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A Noise Robust Gait Representation: Motion Energy Image 
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Abstract: Gait-based human identification aims to discriminate individuals by the way they walk. A 

unique advantage of gait as a biometric is that it requires no subject contact and is easily acquired at a 

distance, which stands in contrast to other biometric techniques involving face, fingerprints, iris, etc. 

This paper proposes a new gait representation called motion energy image (MEI). Compared with 

other gait features, MEI is more robust against noise that can be included in binary gait silhouette 

images due to various factors. The effectiveness of the proposed method for gait recognition is 

demonstrated using experiments performed on the NLPR database. 
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1. INTRODUCTION 

 

Gait recognition is described as recognizing individual 

using visual cues that characterize the motion of a 

walking person [1]. Gait has the advantage of being non-

invasive and it can easily be acquired at a distance [2]. 

Gait is less likely to be obscured as compared to other 

biometrics such as face, fingerprints, and iris. Hence, 

using gait as a biometric trait has recently attracted the 

interest of many biometric researchers. 

To date, much research has been conducted regarding 

gait recognition. Gait recognition can be broadly 

classified into two categories model-based approach and 

silhouette-based approach [3]. Model-based approach [4-

6] proposes to explicitly model human body or motion 

and performs matching based on the model in each frame 

of a walking sequence. Parameters such as trajectories, 

angles etc. are measured according to the model used in 

the approach. The effectiveness of the model-based 

approach is however still limited due to current imperfect 

vision techniques in body structure/motion modeling and 

parameter recovery from a walking image sequence. 

Moreover, the computational cost of model-based 

approaches is relatively higher than model free 

approaches.  

Silhouette-based approaches [7-10] characterize body 

movements by using the statistics of walking patterns 

which capture both the static and dynamic properties of 

body shape. This approach does not recover a structural 

model of human motion. Motion silhouette image (MSI) 

[10] has been considered as an effective gait representa-

tion for the silhouette-based approaches. MSI is a gray 

level image and the intensity at each pixel of a MSI 

represents the temporal motion history of that pixel. MSI 

includes spatial and temporal information of the gait 

sequence, however MSI is sometimes corrupted with 

noise since the constituent binary silhouette images are 

also corrupted, so they consequently degrade the 

recognition performance of the system. To solve the 

above mentioned predicament we propose a new gait 

representation called motion energy image (MEI). MEI 

is motivated by MSI and belongs to silhouette-based 

approach. Since it adopts time-normalized accumulative 

energy of human walking which is not much affected by 

noise, it has the advantage of being less susceptible to 

noise than MSI. A mathematical proof for the enhanced 

robustness of MEI over MSI is also presented in this 

paper.  

This paper is organized as follows: Section 2 provides 

a preliminary review of MSI. Section 3 proposes a new 

gait representation called MEI. The proposed scheme is 

applied to the NLPR gait database and its effectiveness is 

demonstrated by comparing it with other methods in 

Section 4. Finally, a conclusion is drawn in Section 5. 

 

2. MOTION SILHOUETTE IMAGE (MSI) 

 

The motion silhouette image (MSI) is a gray level 

image where the intensity at each pixel represents the 

temporal history of the motion of that pixel. It is defined 

as  
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where ( , , )S x y t  is the silhouette image, t  is the frame 
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number in the gait sequence, and ( , )x y  are the 

coordinates of the MSI image [10]. Fig. 1 shows 

examples of MSI for lateral, oblique and frontal views. 

Since the constituent binary gait silhouette images may 

be corrupted with noise, the MSI may also be corrupt. 

Let ( , , )�M x y t  be a noisy MSI represented by 

255  ( , , ) 1
( , , )

max[0, ( , , 1) 1]  ( , , ) 0,

if S x y t
M x y t

M x y t if S x y t

 =
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− − =

�
�

��
  

(2) 

where ( , , )�S x y t  is a noisy gait silhouette image that is 

formed by the addition of noise ( , , )x y tµ  to an original 

silhouette image ( , , )S x y t  

( , , ) ( , , ) ( , , ).= +
�S x y t S x y t x y tµ  (3) 

The error analysis of the gait representation given below 

is motivated by [11]. We assume that the noise at 

different moments t  is uncorrelated and identically 

distributed. Under these constraints, noise ( , , )x y tµ  

satisfies the following distribution 
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Then, we have 
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Now, let us consider the noisy MSI 

( , , ) ( , , ) ( , , ),M x y t M x y t x y tη= +
�  (6) 

where ( , , )x y tη  is the noise in MSI and it satisfies the 

following distribution 
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Here, under the Markov assumption, the current MSI, 

( , , )�M x y t  is influenced only by one frame earlier MSI, 

( , , 1).M x y t −�  Therefore, we have 
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3. MOTION ENERGY IMAGE (MEI) 

 

This paper proposes a new gait representation called 

motion energy image (MEI). Unlike MSI, MEI uses the 

mean of the silhouette images which is time-normalized 

accumulative energy of human gait within a fixed size 

window. Therefore, MSI can be considered as a special 

case of MEI with window size equal to one. MEI is 

given by 
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where k  is the window number in the sequence and 

( , , )G x y k  is average of the silhouette images within the 

k th window and is obtained by 

( 1) 1

1
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N

= − +

= ∑  (10) 

where N  is the window size. Similarly MEI and 

( , , )G x y k  may be corrupt with noise which can be 

(a) (b)    (c) 

Fig. 1. Motion silhouette images for (a) lateral view (b) 

oblique view (c) frontal view. 
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included in the constituent binary silhouette images. The 

noisy MEI and noisy ( , , )G x y k  are defined as follows: 
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and 

( , , ) ( , , ) ( , , ),G x y k G x y k x y kσ= +
�  (12) 

where ( , , )�ME x y k  is the noisy MEI, ( , , )�G x y k  is the 

average of noisy gait silhouette images within the k th 

window and ( , , )x y kσ  is the additive noise in 
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Therefore, the noise in ( , , )�G x y k  is 

( 1) 1

( , , )

1
( , , )

Nk

t N k

x y k

x y t
N

σ

µ

= − +

= ∑
 (14) 

( 1)

1 2

( 1) 1 ( 1) 1

1
( , , ) ( , , )

k

k

N k M Nk

t N k t N k M

x y t x y t
N

µ µ

− +

= − + = − + +

 
 = +
  

∑ ∑  

and the average of ( , , )x y kσ  is 
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On the other hand, if ( , , )x y kσ  satisfies the following 

distribution 
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Now, let us consider the noisy MEI 
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where v(x, y, k) is the noise and it satisfies the following 
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Then, we have 
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For the sake of simplicity, we assume that ( , ,ME x y�  

1) ( , , 1)k M x y t− = −
�  and compare the magnitude of (8) 

and (20). In (20), 
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varies from N  to 0. That is, when 0,kM =  
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In view of (8), (20) and (21), [ ]E ν  is less than [ ] .E η  

To show the effectiveness of the proposed algorithm, the 

proposed MEI and the MSI are applied to a single pixel 

problem S(t) in which the value of a single pixel changes 

over time as shown in Fig. 2. Noise ( )tµ  is added to 

the single pixel with the probability p. The probability 

changes from 0.01 to 0.1 and the noisy MSI and MEI are 

evaluated. Fig. 3 compares the expected noise of MEI 

and MSI as p varies. It can be seen that [ ]E ν  is much 

less than [ ] ,E η  as expected.  

Thus, the proposed method is less sensitive to noise in 

individual silhouette images as compared to MSI and is 

expected to make gait recognition a more reliable 

biometric. The reason might be that the proposed method 

employs the time-normalized accumulative energy of 

human walking which is not much affected by noise. 

Further, in comparison with gait representation using a 

binary silhouette sequence, MEI saves both storage space 

and computation time for recognition. 

 

4. EXPERIMENTAL RESULT 

 

4.1. Database 

In this section, we apply the proposed MEI to the gait 

recognition problem and show its effectiveness and 

applicability to gait recognition. We carry out three 

experiments on the NLPR database [9]. This database is 

widely used to benchmark algorithms in gait recognition. 

NLPR database is also known as the CASIA gait 

database. All subjects in the database walked along a 

straight-line path at free cadences in three different views 

with respect to the image plane i.e. lateral (0°), oblique 

(45°) and frontal (90°). Fig. 4 shows the example images 

in three different views. A digital camera fixed on a 

tripod captured gait sequences on two different days in 

an outdoor environment to compile the NLPR database. 

The database includes twenty subjects. Each subject has 

four sequences for each viewing angle: two sequences in 

one walking direction and two in the reverse walking 

direction.  

 

4.2. Results 

Leave-one-out cross-validation rule is used to evaluate 

the general performance of the algorithm on the NLPR 

database. The silhouette images are obtained by 

background subtraction [12]. Subsequently, to eliminate 

the scaling effect, a bounding box is constructed around 

the contour of the silhouette and the contour is resized to 

a fixed size. In the experiments, MSI and MEI are first 

projected to the eigenspace using principal component 

analysis (PCA) and K-nearest neighbors (K-NN) [13] 

classifier is applied on the projected features for 

classification. The experiments are repeated for three 

different angles and the experimental results are shown 

in Tables 1, 2 and 3. Tables 1, 2 and 3 compare MSI and 

MEI in terms of correct classification rate (CCR). It can 

be seen that, in all the three views, the proposed methods 

show better performance than the previous methods. The 

 

Fig. 2. Single pixel’s true state. 
 

Fig. 3. Comparison of noises of MEI and MSI in single 

pixel. 

 

(a) (b) (c) 

Fig. 4. Examples for (a) lateral view (b) oblique view 

(c) frontal view. 
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basis for the better performance of MEI over MSI could 

be due to the fact that MEI is more robust against noise 

in individual silhouette images as compared to MSI.  

We repeat the same experiments with synthesized gait 

database to emphasize the robustness of MEI against 

noise. The synthesized gait database includes individual 

silhouette images that have been purposely corrupted 

with noise. We observe the CCR while varying the 

probability of noise in silhouette images from 0.001 to 

0.025. 1-NN classifier and NLPR gait database in lateral 

view are used for the experiments. The experiment 

results are reported in Table 4. It is obvious from the 

experimental results that MEI shows more robust and 

better performance than MSI. Thus, we can conclude 

from the experimental results that the proposed MEI is 

less sensitive to noise, and the reason might be that it 

adopts time-normalized accumulative energy of human 

gait which is not much affected by noise. Fig. 5 

compares the CCRs of MEI and MSI with noise 

corruption. While the CCR of MSI drops almost 

exponentially with the increase of noise probability, the 

CCR of MEI nearly maintains a constant value with 

increasing additive noise. 

In addition, the performance of the proposed scheme is 

compared with those of the previous gait recognition 

methods [6,8,9,14-16] for NLPR database with a lateral 

viewing angle shown in Table 5. The performances of 

the previous methods are directly cited from [9] and we 

reimplemeted the width vector profile and DTW 

matching in [16] using the NLPR database. It is evident 

from Table 5 that MEI is an effective and robust 

representation method for gait recognition and it can help 

make gait a more reliable biometric. 

 

5. CONCLUSIONS 

 

This paper presents, a new gait representation called 

MEI and the mathematical proof of its robustness against 

noise. MSI has been considered as an effective gait 

representation. However, MSI is sometimes corrupted 

with noise. Since the constituent binary silhouette images 

are also corrupted, thereby degrading the recognition 

performance. Therefore, we propose MEI, which has the 

advantage of being less susceptible to noise as compared 

to MSI. The experimental results on three different views 

of the NLPR database show that the proposed method 

clearly outperforms the classical classification methods. 

Table 1. Gait correct classification rate for the lateral 

view.  

Methods 
Features 

Number of 

features 1-NN 3-NN 5-NN 

50 76.25 62.50 66.25 

60 73.75 62.50 65.00 MSI 

70 77.50 67.50 67.50 

50 78.75 71.25 76.25 

60 83.70 71.25 73.15 MEI 

70 88.75 72.50 76.25 

 

Table 2. Gait correct classification rate for the oblique 

view.  

Methods 
Features 

Number of 

features 1-NN 3-NN 5-NN 

50 80.00 52.50 72.50 

60 80.00 58.75 72.50 MSI 

70 83.75 60.00 76.25 

50 81.25 71.25 80.00 

60 82.50 71.25 82.50 MEI 

70 86.25 87.50 86.25 

 

Table 3. Gait correct classification rate for the frontal 

view.  

Methods 
Features 

Number of 

features 1-NN 3-NN 5-NN 

50 73.75 50.00 67.50 

60 72.50 53.75 67.50 MSI 

70 76.25 53.75 68.75 

50 83.75 56.25 68.75 

60 85.00 60.00 75.00 MEI 

70 85.00 60.00 75.00 

 

 

Table 4. Comparison of MSI and MEI when the 

silhouette images are corrupted by noise.  

Probability of noise MSI + 1-NN MEI + 1-NN 

0.001 70.00 82.50 

0.005 51.25 81.25 

0.010 35.00 80.00 

0.015 20.00 78.75 

0.020 11.25 78.75 

0.025 6.25 77.50 

 

Fig. 5. Comparison of correct classification rates for 

MEI and MSI with noise corruption. 

 

Table 5. Comparison of several algorithms of the NLPR 

database in the lateral view.  

Methods CCR 

BenAbdelkader et al. [6] 72.50 

Collins et al. [8] 71.25 

Lee et al. [14] 87.50 

Phillips et al. [15] 78.75 

Wang et al. [9] (w/o validation) 75.00 

Wang et al. [9] (with validation) 82.50 

Kale et al. [16] 82.50 

Proposed method 88.75 
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