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Robust Stabilization of T–S Fuzzy Systems: Fuzzy Static Output 

Feedback under Parametric Uncertainty 
 

Ho Jae Lee and Do Wan Kim 

 

Abstract: This paper addresses robust static output-feedback control problems for a nonlinear system 

with uncertain fuzzy output in Takagi–Sugeno’s (T–S) form. Two cases of the T–S fuzzy system, both 

continuous- and discrete-time cases are considered. In both cases, sufficient design conditions are 

derived for asymptotic stabilization in the sense of Lyapunov, in terms of linear matrix inequalities. 

Results are extended to retain 
∞

H  disturbance attenuation performance. An illustrative example on 

the permanent magnet synchronous motor equipped with uncertain nonlinear output and disturbance is 

provided to illustrate the effectiveness of the proposed methodology. 

 

Keywords: Linear matrix inequalities, static output-feedback, Takagi–Sugeno (T–S) fuzzy system, 

uncertain fuzzy output. 

 

1. INTRODUCTION 

 

Most systems have severe nonlinearity and uncertain-

ties. In order to synthesize a controller for an uncertain 

nonlinear system, extensive research efforts have been 

made in the last decades, among which a successful 

approach is the Takagi–Sugeno (T–S) fuzzy model-based 

control [1]. For this, the commonly adopted controllers 

are of full state-feedback form. However in real 

applications, measuring full state may be costly or even 

impossible due to their economical constraints or 

practical restrictions. One may avoid the obstacle by 

exploiting an output feedback with an additional 

dynamics of order equal to the system. However, the 

dynamic output-feedback controller increases the 

dimension of the closed-loop system [2]. 

A possible remedy is a static output feedback, which 

leads to a lower-dimensional as well as structurally 

simpler system than the dynamic output feedback. 

Nevertheless relatively few research efforts have been 

devoted to this approach thus a complete solution is not 

available yet. Necessary and sufficient stability 

conditions for linear time-invariant (LTI) systems via 

static output feedback are available, but not numerically 

tractable [3]. 

Linear matrix inequalities (LMIs) have recently gained 

much attention, since the flexibility of LMIs allows one 

to simultaneously reflect variety of design specifications. 

Still, necessity and sufficiency of the static output 

feedback is known to be one ofthe most challenging yet 

difficult issues. It is due to the fact that the derived 

stability condition is nonconvex. 

A convexification technique is first developed in [4], 

for the sufficient design condition of the static output-

feedback controller targeting at LTI systems in which a 

linear matrix equality (LME) constraint is additionally 

introduced. In [5], the scheme is extended to the T–S 

fuzzy system, which seems the first result in the fuzzy 

control field. Paper [6] considers the 
∞

H  disturbance 

attenuation under the fuzzy static output feedback. 

Although the result is elegant, it is not LMI. Therein, the 

solution is found in an iterative manner. It is noted that 

the methodologies addressed so far are only applicable 

for systems in which the output is linearly dependent on 

the state. In [7], an LMI condition is proposed for the 

concerned problem under fuzzy output by applying the 

technique in [4]. They considered the parametric 

uncertainties as well as the 
∞

H  disturbance attenuation 

performance. However, the uncertainty in the measured 

output for feedback is not taken into account. 

In this paper, robust static output-feedback controller 

design techniques are presented for both continuous- and 

discrete-time T–S fuzzy systems in the presence of the 

parametric uncertainties in the fuzzy, rather than linear, 

measured output for feedback, in terms of LMIs. The 

results are extended to H
∞
 disturbance attenuation 

control. An example is included to visualize the 

theoretical analysis and design. 

An ellipsis is adopted for long symmetric matrix 

expressions, e.g., 
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2. T–S FUZZY SYSTEMS 

 

The i th rule of an uncertain T–S fuzzy system we 

focus our attention on has the following form: 
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1 1
: IF is about and and is about

 THEN
( )

i i i
p p

i i

i i

R z z

x A x B u

y C C x

Γ Γ

= +


= + ∆

�

�  (1) 

where n

x∈�  is the state; m

u∈�  is the control 

input; p
y∈�  is the output; ,jz  

P
j∈ I  are the 

premise variables injectively mapped from ;y  ,

i
jΓ  

( ) {1 2 } {1 2 }
R P

i j r p, ∈ × := , , , × , , ,… …I I  is the fuzzy 

set of jz  in ;
i

R  
i

C∆  a real-valued matrix function 

representing parametric uncertainties. Using the center-

average deffuzifier, product inference, and singleton 

fuzzifier, the global dynamics of (1) is inferred as 

1

1

( )

( ) ,

r

i i i

i

r

i i i

i

x A x B u

y C C x

θ

θ

=

=


= +





= + ∆


∑

∑
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where [0 1]
i
j ,

Γ : →� �  the membership value of jz  in 

i
jΓ  and 

11 1

( ) ( ) .
n nr

i i
i j j j j

ij j

z zθ

== =

    
    = Γ Γ

    
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∑∏ ∏  

Throughout this paper, we assume that only y, rather 

than x, is available for feedback. Under this 

circumstance, the following controller is taken 

1

r

i i

i

u F yθ

=

=∑  (3) 

to robustly asymptotically stabilize (2) in the presence of 

parametric uncertainty on output, where Fi is the 

feedback gain matrix. Such a type of uncertainty is not 

unreasonable to be assumed that, as usual, 
i

C∆  is 

norm-bounded and structured. 

Assumption 1: The uncertain matrix is represented as 

( ) ,
i i i i

C H t E∆ = ∆  where 
i

H  and 
i

E  are known real 

constant matrices of compatible dimensions, and 
i

∆  is 

an unknown matrix function with Lebesgue-measurable 

elements with .

T
I∆ ∆�  

The closed-loop system is then constructed as follows: 

1 1 1

( ( )) .
r r r

i j h i i j h h

i j h

x A B F C C xθ θ θ

= = =

= + + ∆∑∑∑�  (4) 

 

3. MAIN RESULTS 

 

Before proceeding, we recall the following matrix 

inequality which will be needed throughout the proofs. 

Lemma 1 [8]: Given constant matrices E, H, and S =ST 

of appropriate dimensions, the following holds: 

1 1

2 2He{ } 0 0T
S H E S E Hε ε

− 
+ ∆ ⇔ +  

 
≺ ≺�  

if and only if for some 
0
,ε

>
∈�  where .

T
I∆ ∆�  

Theorem 1: The closed-loop T–S fuzzy system (4) is 

asymptotically stable, if there exist 0,
T

P P= �  M =  

,

T
M  and ,

i
N  such that 

1

He{ }

0,

( ) 0

i i j h

h ijh

T
i j h ijh

PA B N C

E I

B N H I

ε

ε
−

 +
 
 −
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�  (5) 

0 ( ) ,
i i R R R

PB B M i j h− = , , , ∈ × ×I I I  (6) 

where the controller gain is given by 1
.

i i
F M N

−

=  

Proof: Choose a positive definite function T
V x Px=  

for (4). By virtue of the Lyapunov theorem, (4) is 

asymptotically stable whenever 

d
0 for all {0}

d

He{ ( ( ))} 0

He{ } 0,

n

i i j h h

i i j h i j h h h

V
x \

t

P A B F C C

PA PB F C PB F H E

< ∈

⇐ + + ∆

⇔ + + ∆

�

≺

≺

 (7) 

which, however, lacks the joint convexity in P  and 

.jF  Importing (6) and letting 
i i

MF N=  recovers the 

convexity with respect to them and further proceeds to: 

1

(7) He{ } 0

He{ }

0
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0

(

(7)

,7) 5( )
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≺
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where we have used Lemma 1. This completes the proof 

of Theorem 1.                                  � 

Similarly to the continuous-time case, sufficient robust 

asymptotic stability condition for a discrete-time case is 

presented. A discrete-time T–S fuzzy system closed by a 

discrete-time fuzzy static output-feedback controller is 

written as: 

1

1 1 1

1

( ( ))

( ) ,

r r r

k i j h i i j h h k

i j h

r

k i i i k

i

x A B F C C x

y C C x

θ θ θ

θ




+
 = = =




 =

= + + ∆ .

= + ∆

∑∑∑

∑

 (8) 

where the subscript 
0k∈��  denotes the sequential 

ordering. 

Theorem 2: The discrete-time closed-loop T–S fuzzy 

system (8) is asymptotically stable, if there exists 

0,
T

P P= �  ,

T
M M=  and ,

i
N  such that 
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1

0,
0

0 ( ) 0

i i j h

h ijh

T
i j h ijh

P

PA B N C P

E I

B N H I

ε

ε
−

− 
 + − 
 −
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 (9) 

0 ( ) ,
i i R R R

PB B M i j h− = , , , ∈ × ×I I I  (10) 

where 1 .
i i

F M N−

=  

Proof: We set the Lyapunov function as .

T

k kV x Px=  

It is obvious that if the first forward difference 0,V∆ <  

(8) is asymptotically stable in the sense of Lyapunov. 

Our task now is to derive some sufficient condition for 

this, in terms of LMIs. 

6
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where we have taken a congruence transformation with 

{ }diag I P I I, , ,  and used (10) and .

i i
MF N=        � 

 

4. EXTENSION TO 
∞

H  CONTROL 

 

In this section we consider the following T–S fuzzy 

system 

1

1

( )

(( ) ).

i

i

r

i i i w

i

r

i i i w

i

x A x B u B w

y C C x D w

θ

θ

=

=


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∑

∑
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 (11) 

We still seek to design (3) for (11) to achieve the 

following 
∞

H  disturbance attenuation performance of a 

given 
0
:γ

>
∈R  

2 2

0 0
|| || d || || d

T T

y t w t∫ ∫�  (12) 

for all 
2
[0 ]w T∈ ,L  with (0) 0.x =  

Theorem 3: The T–S fuzzy system (11) closed by (3) 

is stable with the 
∞

H  disturbance attenuation 

performance in (12), if there exist 0,
T

P P= �  M =  

,

T
M  and ,

i
N  such that 

1

He{ }

( )

0,
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h

i i j h

T
i j w w

h w

h ijh

T T
i j h h ijh

PA B N C

B N D PB I
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γ

γ

ε
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−
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0 ( ) ,
i i R R R

PB B M i j h− = , , , ∈ × ×I I I  (14) 

where 1 .
i i

F M N−

=  

Proof: Suppose that there exists a Lyapunov function 
T

V x Px=  satisfying the following Hamilton–Jacobi–

Bellman (H–J–B) inequality 

1 2 2d
|| || || || 0

d

V
y w

t
γ γ
−

+ − <  (15) 

along (11) for all 
2

( ) {0} [0 ].n

x w \ T, ∈ × ,� L  For every 

0
,T

>
∈�  integrating over [0 ]T,  (15) gives [9]  
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We are in position to formulate (15) in terms of LMIs if 
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where we have used (14) and denoted .

i i
MF N=     � 

Next, we parallel the result such that the following 

discrete-time closed-loop T–S fuzzy system 

1

1 1 1

1

(( ( ))

( ) )

(( ) )

h i

i

r r r

k i j h i i j h h k

i j h

i j w w k

r

k i i i k w k

i

x A B F C C x

B F D B w

y C C x D w

θ θ θ

θ

+

= = =

=


= + + ∆




+ + .



= + ∆ +


∑∑∑

∑

(16) 

reveals the following 
∞

H  disturbance attenuation 

performance: 

2 2 2

0 0

|| || || ||
K K

k k

k k

y wγ

= =

∑ ∑�  (17) 

for all 
0

K
>

∈�  and all 
2
[0 ]w l K∈ ,  with 

0
0.x =  

Theorem 4: The discrete-time closed-loop T–S fuzzy 

system (16) is stable with the 
∞

H  disturbance 

attenuation performance in (17), if there exist P =  

0,
T

P �  ,

T
M M=  and ,

i
N  such that 

0

0

0 0

h i

h

i i j h i j w w
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h

P
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C D

E
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1
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 (18) 

0 ( ) ,i i R R RPB B M i j h− = , , , ∈ × ×I I I  (19) 

where 1

i iF M N−

= . 

Proof: Suppose that there exists a Lyapunov function 
T

V x Px=  satisfying the following H–J–B inequality  

1 2 2|| || || || 0.k kV y wγ γ
−

∆ + − <  (20) 

Summing up (20) from 0k =  to K  stands for (17). 

For LMI casting of (20), a similar argument is given as 

follows: 
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1

0
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⇔
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where we have taken a congruence transformation with 

diag{ }I I P I I I, , , , ,  and used (19) and .

i i
MF N=     � 

Remark 1: All design conditions can be efficiently 

solved via semidefinite programming or LMI Control 

Toolbox by converting the LME into 

0

i i

I

PB B M I

γ

γ

− 
 − − 

≺

�

 

with a very small 
0
.γ

>
∈�  

 

5. EXAMPLE 

 

To show the effectiveness of the proposed method, the 

permanent magnetic synchronous motor (PMSM) in [10] 

is used as a practical test bed. The dynamical behavior of 

the smooth-air-gap PMSM without the external load 

torque but with external disturbance w is modeled as  

2 ,

r

r

R
d d p q dL

R
q q p d qL L

qL J

i i n i v

i i n i v

i w

ψ

ψ β

ω

ω ω

ω ω

 = − + +



= − − − +


= − +

�

�

�

 

where ,di  
q
i  are the direct and quadrature current 

components; ω  is the motor angular velocity; ,dv  
q
v  

stand for the direct and quadrature input voltage 
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components; 0.9 R = Ω  is the stator winding resistance; 

0 01425 ΗL = .  is the direct and quadrature-axis stator 

inductors; 1
p

n =  is the number of pole-pairs; 
r

ψ =  

0 031 Nm/A. is the permanent-magnet flux; 0 0162β = .  

N/rad/s  is the viscous damping coefficient; 4 7J = . ×  

5 2
10 Kgm

−  is the polar moment of inertia. We assume 

only the following uncertain nonlinear outputs are 

available for feedback: 

2

1

2

2(1 ) 4 4 0 1

,

d q qy i i i w

y

δ ω ω ω

ω

 = + + + + − + .


=
 

where ,δ  | | 0 1,δ ≤ .  denotes the unknown parameter 

variation. 

In order to cast into a T–S fuzzy system under 

consideration, it is desired to determine ,
i

θ  ,
i

A  ,
i

B  

.
i

C  Let 
1 2

co{ }.ω ω ω∈ ,  Solving 
1 1 2 2

ω θ ω θ ω= +  

and 
1 2

1θ θ+ =  yields
1 2 2 1

( ) ( )θ ω ω ω ω= − + −  and 

2 1
1 .θ θ= −  Choosing 

1 2
z y=  and 

1
,

i

i
θΓ =  the PMSM 

is modeled with a two-rule fuzzy system with the 

following parameters: 
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,
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.     
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where col{ },d qx i i ω= , ,  col{ },d qu v v= ,  and 
2
.i∈ I  

According to Assumption 1, 
i

C∆  is decomposed as 

[ ]
0 2

, 1 0 0 .
0

i i
H E

. 
= = 
 

 

The disturbance is defined by 
2

cos(100 ) [0 ].w t T= ∈ ,L  

Let 
1 2

( ) ( 1 1).ω ω, = − ,  It is noted that the approaches in 

[6] and [7] do not consider uncertainties in the measured 

output for feedback. Moreover, [5] and [7] conduct only 

linear output case. Thus the techniques are inapplicable 

to the controller design problem herein. On the other 

hand, by applying Theorem 3 and solving the associated 

LMIs under 0 5,γ = .  we obtain the controller gain 

matrices: 

 

 

 

Fig 1: Time responses of the controlled PMSM. 

 

1 2

0 0281 3 775 0 0210 2 379
.

0 0813 113 1 0 0528 110 8
F F

. . . .   
= , =   . − . . − .   

 

The initial data is set (0) [0.5, 0.5, 0.5] .Tx = − −  The 

parameters δ  randomly varies within its allowed 

interval throughout the simulation process. As the time 

responses are shown in Fig. 1, the fuzzy static output-

feedback controller indeed stabilizes the system and 

attains the disturbance attenuation effect. 

 

6. CONCLUSIONS 

 

In this paper, we have presented the robust fuzzy static 

output-feedback controller design methodologies for 

both continuous- and discrete-time T–S fuzzy system 

possessing parametric uncertainties in the fuzzy output in 

the format of LMIs. Simulation result convincingly 

demonstrated the effectiveness of the developed tech-

niques. 

 

REFERENCES 

[1] H. J. Lee, J. B. Park, and G. Chen, “Robust fuzzy 

control of nonlinear systems with parametric 

uncertainties,” IEEE Trans. Fuzzy Syst., vol. 9, no. 

2, pp. 369-379, 2001. 

[2] X. G. Yan, C. Edwards, and S. K. Spurgeon, 



Ho Jae Lee and Do Wan Kim 

 

 

736 

“Decentralised robust sliding model control for a 

class of nonlinear interconnected systems by static 

output feedback,” Automatica, vol. 40, pp. 613-

620, 2004. 

[3] A. T. Neto and V. Kucera, “Stabilization via static 

output feedback,” Proc. of IEEE Conference on 

Decision and Control, pp. 910-913, 1991. 

[4] C. A. R. Crusius and A. Trofino, “Sufficient LMI 

conditions for output feedback control problems,” 

IEEE Trans. Autom. Control, vol. 44, no. 5, pp. 

1053-1057, 1999. 

[5] W. Chang, J. B. Park, Y. H. Joo, and G. Chen, 

“Static output-feedback fuzzy controller for Chen’s 

chaotic system with uncertainties,” Inform. Sci., 

vol. 151, pp. 227-244, 2003. 

[6] J.-C. Lo and M.-L. Lin, “Robust H∞ nonlinear 

control via fuzzy static output feedback,” IEEE 

Trans. Circuits Syst. I, vol. 50, no. 11, pp. 1494-

1502, 2003. 

[7] S.-W. Kau, H.-J. Lee, C.-M. Yang, C.-H. Lee, L. 

Hong, and C.-H. Fang, “Robust H∞ fuzzy static 

output feedback control of T–S fuzzy systems with 

parametric uncertainties,” Fuzzy Sets Syst., vol. 

158, no. 2, pp. 135-146, 2007. 

[8] L. Xie, “Output feedback H∞ control of systems 

with parameter uncertainties,” Int. J. Control, vol. 

63, no. 4, pp. 741-750, 1996. 

[9] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. 

Yamamoto, “Parameterized linear matrix inequality 

techniques in fuzzy control system design,” IEEE 

Trans. Fuzzy Syst., vol. 9, no. 2, pp. 324-332, 2001. 

[10] Z. Li, J. B. Park, Y. H. Joo, B. Zang, and G. Chen, 

“Bifurcations and chaos in a permanent magnet 

synchronous motor,” IEEE Trans. Circuits Syst. I, 

vol. 49, no. 3, pp. 383-389, 2002. 
 

 

Ho Jae Lee received the B.S., M.S., and 

Ph.D. degrees in Electrical and Elec-

tronic Engineering, all from Yonsei 

University, Seoul, Korea, in 1998, 2000, 

and 2004, respectively. He was with the 

University of Houston, Houston, TX, 

USA as a Visiting Assistant Professor in 

the Department of Electrical and 

Computer Engineering in 2005. He has 

been affiliated with the School of Electronic Engineering, Inha 

University, Incheon, Korea since 2006, where he is currently an 

Assistant Professor. His research interests include stability 

analysis in fuzzy control systems and hybrid dynamical 

systems, and digital redesign. 

 
 

Do Wan Kim received the B.S., M.S., 

and Ph.D. degrees in the Department of 

Electrical and Electronic Engineering, 

from Yonsei University, Seoul, Korea, in 

2002, 2004, and 2007, respectively. He 

worked at the Engineering Research 

Institute, Yonsei University, Seoul, 

Korea. He was with the University of 

California at Berkeley, Berkeley, CA, 

USA as a Visiting Scholar in the Department of Mechanical 

Engineering. Since 2009, he has worked as a Research 

Professor in the Department of Electrical and Electronic 

Engineering, Yonsei University, Seoul, Korea. His current 

research interests include discrete-time, sampled-data, and 

digital nonlinear control systems, linear and nonlinear systems 

with nonlinear perturbations, fuzzy systems, and digital 

redesign. 
  


