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Proportional Navigation-Based Collision Avoidance for UAVs 
 

Su-Cheol Han, Hyochoong Bang*, and Chang-Sun Yoo 
 

Abstract: A collision avoidance algorithm for unmanned aerial vehicles (UAVs) based on the 
conventional proportional navigation (PN) guidance law is investigated. The proportional navigation 
guidance law being applied to a wide range of missile guidance problems is tailored to the collision 
avoidance of UAVs. This can be accomplished by guiding the relative velocity vector of the aircraft to 
a vector connecting the current aircraft position to the safety boundary of the target aircraft. Stability of 
the proposed algorithm is also studied using the circle criterion. The stability condition can be 
established by choosing the navigation coefficient within a certain bound. The guidance law is 
extended to 3-dimensional maneuver problems. Inherent simplicity and robustness of the PN guidance 
law provides satisfactory collision avoidance performance with different initial conditions. 
 
Keywords: Collision avoidance, proportional navigation, stability, 3-dimensional problem, unmanned 
aerial vehicles. 
 

1. INTRODUCTION 
 
Aircraft collision is a serious concern as the number of 

aircraft in operation increases. Therefore, further demand 
on ground air traffic control workload is expected. So far, 
most air traffic controls are operated by ground station 
command centres whose staffs play a key role in the safe 
operation of air traffic. In particular, UAVs (Unmanned 
Aerial Vehicles) will add to the volume of aircraft 
needing consideration to ensure increased collisions are 
avoided in the future. In the future, autonomous UAVs 
are expected to carry sophisticated avoidance systems 
when flying together with conventional aircraft. Onboard 
sensor systems combined with self-operating algorithms 
will ensure collision avoidance with little intervention 
from ground stations. 

With the rapid increase in air traffic in the near future, 
ground station-based air traffic control may not be 
sufficient to safely handle all aircraft. Thus, self-
contained onboard air traffic control or collision 
avoidance systems are under intensive research. For 
autonomy of collision avoidance, avoidance laws for 
multiple aircraft in operation are needed. For instance, 

onboard sensors can detect other aircraft nearby. 
Information related to the target aircraft such as position, 
velocity, and heading angle can be used to build an 
avoidance command. This architecture is close to a 
feedback control approach. The avoidance law should be 
generated in real-time, and simple to implement. 

Many collision avoidance laws were also proposed for 
applications in the area of robotics. Katib proposed the 
potential field-based approach for avoidance law design 
[1]. A series of follow-on research has been conducted, 
motivated by the potential filed technique. The fuzzy 
logic algorithm was proposed by Tang et al. for a robot 
soccer problem [2]. Rathbun et al. applied the genetic 
algorithm [3] and Tomlin et al. worked on the hybrid 
system approach [4] for collision avoidance. Moreover, 
Sigurd and How applied the total field approach to 
construct an avoidance algorithm [5]. 

Collision avoidance for UAVs has received intensive 
focus recently. Ryan et al. presented an overview of 
cooperative UAV control research [6]. Ghose et al. 
studied a collision cone based UAV collision avoidance 
algorithm [7].  Other research works on collision 
avoidance are reported from [8] to [10]. How et al. 
showed flight demonstrations for cooperative control of 
multiple UAVs [11]. 

In this study, a collision avoidance law based upon 
conventional PN (Proportional Navigation) guidance 
laws is investigated. The PN guidance law is one of the 
most general strategies for the missile engagement 
scenario [12]. Plenty of source material regarding PN 
guidance is available [12-15]. In order to apply the PN 
guidance law to collision avoidance problems, a collision 
avoidance vector is first defined, then the vector defining 
heading angle of the aircraft is guided to the pre-defined 
collision avoidance vector. Stability analysis of PN-
based collision avoidance guidance (PNCAG) using so-
called circle criterion is presented to provide a condition 
for stabilizing the navigation constant. Moreover, the 
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guidance law is extended to 3-dimensional problems. 
The collision avoidance vector is designed toward 3-
dimensional cylinder type safety regions. Altitude 
constraint is added as an additional variable for the 
synthesis of 3-dimensional PNCAG law. Geometric 
analysis is largely used to develop the desired collision 
avoidance command. In order to prevent relatively 
unsafe vertical avoidance, a weighting parameter is 
introduced which provides flexibility in choosing 
avoidance directions. 

The proposed collision avoidance law could be 
considered as an extension of the conventional PN 
guidance law for the problem of aircraft collision. The 
guidance law is designed to steer the aircraft in a flight 
path toward the boundary of a safety bound. The safety 
bound is a circle and cylinder with a minimum radius to 
prevent collision. Thus, the simple modification of the 
classical PN guidance law can lead to a UAV collision 
avoidance strategy. The inherent characteristics of the 
PN are also reflected in the collision avoidance law. 
Extension to 3-dimensional maneuvers is another 
attractive feature of the proposed method. 

This paper is organized as follows. First, the principal 
idea of the PNCAG law is introduced. To facilitate 
understanding of the proposed approach, linear analysis 
of the PNCAG is followed producing an analytical 
solution. Next, selection of the stabilizing navigation 
constant is discussed through stability analysis. A 
linearized solution is presented in section IV to facilitate 
understanding of the guidance law. The PNCAG law is 
generalized to a 3-dimensional case in section VI. Finally, 
concluding remarks are provided.  

 
2. PN-BASED COLLISION AVOIDANCE 

GUIDANCE 
 
The main objective of collision avoidance is to 

maintain a pre-defined safety range between the aircraft 
and target vehicles or obstacles. Geometric configuration 
for the collision avoidance problem is presented in Fig. 1. 
An aircraft is facing a target aircraft classified as an 
obstacle in a two-dimensional plane. For a collision 
avoidance algorithm, we apply the PN guidance strategy. 
It is a proven technology with numerous applications to 
missile guidance problems. Recently, there have been 

some related studies using the PN approach for collision 
avoidance of UAVs [16-18].  

An obstacle cone is defined as a region formed by 
three points in Fig. 1. The navigation mode is a normal 
mode for which aircraft fly over a designated course 
without obstacles. In the collision avoidance mode, the 
aircraft should perform the collision avoidance maneuver 
on its route. Based upon the geometry in Fig. 1, a 
summary on the PNCAG algorithm is presented in Table 
1 in a pseudo code.  

For collision avoidance, the so-called collision 
avoidance vector, XB  in Fig. 1 is established first. 
Then the relative velocity vector between the aircraft and 
the obstacle is steered toward the collision avoidance 
vector. From Fig. 1, the PN guidance command can be 
expressed as follows: 

,rela Nv θ=  (1) 

where a  is input acceleration, rel T= −v v v  is the 
relative velocity vector between the aircraft and the 
obstacle, θ  represents the direction of collision 
avoidance, and N is the proportional navigation constant. 
The avoidance law in (1) is essentially equivalent to the 
general PN guidance law. 

The time rate of change of the collision avoidance 
vector satisfies 

sin
 (tan tan ) ,

cos
rel rel T

T T

v R
R R

θ φ λ
ψ φ λ

φ

= +

 
= − + + 

 

 (2) 

where 2 2tan / , ( ) /Tp T p Tsin y yR R R Rφλ = −= −  and 

( ) /T Tcos x x Rφ = −  are satisfied. Thus, the PN guidance 
command can be generated from the information, ,relv  

, , ,rel TRψ φ λ  and .TR  Derivation of (2) is provided 
in Appendix A. 

 
3. STABILITY ANALYSIS OF PNCAG 

 
The PNCAG introduced above can be used effectively 

for the collision avoidance maneuver. Performance of the 
general PN guidance laws has already been verified in a 
number of previous studies. In this section, the stability 
of the PNCAG law is investigated to ensure that the 
desired collision avoidance is accomplished. The 
stability analysis of the PN using the circle criterion has 
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Fig. 1. Geometric configuration fo collision avoidance

between two aircraft. 

Table 1. Summary of PNCAG algorithm. 
Do while (Aircraft does not reach the goal) 
Calculate the relative velocity vector 

rel T= −v v v  
If (Relative velocity vector is out of the obstacle cone) 

Navigation mode is initiated 
Else 

Collision avoidance mode is initiated 
End 

End 
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been studied by Gurfil et al. [15]. Gurfil assumed that the 
approaching velocity is a constant, however the 
approaching velocity of the PNCAG is not a constant in 
this study. Consequently, some modification is necessary 
in applying Gurfil’s stability analysis method. For 
stability analysis, Fig. 1 is employed to define the 
necessary variables. 

In Fig. 1, the equation of the motion of the aircraft 
about the radial direction in the polar coordinate system 
is derived as 

2 cos ,mR R a aθ θ γ+ = − = −  (3) 

where each parameter is defined in Fig. 1. The approach-
ing velocity ( )cv t  and average approaching velocity 

( )cv t  are expressed as 

( ) cos ,relc pv t v Rγ θ= +  (4) 

,relcv v= Γ  (5) 

where Rp is defined in Fig. 1, and 

2 2 4 4
0 0 0

4 4
0 0 0

1
15 30 420

( )
     ( ) .0840 ( 1)

f f f

f f f
Rp

R N f

γ γ γ γ γ γ

γ γ γ γ γ γ
γ γ

 + +
Γ = − + +


+ −
− + −

− 

 

Derivation of (5) is presented in the forthcoming Section 
4.2. Assuming γ  is very small, the approaching 
velocity is expressed as 

2
0

0 0

0

( )
2 4

1 6 .
( 1) ( 1)p

c

f f
rel p rel c go

v t

v R v R v t
R N R N

γ γ γ γ
=

+ + 
− + − − 

(6) 

Let G(s) denote a transfer function from command 
acceleration to real acceleration. Then the equation of 
motion has changed form as 

2
1 [2 ( )] ,

go

c
c Ng t

t
θ θ

 
= + − 
  

 (7) 

where 

0 0
1 22

0 0

(2 4 )16 ,   1 ,
( 1) ( 1)

[ ( )] ( ).

f p f
rel p

R
c v R c

R N R N
L g t G s

γ γ γ γ + +
= = − 

Γ− −  
=

 

And L represents the Laplace operator. The equation of 
motion is divided into a time invariant part H(s) and the 
time varying gain ( , )f x t  such that  

1( ) [ ( ) 2],H s NG s
s

= −  (8) 

2
1( , ) .

go

cf x t c
t

= +  (9) 

To apply the circle criterion [19], it is necessary to 
prove that 1 2 / goc c t+  is positive for [0, ].go ft t∈  One 

can see that 1 2 / goc c t+  is positive when the navigation 
constant N  is greater than 1.5. Detailed proof on this 
statement is presented in Appendix B.  

Now we apply the circle criterion [20] to the above 
equation in the region 1 2 1[ , ] [ / ,fk c c t cα β∈ = + +  

*
2 / ],goc t  where *

got  is the minimum time for which 
stability is achieved. Then the characteristic equation of 
the closed-loop system is expressed as 

1 ( ) 1 [ ( ) 2] 0kkH s NG s
s

+ = + − =  (10) 

or 
[ ( ) 2] 0.s k NG s+ − =  (11) 

If the acceleration command system is set to be a simple 
first-order system such that ( ) ( ) ( )cG s a s a s= =  
1

( 1)sτ +  with 0τ >  as a time constant, then the 

characteristic equation can be rewritten as 

2
1 2

1 2

[(1 2 ) 2 ]

( 2)( ) 0.
go go

go

t s c t c s

N c t c

τ τ τ+ − −

+ − + =
 (12) 

The sufficient conditions for the stability in the region 
*[ , ]go go ft t t∈  are given by 

2

1
2, .2

1 2go
c

N t
c
τ

τ
> >

−
 (13) 

Therefore, for system stability using the PNCAG law, 
the navigation constant N must be greater than 2. Note 
that if the actuator dynamics are so fast that τ  is close 
to zero, the system is still stable when 2.N >  The 
actuator dynamics G(s) is assumed as a first-order 
system for stability analysis. 

 
4. LINEAR ANALYSIS OF PNCAG 

 
4.1. Linearized PNCAG 

In this section, analysis using a linearized system for 
the PNCAG law is presented. Linearization of the 
guidance law and associated geometry help us to 
understand the PNCAG law in detail. Analysis with a 
linearized system follows Zarchan’s approach [21]. First, 
Fig. 2 is introduced for linearization analysis. 

The navigation command is again prescribed by Eq. 
(1). Furthermore, from the geometry 

0( )x acos θ θ= − −  (14) 

and 

2 2
0( ), . T p

x sin R R R
R

θ θ= − = −  (15) 

If 0θ θ−  is assumed to be small, which is reasonable 
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when the two aircraft are initially separated by enough 
distance, then 

,x a= −  (16) 

0 / .x Rθ θ= +  (17) 

Thus one can readily derive 

relx a Nv θ= − = −  (18) 

and 

1 0 1( / ) .rel relx Nv C Nv x R Cθ θ= − + = − + +  (19) 

In other words, 

1 0 ,rel
f

xx N C Nv C
t t

θ+ = − =
−

 (20) 

where C1 and C are constants to be determined. The 
solution to Eq. (20) is given by 

0 0
20

[ ]{ }.
t

f f

N NdT dTtt T t Tx e Ce d C
ζ

ζ
−

− −∫ ∫
= +∫  (21) 

Let us consider (0) 0,x =  and from (21) it follows as 

2 0.C =  Also, from Fig. 2, 0 ,0(0) ( )rel relx v θ ψ= −  is 
satisfied. By applying the initial condition ( 0)t =  to 
(20), the constant C is, determined as follows: 

0 ,0(0) ( ).rel relC x v θ ψ= = −  

Solving (21) yields 

1 (1 ) .
1

f N

f f

Ct t tx
N t t

 
= − − − 

−   
 (22) 

Furthermore, the linearized acceleration input can be 
derived as 

2

1
N

f f

NC ta x
t t

−
 

= − = − 
  

 (23) 

together with the velocity 

1(1 ) 1 .
1

N

f

NC tx C
N t

− = − − − + −  
 (24) 

Therefore, one can see that if the final time tf is available, 
then the acceleration command and associated state 
variables can be derived analytically. Also by using the 
geometry in Fig. 2 

0

2

/ ,

( ) ( )rel f rel f

x R
x x

v t t v t t

θ θ

θ

= +

= +
− −

 

the final form of the acceleration command can be 
derived as 

2 .
( )f f

x xa N
t t t t
 = + − −  

 (27) 

The acceleration command is a PD (Proportional pulse 
Derivative) control law over the cross range variable x in 
Fig. 2. 

 
4.2. Estimation of the final time 

In the above analysis, the acceleration command and 
state variables are formulated in terms of the final time. 
Thus, estimation of the final time is needed to derive 
linearized guidance solutions. First, a geometry for the 
estimation of the final time is presented in Fig. 3. 

The trajectory denoted as a dotted line in Fig. 3 allows 
us to approximate x as a third-order polynomial of the 
variable z [22]. This is also reasonable enough in the 
sense that the actual aircraft trajectory is not highly 
oscillatory in general. Namely, 

3 2
3 2 1 0( .)x z d z d z d z d= + + +  (28) 
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Fig. 2. Geometry for the linearization analysis. 
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Fig. 3. Variables defined for final time estimation. 
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Moreover, the angle γ  between the collision avoidance 
and relative velocity vectors satisfies 

2
3 2 1( ) (3 2 ).

rel rel

x zz d z d z d
v v

γ = = + +  (29) 

If γ  is small, then ,relz v=  and (29) can be rewritten 
as 

2
3 2 1( ) 3 2 .z d z d z dγ = + +  (30) 

Also, the initial and final conditions for x  and γ  are 
specified as 

00, 0, ( ) , ( ) 0,
, , ( ) , ( ) 0.f f

t z z x z
t t z R z x z

γ γ
γ γ

= = = =
= = = =

 

Hence, by making use of the boundary conditions in 
conjunction with (28) and (30), d0, d1, d2, d3 are shown to 
satisfy 

0 1 0
2

1 0 3 0

0, ,

(2 ) / , ( ) / .f f

d d

d R d R

γ

γ γ γ γ

= =

= − + = +
 

Meanwhile, the approaching velocity vc is defined as 

cos ( ) ( )

   cos ( ) ( ).
1

c rel P

P
rel

v v z R z
R

v z z
N

γ θ

γ γ

= +

= −
−

 (31) 

Let us represent cv  as average approaching velocity 
over the range, R to be travelled. Then 

0
1 ( ) ( ) .

1
R P

c rel
R

v v cos z z dz
R N

γ γ = − − ∫  (32) 

By using the Taylor series expansion of the cosine 
function up to the fourth-order terms 

2 4( ) ( )( ) 1
2! 4!
z zcos z γ γγ − +  (33) 

the final time can be estimated as 
2 2 4 4
0 0 0

12 2
0 0 0

0

1
15 30 420

( )
     ( ) ,

80 ( 1)

f f f
f
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f f f p
f

Rt t
v

R
R N

γ γ γ γ γ γ

γ γ γ γ γ γ
γ γ

−

 + +
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
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− 
 

where all necessary parameters are defined already, and 
0 ,γ  fγ  are given by  

0 0 ,0

0 ,0
0 , ,

1

,

 

rel

rel
f rel f N

γ θ ψ
θ ψ

γ θ ψ

= −

−
= − =

−

 

where the subscripts 0, and f denote initial and final 
states, respectively. (34) provides estimation of the final 
time when the aircraft crosses the safety boundary point 
in Fig. 3. 

5. SIMULATION 
 
Simulation study is carried out to demonstrate 

performance of the proposed collision avoidance 
algorithm. Both nonlinear and linear acceleration 
commands are examined in the simulation. The aircraft is 
modelled as a particle in a two-dimensional plane. The 
obstacle is also assumed to be a particle in the same 
plane. The corresponding kinematics and dynamic 
equations of motion for the two-dimensional planar 
motion are prescribed as 

( ) ( ) ( ),x t v t cos tψ=  (35) 
( ) ( ) ( )y t v t sin tψ=  (36) 

and 

( ) ( ) ( ( ) ( )),relv t a t sin t tψ ψ= − −  (37) 
( ) ( ) ( ( )),relt a t cos tψ ψ ψ= −  (38) 

where v(t) and ( )tψ  represent the velocity and heading 
angle of the aircraft, and ( ) ( ) / .rel relt a t vψ =  The 
simulation conditions are listed in Tables 2 and 3 for 
aircraft and obstacles, respectively. Three different initial 

 
Table 2. Simulation conditions for the linear and nonlin-

ear approaches - Aircraft. 
 Case I Case II Case III

Initial position (km) 
Target position (km) 
Initial speed (m/s) 
Heading angle (rad) 

(0, 0) 
(0, 20) 

100 
/ 2π  

(0, 0) 
(0, 20) 

150 
/ 2π  

(0, 0) 
(0, 20) 

200 
/ 2π  

 
Table 3. Simulation conditions for the linear and nonlin-

ear approaches - Obstacle. 
 Case I Case II Case III

Initial position (km) 
Target position (km) 
Initial speed (m/s) 
Heading angle (rad) 

(-10, 10) 
(10, 10) 

100 
/ 2π  

(-4.7, 14.,7) 
(4.7, 5.3) 

100 
/ 4π−  

(0, 15) 
(0, 5) 
200 

/ 2π−  
 

 
Fig. 4. Simulation results for Case I. 
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conditions are prescribed for the simulation - Case I, 
Case II, and CaseIII. 

Simulation results for each different initial condition 
are presented in Figs. 4 to 6. For all cases with different 
initial conditions, in particular different heading angles, 
collision avoidance is successfully achieved. The 
PNCAG law was able to accomplish collision avoidance 
against a moving obstacle. 

 
6. 3-DIMENSIONAL COLLISION AVOIDANCE 
 

6.1. Collision avoidance for 3-dimensional problem 
In this section, the collision avoidance problem 

formulation is extended to the 3-dimensional flight 
dynamics and collision models. The safety region is 
modelled as a cylinder for which the height represents 
the vertical safety boundary. The collision avoidance 
course is designed considering the geometry of the 
cylinder-type safety region. Analysis on the collision 
course and associated avoidance scenario are conducted 

also in the context of a PN guidance law. 
The conflict situation between an aircraft and a target 

(obstacle) in the 3-dimensional space is illustrated in Fig. 
7. For collision avoidance, the safety boundary of the 
target aircraft is made of a cylinder with a safe height 
and radius. The exploded view in the two-dimensional 
x y−  and w z−  planes are also displayed in Figs. 8 
and 9. Consequently, the approaching aircraft should not 
penetrate the safety region to minimize the possibility of 
collision. With this goal, the aircraft velocity vector 
should be steered toward the edge of the cylinder. The 
acceleration-based command for the 3-dimensional 
guidance is issued as 

,v rel va Nv θ=  (39) 

.h rel ha Nv θ=  (40) 

The above guidance command is a PN guidance 
command essentially identical to that of the previous 
two-dimensional case. The vertical (av) and horizontal 
(ah) acceleration commands consist of angle variables as 
displayed in Figs. 8 and 9, respectively. 

 
Fig. 5. Response of the simulation results for Case II. 
 

 
Fig. 6. Simulation results for Case III. 

Fig. 7. Collision avoidance problem in the 3-dimension-
al space. 

 

Fig. 8. Two-dimensional view in the x y−  plane. 
 

Fig. 9. Two-dimensional view in the w z−  plane. 
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6.2. Determination of the avoidance vector 
For the guidance law in (39), (40), the collision 

avoidance vector should be determined first. For this 
goal, Fig. 10 shows an exploded view of the collision 
avoidance vector in the 3-dimensional framework. 

From Fig. 10, assuming that the obstacle is detected at 
a far enough distance, the angle variable satisfies 

/ ,BP IBr rθ ′
′  (41) 

where BPr ′  denotes the range between the points B and 

,P′  whereas .IBr  for I and B. From now on, the 
notation r with subscripts is used to denote a range 
between associated points unless otherwise specified. If 
we take the time derivative of (41), it follows as 

/ .IB IBr rθ θ′ ′= −  (42) 

It should be noted that 0IBr >  and 0,IBr <  thus 

.θ θ′ ′∝  Therefore, the minimum acceleration command 
is achieved when the collision avoidance vector is 
selected as a line connecting the points I  to P′  which 
minimizes .θ ′  Furthermore, in order to find the point 
P′  for which θ ′  becomes a minimum, let us consider 
the segments ,A D′ ′ ,A D′′ ′′ A A′ ′′  and D D′ ′′  in Fig. 10. 

Case I: A A′ ′′  and D D′ ′′  sector  
First, Fig. 11 shows an additional geometry from the 

top Fig. 11 to locate the point '.P  
In Fig. 11, the following relationships hold 

,L relθ φ γ ψ= + −  (43) 
,R relθ φ γ ψ= − + +  (44) 

and 
.relδ ψ φ= −  (45) 

Furthermore, 

,IB T Pr R cos Rδ= +  

where Rp is the radius of the safety cylinder in Fig. 8, and 

the distance from the aircraft to the target is given by 
2 2( ) ( ) .T T TR x x y y= − + −  Next another auxiliary 

geometry formed by the points AIB is displayed in Fig. 
12. The height of ,AIB  'LLr  can be written as 

, . T T h T hLL
r z z z z R z R′ = ∆ = + ∆ − − ≤ ∆ ≤  (47) 

Also, 

2 2 2( ) ( )IL T T Pr x x y y R= − + − −  (48) 

and 

/ .IA IB Lr r cosθ=  (49) 

Furthermore, it can be shown that 
AA BB

r r′ ′=  and 

2 2 ,IBIB BB
r r r′ ′= +  (50) 

.AB IB LA B
r r r tanθ′ ′= =  (51) 

Therefore, 

1 1
2 2

( ) .
1 /

A B IB L
L

IB IB IBBB

r r tan
z tan tan

r r r r

θθ
′ ′

′ ′

− −∆ = =
+

 

Since IB BB
r r ′>>  then Lθ  can be approximated as 

1( ) ( ) .L L Lz tan tanθ θ θ−∆ =  (53) 

The same procedure can be applied to the sector DIB to 
produce 

 

`

`

θ '

y

z

�vrel

Fig. 10. Exploded view of the 3-dimensional collision 
avoidance vector. 

`

ψ rel

�vrel xy,δ

φ

γ

θL

θR

RT

 
Fig. 11. Additional view for determination of the

collision avoidance vector. 
 

 

θL
θL

Fig. 12. New geomegtry AIB for the collision avoidance 
vector. 
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1( ) ( ) .R R Rz tan tanθ θ θ−∆ =  (54) 

As a consequence, the arc sectors ,A A′ ′′ D D′ ′′  can be 
considered as near-linear lines. Over the linear lines 

,A A′ ′′ ,D D′ ′′  the point for which θ ′  becomes a 
minimum can be determined as the point where the point 
B intersects with ,A A′ ′′ D D′ ′′  at 90 degrees. 

Case II: ,A D′ ′ A D′′ ′′  sector 

In order to find the point P′  for which the angle θ ′  
becomes minimum over the ,A D′ ′ A D′′ ′′  sectors, Fig. 
13 is introduced. First, let us note that γ γ− ≤ ≤ε  is 
satisfied, and ε  also satisfies 

2 2 2( ) 2 ( ) 0.T T PR R cos R R R− + − =ε ε ε  (55) 

The above equation can be solved for the distance 
( ( ))R ε  to the safety circle as shown in Fig. 13. 

2 2 2( ) ( ) ( ),IF T P TR r R cos R R sin= = ± −ε ε ε  (56) 

where the plus sign denotes the semi-circle behind the 
obstacle whereas the minus sign corresponds to the semi-
circle in front of the obstacle. 

In Fig. 14, the distance from the aircraft to the 
projected plane is given by 

/ ( )IE IBr r cos δ= − ε  (57) 

and  

( )
( ) ( )

( ).
. ( ) (

,

)

IE IB
h TEE FF EE

IF

IB
h TEE

r r
r r R z z r

r R cos
r

r R z z
R cos

δ

δ

′ ′ ′

′′

= = + −
−

= − + −
−

ε ε

ε ε

 (58) 

In order to locate a point which results in the 

minimum range between points B and ,P′  a parameter 
2 2/BP IBR r r′

′=  is defined. Then, 

2 2 2 2

2 2 2

2
2

.

( )
( ) ( )

.
R

BEBP BE EE

IB IB IB

T h

r r r r
R

r r r

z z R
tan

cos
δ

δ

′ ′ ′′ +
= = =

− ± 
= − +  

 
ε

ε ε

 (59) 

Taking the differentiation of (59) with respect to ε  
yields 

2

2

3

( )( ) 1 ( )
( )( )

2 ,
( )

z z Rsin cos
RRR

cos

δ δ

δ

′

  
− − − −      ∂    =

∂ −

εε ε
εε

ε ε
 

 (60) 
where .Tz z z R= − ±  Since ( ) ,T hR z z Rε >> − ±  
then (60) can be rewritten as 

3
( )2
( )

R sin
cos

δ
δ

′∂ −
∂ −

ε
ε ε

 (61) 

with 2 2/ 0.R′∂ ∂ >ε  This verifies that when ,δε  R′  
becomes a minimum, the range ( )BPr ′  between points B 

and ,P′  is also a minimum. 
 

6.3. Vertical maneuver weighting parameters ( ),U Dη η  
In general, the safety distance for collision avoidance 

is much larger in the horizontal plane than the vertical 
plane. Thus, the collision avoidance vector tends to point 
in a vertical direction. But in practical cases, the margin 
for vertical maneuvers by aircraft is very limited 
compared to horizontal maneuvers. Thus, maneuvering 
in a vertical direction may be riskier than maneuvering 
horizontally. This motivates us weighting parameters by 
which we can artificially create maneuvers in the 
horizontal direction even if the vertical maneuver is more 
efficient in terms of energy consumption (47). 

The weighting parameters can be determined by 
several factors. For instance, some ground obstacles and 
other aircraft should be considered for the weighting 
factors. Furthermore, aerodynamic characteristics of the 

 

`̀

γ

φ

δ
ε

RT

R ε( )

RP
ε '

Fig. 13. Two-dimensional view to determine the
collision avoidance vector over ",A A′  'D D′′

sector. 

`

`

R ε( )

Rh

Fig. 14. Side view to determine the collision avoidance 
vector. 



Proportional Navigation-Based Collision Avoidance for UAVs 

 

561

aircraft could be an important factor to be taken into 
account. Mathematically, the weighting factor ( )η  can 
be modelled in the form 

( , , , , ),max min g aerof alt alt h cη =  (62) 

where maxalt  and minalt  represent maximum and 
minimum operational altitude, respectively, hg is the 
height of ground obstacles, and caero denotes aerody-
namic coefficients. In this study, only altitude limitations 
are considered in the formulation. The weighting 
parameters for the vertical maneuver are defined as 
follows: 

1000 ,1 16
est min halt alt R

D eη
− −

−
= +  (63) 

1000 ,1 16
max est halt alt R

U eη
− −

−
= +  (64) 

where estalt  represents the expected altitude estimate of 
the obstacle, and can be written as 

2 2

,

( )
,Tz Txy P Txy

est T
rel xy

v R cos R R sin
alt z

v

δ δ− −
= +  (65) 

where the variable Tz  and Tzv  represent the target 
coordinate and speed in z  direction, and the subscript 
xy denotes .xy plane−  The weighting parameters with 
respect to the obstacle altitude are displayed in Fig. 15. 

 
6.4. Computation of vθ  

Once the collision avoidance vector is determined, the 
time derivative of the angle changes ( , )v hθ θ  should be 
established for the PNCAG law. The basic idea is 
analogous to the 2-dimensional case, and it is simply 
extended to the 3-dimensional case as the guidance law 
in (39) and (40). First, the time derivative of the vertical 
angle is derived. In Fig. 14, the distance, ( ),R δ  

between the aircraft and obstacle is given by 

2 2( ) ,Txy P TxyR R cos R R sinδ δ δ= ± −  (66) 

where 

1 )( T
rel

Txy

y y
sin

R
δ ψ − −

= −  (67) 

and , Ty y  denote y  components of the aircraft and 
target. Furthermore, 

,
( )v T h
ztan z z z R

R
θ

δ
∆= ∆ = − ±  (68) 

where plus and minus signs represent top and bottom 
parts of the cylinder, respectively. The time derivative of 
(68) results in 

,
2 2

( ) ( )
.

( )
Tz z rel xy

v
v v R zv

R z

δ
θ

δ

− + ∆
=

+ ∆
 (69) 

As is shown in Fig. 14, there are four possibilities in the 
time derivative of the angle, .vθ  The algorithm for 

determining a particular vθ  out of four is summarized 
in Table 4.  

 
6.5. Computation of hθ  

The time derivative of the horizontal angle hθ  can be 
computed from 

,hθ φ γ= ±  (70) 

where 

,rel xy rel Txy

Txy Txy

v sin R
tan

R cos R
ψ

φ φ
φ

 
= − + 

  
 (71) 

and 

.Txy

Txy

R
tan

R
γ γ= −  (72) 

Collision avoidance direction in the left or right-hand 
side can be decided as follows; if ,relψ φ>  then 

Fig. 15. Trend of the weighting parameters for the verti-
cal maneuver (altmin = 3048m, alt_max=9120m).

Table 4. Algorithm for determining .vθ  

If T hz z R> +  

[ , ]v vUR vDFminθ θ θ=  
elseif T h T hz R z z R− ≤ ≤ +  

[ , ]v vUF vDFminθ θ θ=  
Else 

[ , ]v vUF vDRminθ θ θ=  
 
where the subscripts U and D correspond to the upper 
and bottom parts of the cylinder, whereas F and R denote 
the front and rear sections of the semi-circle. 
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,hθ φ γ= +  and if ,relψ φ<  then .hθ φ γ= −  
The time rate of changes of the vertical and horizontal 

Angles ( , )v hθ θ  combined with vertical maneuver 
weighting parameters ( , )U Dη η  are derived as follows: 

0
,

0
v v

h h

A
B

θ θ
θ θ
    

=    
    

 (73) 

where  

( )
( )

( )
( )
( )
( )

            

, 0 ,

,0 ,

,

1

1

1

1

h v

v h

U U D D

v vUF

v vUR
v v

v vDF

v vDR

A max sign

B max sign

sign

sign

sign

sign

θ η

η θ

η η η η η

θ θ

θ θ
θ

θ θ

θ θ

 = − Θ 
 = Θ − 

 =  
 − +
 
 − + Θ =  

− + 
 
 − + 

 

and ( )sign  denotes the signum function. The time rate 

of changes of the vertical and horizontal angles ( , )v hθ θ  
for the collision avoidance vector can be directly 
incorporated into the 3-dimensional PNCAG guidance 
command in (39) and (40). 

To verify the proposed algorithm, a simulation study 
with different initial conditions is performed with the 
conditions in Tables 5 and 6, respectively. 

Simulations are also conducted with different weight-
ing parameters for the vertical maneuver. First Fig. 16 
shows a 3-dimensional collision avoidance scenario for 
the Case I initial condition. Collision avoidance takes 
place about the vertical direction. Fig. 17 presents 
simulation results for Case I but with different design 
parameters in altitude limits as well as weighting 
parameters. As we can see, collision avoidance is 

achieved in the horizontal direction. It is significantly 
different from that of Fig. 16 where the aircraft avoids 
collision in the vertical direction. This illustrates again 
the effectiveness of weighting parameters in designing 
the desired avoidance maneuvers. 

In Fig. 18, the simulation result for Case II is 
illustrated with appropriate design parameters. The 
aircraft and obstacle approach each other from opposite 
directions. In this case, collision avoidance also takes 
place in the vertical direction. Fig. 19 also shows 
simulation results for Case II. With different weighting 
parameters, especially large ,Uη ,Dη  the collision 
avoidance vector is steered in the horizontal plane. This 
again illustrates the effectiveness of the weighting 
parameter. 

Through the simulation results, 3-dimensional colli-
sion avoidance is accomplished by the PNCAG law. 
Determination of a collision avoidance vector in 

 
Table 5. Simulation condition for 3-dimensional colli-

sion avoidance (aircraft). 
 Case I Case II 

Initial position (km) 
Target position (km) 
Initial speed (m/s) 
Heading angle (rad) 
Flight path angle(rad) 

(0,0,5.49) 
(0, 74.03, 4.31) 

102.7 
/ 2π−  

-0.0165 

(0,0,5.49) 
(0,74.03, 4.31)

102.7 
/ 2π  

-0.0165 
 
Table 6. Simulation conditions for the linear and nonlin-

ear approaches (obstacle). 
 Case I Case II 

Initial position (km) 
Target position (km) 
Initial speed (m/s) 
Heading angle (rad) 
Flight path angle (rad) 

(-47.22,37.04,4.88) 
(28.85, 37.04, 4.88) 

102.7 
0 
0 

(0,74.03,4.88)
(0,0, 4.88) 

102.7 
/ 2π−  

0 

 
Fig. 16. 3-dimensional simulation results for Case I

( 6080 ,maxalt m= 3048 ,minalt m= 1.7966,Uη =
1.1078).Dη =  

 

Fig. 17. 3-dimensional simulation results for Case I
( 5486 ,maxalt m= 3962 ,minalt m= 6.8861,Uη =

3.1654).Dη =  
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conjunction with a weighting parameter to adjust 
maneuver directions allows us to design the desired 
avoidance maneuvers. 

 
7. CONCLUSIONS 

 
A collision avoidance guidance law motivated by the 

conventional proportional navigation guidance method is 
applied successfully to the collision avoidance of aircraft. 
The proposed guidance law was tested through stability 
analysis and simulation study. From the simulation 
results, the new approach effectively achieves collision 
avoidance against the target aircraft with different initial 
conditions. The three-dimensional collision avoidance 
guidance law was also verified through simulation. By 
simple geometric analysis, the collision avoidance vector 
was shown to be uniquely determined. The aircraft 
velocity vector was also steered toward designed points 

of the safety boundary in the three-dimensional 
formulation. The weighting parameter for vertical 
maneuver enables us to design avoidance maneuvers in 
either vertical or horizontal directions with the same 
initial conditions. 

 
APPENDIX A  

In this appendix, the kinematic relationship for the 
collision avoidance angle in (2) is derived. First, Fig. A.1 
shows the angle variables defined to assist the 
mathematical derivation. 

In Fig. A1, the angle variable φ  satisfies 

, .
T T

y xsin cos
R R

φ φ= =  (A1) 

Differentiation of (A1) yields 

˙

2 .T T T

T TT

yR y R Rycos sin
R RR

φφ φ−
= = −  (A2) 

Thus, 

.T

T T

Ry tan
R cos R

φ φ
φ

= −  (A3) 

Since ,rel rely v sinψ= −  (A3) can be rewritten as 

.rel rel T

T T

v sin R
tan

R cos R
ψφ φ

φ
 

= − + 
 

 (A4) 

Similarly, for the angle variable ,γ  it can be shown that 

P

T

R
sin

R
λ =  (A5) 

and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 20. Angle variables to define the kinematic rela-

tionship. 

 
Fig. 18. 3-dimensional simulation results for Case II

( 6080 ,maxalt m= 3048minalt m= 1.7966,Uη =
1.1078).Dη =  

 

Fig. 19. 3-dimensional simulation results for Case II
( 5182 ,maxalt m= 4572 ,minalt m= 17.0,Uη =

17.0).Dη =  
 

`
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T

T

R
cos sin

R
λλ λ= −  (A6) 

thus 

.T

T

R
tan

R
λ λ= −  (A7) 

Finally, by using ,θ φ λ= +  one can derive the 
kinematic equation for the angle variable θ  as (2). 

( ) .rel rel T

T T

v sin R
tan tan

R cos R
ψθ φ λ

φ
 

= − + + 
 

 (A8) 

 
APPENDIX B 

Since [0, ]go ft t∈  is positive, supplementary state-

ments are necessary to prove 1 2 / goc c t+  is positive 

also over [0, ].go ft t∈  Thus, the following conditions 
should hold 
1) constant 

2
c  must have a positive value, 

2) 1 2 / fc c t+  must be positive. 
Proof 1: Since 

0
2 2

0

21 31
( 1)

pR Nc
R N

γ −= − Γ −  
 (B1) 

 

a) If 3,N ≤  then 2c  has a positive value. 
b) If 3N >  with 0 0,pR R γ  is small and 

2( ,1) ( 3)N N− > −  then it can be regarded that 

2
1 .c Γ  In addition, 0,Γ >  therefore 2c  is 

greater than zero. 
According to a) and b), 2c  is always positive. 

Proof 2: Note that 

02
1 2

0 0

2 2 31 ,
( 1)

rel P

f

v Rc Nc
t R R N

γ −+ = + 
−  

 (B2) 

(B2) is positive if N  is greater than 1.5. 
According to Proofs 1 and 2, 1 2 / goc c t+  remains 

always positive in [0, ]go ft t∈  if 1.5.N >  
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