,

q q

r
q r q r

i i i i i i i

i

f H G h f H P
+

+

=

 
=  
 
∑� �

 (20) 

the LMIs in 
( ), , 1q q q

T
+

∆
 can be obtained by linear 

combination of those in 
( )1, 1,

.

q q q
T

− −

∆
 That is, for any 

solutions satisfying 
( )1, 1,q q q

T
− −

∆
 will be bound to satisfy 

( ), , 1
.

q q q
T

+

∆
 With recursion, For any integer q̂  satisfying 

ˆ ,q q>  
� � �( 1, 1, )q q q

T
− −

∆
 is also feasible.                � 

Remark 1: A similar approach can be found in [32] 

for linear time-invariant (LTI) systems where the upper 

bound for the complexity parameter is computed, 

however, the results are focused only on LTI systems. By 

utilizing the Polya’s theorems on positive forms on the 

standard simplex, a method is developed in [33] for 

continuous-time T-S fuzzy systems. The method 

proposed in [33] exploits the possible combinations of 

LMIs or introduce more decision variables .ijklX  To 

solve the robust control problem, however, these 

variables ijklX  may increase the computational burden. 

The reference [34] provide another method to introduce 

more slack variables by increasing the degree of 

polynomial matrix function, however, similar to [32], 

they are applied to LTI systems. 

Note, [13] utilizes the non-quadratic Lyapunov 

function 

( ) ( ) ( )
1

r
T

i i

i

V x x k h S x k
=

 
=  

 
∑  

and non-PDC law 

( ) ( )
1

1 1

r r

i i i i

i i

u k hY hG x k

−

= =

  
= −  

  
∑ ∑  

to cope with the stability problem of fuzzy system. The 

extension of the method in [26] to deal with the robust 

H
∞

 control problem is straightforward. Using the 

Lyapunov function and control law given in [26] and 

following the same line in Theorem 1 one gets the 

following Theorem 3. 

Theorem 3: The closed-loop system (1), (2) is 

asymptotically stable with γ  disturbance attenuation, if 

there exist matrices ,

m n

i
Y R

×

∈ ,

n n

i
G R

×

∈ 0ε >  and 

positive matrices ,

n n

i
S R

×

∈  1,2,i r= �  satisfying the 

following LMIs (21), (22). 

Remark 2: The Lyapunov function utilized in 

Theorem 3 is linear-dependent on the basis function ,
i
h  

while in 
( )1, 1,

,

q q q
T

− −

∆
 the Lyapunov function can be 

quadratic, cubic or even higher degree on .

i
h  As the 

degree increases, more slack variables are generated 

leading to less conservative results than those by 

Theorem 3. The following example shows this point. 

 

4. SIMULATION EXAMPLE 

 

In this section, we compare our results with other 

methods using example borrowed from the literatures. 

 

2

1 2

1 2

0 2

2

0 0 2

0 0

0 0 0

0

T
i i i

T
j j j

i j i j

i j k
j i j i

T

i j i j

j i j i

i j i j

i j
j i j i

G G P

G G P

AG BY

E E P
A G B Y

H

E G E Y

E G E Y

C G DY

M M
C G D Y

γ

ε

  − − +  ∗ ∗ 
 − − +  
 − ∗


+   
+ − 

+ +   


 +   
 + +  



+  
+  + +  

�  
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 2 0,

0 2

0 0 2

0 0 0 2

s

s

p

I

I

I

I

α

β

ε

ε

ε

+

∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗


− ∗ ∗ ∗ <
− ∗ ∗


− ∗ 
− 

 (21) 

1,2, 1,i r= −� 1, ,j i r= + � 1,2,k r= �  

2

1 2

0

0 0

0 0

0 0 0

0

T
i i i

i i i i i j

T

i i i i

i i i i i

G G P

AG BY E P

H

E G E Y

C G DY M

γ

ε

− − + ∗ ∗


− ∗


+ −


 +


 +

�  

 
0.

0

0 0

0 0 0

, 1,2,

s

s

p

I

I

I

I

i j r

α

β

ε

ε

ε

+

∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗


− ∗ ∗ ∗ <
− ∗ ∗


− ∗ 
− 

= �

 (22) 

All the experiments have been performed with a Celeron 

(R) 2.8 GHz, 512 MB RAM, using LMI solver and m-

file of MATLAB 7.0. 

Example: In this example, the system under consider-

ation is a nonlinear system modified from example 1 in 

[16] 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 1 1 1 1 2

2 1 1

1

            0.01 0.03 5 ,

x k x k a k x k x k x k

k k x k u kω ω

+ = +∆ −

+ − + +

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2
1 0.5 2 0.01 ,x k x k x k x k u k kω+ = − − + +

( ) ( ) ( ) ( ) ( )

( )

1 2 1

2

1 0.1 0.5 0.5 0.01

                0.01 ,

z k x k x k u k k

k

ω

ω

+ = − − + +

+

 

where ( )1
a k∆  is the uncertain parameters satisfying 

( )1
[ 0.1,  0.1].a k∆ ∈ −  

Under the assumption that, the nonlinear system is 

exactly represented by the T-S fuzzy system given by 

Rule 1: If ( )1
x k  is about 

1
h  then  

1 1 1 1

1

1 1 1

( 1) ( ( )) ( ) ( ( )) ( )

( ),

( 1) ( ) ( ) ( ).

x k A A k x k B B k u k

E k

z k C x k D u k M k

ω

ω

+ = + ∆ + + ∆

+

+ = + +

 

Rule 2: If ( )1
x k  is about 

2
h  then  

2 2 2 2

2

2 2 2

( 1) ( ( )) ( ) ( ( )) ( )

( ),

( 1) ( ) ( ) ( ),

x k A A k x k B B k u k

E k

z k C x k D u k M k

ω

ω

+ = + ∆ + + ∆

+

+ = + +

 

( )1

1
,

2

x k
h

β

β

+

=  
2 1

1 ,h h= −  ( ) [ ]1
 ,x k β β∈ −  

1

1
,

1 0.5
A

β− 
=  − − 

2

1
,

1 0.5
A

β 
=  − − 

1 2
0.5,D D= =  

1

5
,

2
B

β

β

+ 
=  
 

2

5
,

2
B

β

β

− 
=  − 

1 2

0.01
,

0.01

T

M M
 

= =  
 

 

1 2

0.03 0.01
,

0.00 0.01
E E

− 
= =  

 
1 2

0.03 0.01
,

0.00 0.01
C C

− 
= =  

 
 

and ( )1
,A k∆ ( )2

,A k∆ ( )1
,B k∆ ( )2

B k∆  can be repre-

sented in the form of (3) and (4) with 

1
,

0
H

 
=  
 

 [ ]11 12
0.1 0 ,E E= =  

21 22
0.E E= =  

Since γ  is related to the level of disturbance 

attenuation, the aim here is to compute the minimum 

value of γ  for some given β  and any admissible 

uncertainties ( ) [ ]1
0.1,  0.1 .a k∆ ∈ −  The minimum value 

of γ  is obtained by means of the following convex 

optimization problem: 

( )

min

1, 1,

min

          s.t.  with different value of
q q q

T q

γ γ

− −

∆

=

 

Note the LMI solver utilized here is MINCX(LMIS, C, 

OPTIONS) where the OPTIONS is set to [1e-5 100 0 0 

0].  

Applying 
( )1, 1,q q q

T
− −

∆
 with different values of q  the 

results are shown in Table 1 (‘Th.3’in Table 1 represents 

Theorem 3 and ‘ × ’ represents infeasible). One can 

conclude from Table 1 that 
( )1, 1,q q q

T
− −

∆
 guarantees a 

larger feasible area and achieves a smaller 
min

γ  than 

Theorem 3. For example, Theorem 3 is infeasible for 

1.51β ≥  while 
( )2,2,3

T
∆

 is feasible even for 1.67.β =  

 

Table 1. The value of 
min

γ  obtained by different 

methods. 

β  
minγ  

Th.3 

minγ  

( )0,0,1
T
∆

 

minγ  

( )1,1,2
T
∆

 

minγ  

( )2,2,3
T
∆

0.01 0.0187 0.0187 0.0187 0.0187 

0.50 0.0197 0.0263 0.0197 0.0197 

0.8835 0.0209 11.4070 0.0209 0.0209 

1.5 0.5247 × 0.3330 0.0360 

1.5069 22.5168 × 0.8580 0.0371 

1.5109 × × 15.2800 0.0378 

1.67 × × × 0.7854 
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In addition, applying 
( )1,1,2

,T
∆

( )2,2,3
T
∆

 with 1.5069β =  

one gets 
min

0.8580γ =  and 
min

0.0371γ =  respective-

ly, which are smaller than the one obtained by Theorem 

3. Note, as 0.01β =  one gets the same result minγ =  

0.0187 for different theorems. This shows the bound of 

the H
∞

 performance under this condition is tight and 

need not continue the search for lower performance 

min
γ  by increasing .q  

Applying 
( )2,2,3

T
∆

 with 1.67,β =  one gets minγ =  

0.7854  and the following results 

11

0.0398 0.1821
,

0.0382 0.2682
G

 
=  − 

12

0.1106 0.1442

0.0585 0.4217
G

− 
=  − 

 

22

0.0066 0.0250
,

0.0148 0.1323
G

 
=  − 

[ ]11
0.0178 0.0341Y = −  

[ ]12
0.0220 0.0018 ,Y = − [ ]22

0.0046 0.0665Y = −  

111

0.0191 0.0147
,

0.0147 0.1430
P

 
=  
 

112

0.1403 0.0644

0.0644 0.5707
P

− 
=  − 

 

122

0.1271 0.0472
,

0.0472 0.5482
P

− 
=  − 

222

0.0114 0.0247

0.0247 0.1299
P

 
=  
 

 

The exogenous disturbance input 
2

( ) [0, )k lω ∈ ∞  is 

( )
( )( ) ( )

( )( ) ( )

rand 0.3 / 1 0.01

rand 0.3 / 1 0.01

k
k

k
ω

 • − +
=  

• − +  

 

and ( ) ( )1
0.1sin .a k k∆ =  Fig. 1 shows the states 

response with the initial condition ( ) [ ]0 1.67 2 ,
T

x = −  

while Figs. 2 and 3 present the corresponding controlled 

input and controlled output with exogenous disturbance, 

respectively. From these simulations, it can be seen the 

designed fuzzy controller ensures the asymptotic stability 

of the closed-system and guarantees a prescribed H
∞

 

performance level under the uncertain parameter 

( )1
.a k∆  

 

5. CONCLUSIONS 

 

The stability analysis for discrete-time fuzzy systems 

with T-S model has been studied in this paper. Some 

sufficient conditions for the existence of a generalized 

non-PDC law have been obtained. It has been shown that 

the proposed generalized non-PDC law can not only 

stabilize the system but also guarantee a prescribed level 

on the disturbance attenuation. In addition, the design 

approach has been applied to an example of nonlinear 

discrete-time systems with disturbance input, and the 

results have showed the effectiveness of the proposed 

approach. 
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